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Abstract— An important milestone for building affordable
robots that can become widely popular is to address robustly the
Simultaneous Localization and Mapping (SLAM) problem with
inexpensive, off-the-shelf sensors, such as monocular cameras.
These sensors, however, impose significant challenges on SLAM
procedures because they provide only bearing data related to
environmental landmarks. This paper starts by providing an
extensive comparison of different techniques for bearing-only
SLAM in terms of robustness under different noise models,
landmark densities and robot paths. We have experimented
in a simulated environment with a variety of existing online
algorithms including Rao-Blackwellized Particle Filters (RB-
PFs). Our experiments suggest that RB-PFs are more robust
compared to other existing methods and run considerably faster.
Nevertheless, their performance suffers in the presence of out-
liers. In order to overcome this limitation we proceed to propose
an augmentation of RB-PFs with: (a) Gaussian Sum Filters for
landmark initialization and (b) an online, unsupervised outlier
rejection policy. This framework exhibits impressive robustness
and efficiency even in the presence of outliers.
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I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) [18], the
procedure of mapping a workspace and localizing a sensor
using the map, has received a lot of attention in robotics
and has led to impressive robot behaviors. However, in order
to see SLAM approaches used widely, we must solve the
SLAM problem for flexible, inexpensive, ubiquitous sensors,
such as monocular cameras. Cameras exhibit an important
limitation, however. A single image provides only the direc-
tion, or bearing, to environmental features. This complicates
landmark initialization in online SLAM [10], [2], since at least
two measurements from known, relatively disparate poses are
needed to initialize an estimate. But a good estimate of the
scene characteristics is required to compute the poses from
which the measurements have been taken. Hence, bearing-only
sensors aggravate the typical challenge of SLAM, namely the
inter-dependence between mapping and localization. Despite
these challenges, there have been various attempts to solve the
bearing-only SLAM problem in the robotics literature. Most
of these attempts employ an Extended Kalman Filter (EKF)
[3] and focus on the proper initialization of the EKF [2].
Nevertheless, it has been argued that online approximations
of Expectation-Maximization (EM), such as the Incremental
Maximum Likelihood (IML) [17] approach, combined with
Particle Filters (PFs) [1], are comparable to the EKF results
[8]. An alternative, which combines PFs and the EKF, and
is called Rao-Blackwellized PFs (RB-PFs) [6], has exhibited
robust performance and time efficiency in the case of range-
bearing sensors [20].

Fig. 1. An experiment with 100 readings and 10 landmarks using RB-PFs.
The noise follows a Gaussian distribution with σ = 3

◦.

The contribution of this paper is to apply multiple state-of-
the-art algorithms to the online, bearing-only SLAM problem,
compare them, and, based on their evaluation, develop a new
algorithm that robustly addresses the problem. In particular:

A. We provide a comprehensive experimental compari-
son in a controlled environment for different noise models,
landmark densities and robot paths of three different classes
of algorithms that are applicable to the online bearing-only
SLAM problem: (a) EKF (b) IML (c) and to the best of our
knowledge RB-PFs for the first time. For each class we have
implemented various approaches from the existing literature
and we report here the best solutions in our setup.

B. Our experiments suggest that RB-PFs provide a robust
and time efficient solution. However, outliers considerably
reduce their performance. We propose the augmentation of
RB-PFs with two methods to overcome outlier sensitivity: (a) a
Gaussian Sum Filter (GSF) [10], [9] for initializing landmarks
and (b) a single-cluster graph-partitioning algorithm for outlier
rejection [12]. The combined framework performed better than
every other approach across a wide selection of parameters,
including a noise model with high occurrence of outliers.
Figure 1 shows a SLAM result computed with this algorithm
in our simulated environment.

II. TECHNIQUES FOR BEARING-ONLY SLAM

We first provide an overview of the bearing-only SLAM
problem and the classes of algorithms we have considered.

Assume a robot moving among n static landmarks. Let
ξ = (x, y, θ) denote the robot state and ξ(ti : tj) denote a
trajectory from time ti to tj . The robot stores a map m with the
landmarks’ coordinates: {l1 = (x1, y1), · · · , ln = (xn, yn)}.
The data dT = (o(0 : T ), u(0 : T − 1)) available to the robot
up to time T are the observations o(0 : T ) and control inputs
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u(0 : T − 1). A robot input ut = (uf
t , uθ

t ) corresponds to a
translation u

f
t followed by a rotation uθ

t and determines the
kinematic model ft(st−1, ut):

( xt+1, yt+1, θt+1, m ) =
( xt + u

f
t · cos(θt), yt + u

f
t · sin(θt), θt + uθ

t , m )

An observation oi
t of landmark li from state ξt = (xt, yt, θt)

corresponds to the following computation (observation model)
where wt represents noise:

oi
t = atan2(yi − yt, xi − xt) − θt + wt.

The goal is to concurrently estimate the map m and the
robot state ξT at time T : sT = (ξT , m). The general Bayes
filter computes a belief distribution BT = P (sT |dT ) at time T

over sT given the data dT [19]. The computation requires (a)
an initialization B0, (b) a motion model P (ξ′|u, ξ) describing
the probability that the robot is at location ξ′ if it was
previously at ξ and executed u, and (c) the observation model
P (o|ξ, m) describing the likelihood of observing o when the
robot is at ξ and the map m is correct. Then for a static map
and a normalization factor η we get:

BT = ηP (oT |ξT , m)

∫

P (ξT |uT−1, ξT−1)BT−1dξT−1 (1)

The computational cost of integrating over all states renders
the explicit computation of Eq. 1 inefficient. Most online
algorithms simplify the problem by approximating Eq. 1 and
three of the most popular approximations are described below.

A. Extended Kalman Filter

Assume the motion and observation models in Eq. 1 are
expressed as st = ft(st−1, ut)+vt and ot = ht(st)+wt, where
ft, ht are linear functions and vt, wt correspond to white,
Gaussian distributed noise with zero mean and covariance
matrices Vt and Wt, respectively. In this setting Eq. 1 can
be solved optimaly by the Kalman filter equations. We know,
however, that ft and ht are non-linear for the bearing-only
SLAM problem. Cheeseman et al. [15] proposed the Extended
Kalman Filter for SLAM which linearizes ft, ht by using
a Taylor approximation. If Ft = [∂f

∂s
] and Ht = [∂h

∂s
] the

Jacobian matrices of ft and ht respectively, then the EKF
estimates the mean state vector s̄t and covariance matrix Pt

of Bt according to the following two steps:

Predict : ŝt = ft(s̄t−1, ut) P̂t = Ft Pt−1 F T
t + Vt

Update : s̄t = ŝt + Rt νt Pt = P̂t − Rt Ht P̂t

where νt = ot−ht(ŝt) and R = P̂t HT
t (Ht P̂t HT

t +Wt)
−1.

EKF has been a popular solution for bearing-only SLAM
[3], [16], combined in some cases with other techniques like
bundle adjustment [4]. The literature focuses a lot on how to
initialize a landmark estimate. Costa et al. [2] use observations
from two poses without data association. Alternatively a
Gaussian Sum Filter (GSF) can be initialized, which prunes
Gaussian hypotheses when they become invalid [9], [10].

B. Incremental Maximum Likelihood

An alternative to the EKF is Expectation Maximization
(EM), which performs hill climbing in the space of trajectories
ξ(0 : T ) and maps m, computing the pair that maximizes the
likelihood of producing the sensor readings [19]. The algo-
rithm alternates between (a) estimating the trajectory based
on the current map and (b) estimating a maximum likelihood
map based on the trajectory. EM algorithms are applied offline
due to their high computational cost.

An online heuristic based on EM is the Incremental Max-
imum Likelihood (IML) method [17]. In IML the state at
time T is constructed from the (T − 1)-th map and pose via
maximization of the marginal likelihood:

(ξT , mT ) = argmax
ξT ,mT

P (oT |ξT , mT ) P (ξT |uT−1, ξT−1). (2)

The above equation follows from Eq. 1 if the previous state
is known. The algorithm does not provably converge and its
weakness is cyclic environments where the error in robot poses
grows unbounded. As a result, specific loop closing techniques
are applied. IML is popular due to its simplicity and real-
time implementations have worked well in practice. IML’s
limitations can be partially overcome by using Particle Filters
(PFs) [5], [13], [1] to represent uncertainty. A PF approximates
a distribution with particles pi = (si, wi) where si is a
possible system state and wi is si’s likelihood Σ

i
wi = 1. Kwok

and Dissanayake [8] applied IML with PFs for bearing-only
SLAM.

C. Rao-Blackwellization

If the goal of the SLAM problem is to compute BT =
P (sT |dT ) = P (ξ(0 : T ), m|d(0 : T )), then a key observation
is that if ξ(0 : T ) is known then the map m can be analytically
computed. Furthermore, for a known trajectory we can also
marginalize each landmark estimate in the map. Then instead
of Eq. 1 we have the following expression for the belief
distribution:

BT = P ( ξ(0 : T ) | d(0 : T ) ) P ( m | ξ(0 : T ), d(0 : T ) ) =

P ( ξ(0 : T ) | d(0 : T ) )
∏

i

P ( li | ξ(0 : T ), oi(0 : T ) ). (3)

This factorization implies that the computation can be
decomposed into n + 1 filters, an estimator over robot paths
P ( ξ(0 : T ) | d(0 : T ) ), and n estimators over landmark
locations P ( li | ξ(0 : T ), oi(0 : T ) ) conditioned on the path
estimate. The above idea is known in the statistics literature
as Rao-Blackwellization [6]. Thrun et al. [20] have provided
an implementation of Eq. 3 with PFs where EKFs represent
the uncertainty on the landmark estimates.

III. IMPLEMENTED ALGORITHMS

We have implemented a series of SLAM algorithms and
applied them to the case of bearing-only sensors. Here we
describe the details of our implementation for each class of
algorithms from section II



A. Extended Kalman Filter

1. EKF: We have implemented a straightforward version
of the EKF filter where the mean state vector s̄t is of
dimension 3 + 2n and the covariance matrix Pt of dimension
(3 + 2n, 3 + 2n), where 3 parameters are needed for the pose
and 2 for each landmark. The pose is initialized at (0, 0, 0)
and each landmark is initialized at a fixed distance ρc from
the robot on the first observation ray. The covariance matrix is
initialized so that the uncertainty around the initial pose is a
circle and the uncertainty for each landmark is an ellipse. The
length of the ellipse extends between the minimum ρmin and
maximum ρmax assumed depth of our sensor. The width of the
ellipse corresponds to two standard deviations of the Gaussian
distribution that represents the noise model. Fig. 2(a) shows
the initialization of the EKF and the state of the filter after
10 observations. For every new observation we execute the
prediction and update steps from section II.A.

2. GSF: An important limitation of the EKF is its sensi-
tivity to the initial distribution. In order to improve landmark
initialization we have applied a Gaussian Sum Filter (GSF)
[9], [10]. The idea is to use an EKF for tracking the pose
and the global map and each new landmark is initialized with
a separate GSF. The GSF is eventually pruned to a single
Gaussian distribution and then the landmark is added to the
global map. Although a single observation does not give any
depth information, we can approximate a uniform distribution
over the depth ρ of a recently discovered landmark with a sum
of Gaussians

∑

i Γ(ρi, σρi
), where

ρ0 =
ρmin

1 − α
, ρi = βi · ρ0, σρi

= α · ρi, wi ∝ ρi. (4)

In our implementation we propagate all the Gaussian distribu-
tions defined in Eq. 4 during a training period. At the end of
the training period we select the hypothesis with the highest
likelihood and we prune the rest. The likelihood of Γi is
the product of the likelihoods Lt

i, each one defined for an
observation ot:

Lt
i =

1
√

2π|Si|
exp(−

1

2
(ot − ôt

i)
T S−1

i (ot − ôt
i)), (5)

where ôt
i is the expected observation given the hypothesis and

Si is the covariance of the Kalman innovation: ot − ôt
i. Note

that initially no landmark is present in the global map so
the robot state is propagated according to odometry. Fig. 2(b)
shows an example of initializing and tracking with GSFs.

B. Incremental Maximum Likelihood

1. SIR: In order to implement Eq. 2 we have to decide how
to represent the pose and the map. Some IML approaches
represent the pose with PFs and then solve for the map
analytically. We have applied PFs both for the estimation of the
pose and the map. Since the robot pose is assumed known at
each mapping step we can marginalize the map and use an in-
dependent PF for each landmark. Our version of IML with PFs
is shown in Fig. 3. The PF follows the Sampling Importance
Resampling (SIR) algorithm, also known in robotics as the
Monte Carlo Localization (MCL) algorithm [19]. SIR suffers

Fig. 2. SLAM for a scene with 3 landmarks. From top to bottom: EKF, GSF,
SIR. The left column shows the initialization of the corresponding technique
and the right column shows the state of the filters after 10 observations.

from the “particle impoverishment” problem since particles
quickly collapse to the same state. This is especially true for
particles that estimate a stationary state such as the mapping
PFs in the algorithm of Fig. 3.

There are many alternatives for implementing PFs and we
have also tested the “Sequential Importance Resampling” (SIS)
algorithm with “Effective Sampling Size” (ESS) resampling
[5], [13]. This technique does not sample on every iteration as
in lines 1 and 6 of Fig. 3. Instead, a heuristic approximates how
many of the particles have non-negligible weights and only
when this number drops below a threshold does resampling
occur. The SIS-ESS algorithm suffers from low variance of the
particle population. On the other hand, “Mixture-MCL” [19]
uses an observation directly to influence the particles’ states
in that some particles are sampled not from the previous set,
but from the region described by the last observation.

2. Rough: In order to overcome the impoverishment prob-
lem with the mapping PFs we have applied “roughing” [5].
This simple technique maintains variation in the particle pop-
ulation by applying random noise to the particle state instead
of a propagation step and it performed better than simple SIR.

3. Reset: “Resetting” [7] behaves similarly to the “Mixture-
MCL” approach but samples from the observation only when



Require: A PF representing the uncertainty over ξT−1 and n
PFs representing the uncertainty for each li.
Ensure: Maximum likelihood sT = (ξT , mT ).

Input: Odometry uT−1 and sensor oT readings.

1: Sample poses sT−1 given the current pose PF.
2: Propagate samples given odometry data uT−1.
3: Re-weight samples given the observation model and the maxi-

mum likelihood map: P (oT |sT , mT−1).
4: Estimate new pose ξT as the maximum weight particle.
5: for every landmark liT−1 do
6: Sample landmark locations given the i-th PF.
7: Re-weight samples given: P (oi

T |sT , liT−1)
8: Estimate new landmark estimate liT .
9: end for

10: Compute map: mT = {l1T , · · · , lnT }.

Fig. 3. One step of the IML algorithm with SIR PFs for representing pose
and map uncertainty.

it deviates substantially from the previous distribution. In
particular, the resetting approach maintains two estimates, a
long-term average of observation likelihoods for each land-
mark estimate Pl = Pl + ηl (P − Pl) and Ps the short-
term counterpart. P represents the likelihood of the current
landmark estimate (Eq. 5) given the last observation and ηl is
the long-term smoothing parameter. The technique, resamples
ñ samples according to a parameter ν that controls the level
at which samples are added: ñ = n max(0, 1 − ν · Ps

Pl

).

C. Rao-Blackwellization

1. RB-PFs: A PF can be used for computing Eq. 3, where
each particle specifies both the robot’s trajectory ξ(0 : T )
and the map m. In reality, we do not have to store the entire
trajectory but only the most recent state ξ. For the map we can
use n low-dimensional EKFs to track the landmarks as in the
work by Thrun et al. [20]. Then the p-th particle state s

p
t cor-

responds to the tuple s
p
t = <ξ

p
t , ¯lp1,t, Σ

p
1,t, · · · , ¯lpn,t, Σ

p
n,t, w

p
t >,

where ¯lpi,t and Σp
i,t are the mean state vector and covariance

matrix of the EKF for the i-th landmark and w
p
t is a weight.

RB-PFs are updated as follows:

• Propagation of the robot pose ξT .
• For each landmark li: Given ξT , oi

T , update EKF that
corresponds to li (update step from section II.A).

• Assign weights to particles and resample the population.

We have implemented two alternatives for propagating
the pose and reweighting the particles in RB-PFs. The first
and simplest one is the “odometry-based” approach, where
we use only odometry information for pose propagation
P (ξp

T |ξ
p
T−1

, uT−1) and the weights are updated according to
q

p
T ∝ P (oT |ξ

p
T , m

p
T−1

). On the other hand, the “sensor-based”
solution is optimal in terms of minimizing the variance of
the weights and takes the observation into account for the
pose propagation P (ξp

T |ξ
p
T−1

, uT−1, oT ), and sets the weights
as follows q

p
T ∝ P (oT |ξ

p
T−1

, m
p
T−1

). The two approaches
correspond to algorithms FastSLAM 1.0 and FastSLAM 2.0
[20], respectively. Our implementation is similar to these two
algorithms but without the data association components.

2. Robust: Our experiments suggested that some of EKF’s
drawbacks, such as sensitivity to erroneous initialization, nega-
tively effect the performance of RB-PFs as well. Another EKF
limitation is its inability to handle erroneous observations.
Given these observations we propose a complete RB-PF-based
framework for robust, online, bearing-only SLAM which is
shown in Fig. 4. The first alteration compared to typical RB-
PFs is that we replace EKFs with GSFs. We have already seen
that GSFs can be used to approximate a uniform distribution
in the depth of the landmarks. For outlier rejection we have
implemented an unsupervised algorithm for Single-Cluster
Graph Partitioning (SCGP) [12]. The online version of the
algorithm considers at each step a small set of observations
per landmark, usually the last ones, and attempts to estimate
whether the latest observation for each landmark is an outlier
or not. In order to do so, each observation is considered
as a node in a graph. An edge in this graph has a weight
of 0 if the observation rays corresponding to the two nodes
intersect and 1 otherwise, defining in this way the graph’s
adjacency matrix. Then the technique computes the dominant
eigenvector of the graph’s adjacency matrix and interprets the
vector’s values as indicators of whether the corresponding
observations are inliers or not. If the value corresponding to the
last observation is below an automatically computed threshold
then it is considered an outlier. SCGP is an approximate
O(N2) solution to outlier rejection and has been shown by
Olson et al. [12] to be more effective than RANSAC in various
settings including range-only SLAM.

The new “Robust” algorithm employs a training period
t ∈ [1 : T1] during which each landmark is tracked by a GSF
instead of an EKF and the RB-PF follows the “Odometry-
Based” approach for propagating the pose and reweighting
the particles. After the training period the GSF is pruned and
only one of the Gaussian hypothesis is kept, the one with
the highest likelihood. During the regular operation of the
algorithm the landmark estimates are considered trustworthy
enough so that the “Sensor-based” approach is used for the
proposal distribution. Note that during the training period any
operation on the GSF (e.g., computing the likelihood of the
GSF given the last observation), can be redirected to the EKF
with the highest likelihood.

IV. EXPERIMENTAL SETUP

We have created a simulator to test the performance of
the algorithms we have described in a controlled environment
under the following parameters.

1. Environment: The simulated environment is a rectan-
gular region containing the robot and landmarks. We have
considered two types of scenes: sparse (5 landmarks) and
dense scenes (100 landmarks). The landmarks are dispersed
uniformly at random inside the rectangular region.

2. Sensing model: We compute an observation as the actual
bearing to a landmark given the robot pose and we add noise
so as to simulate the sensor’s uncertainty. We apply three
different noise models: (a) low Gaussian noise Γlow(0, σlow),
where we add to the true observation a noise value selected
from a Gaussian distribution Γ(x, σlow) with mean x and st.



Require: An RB-PF where each particle is s
p
t =

<ξ
p
t , ¯lp

1,t, Σ
p

1,t, ·,
¯lpn,t, Σ

p
n,t, w

p
t >.

Ensure: The maximum w
p
t particle correctly estimates st.

Input: Odometry u0:T−1 and sensor o0:T readings.

1: for every particle p and landmark li0 do
2: Initialize pose ξ

p
0

= (0, 0, 0).
3: Get sensor reading o0.
4: Initialize GSF Γp,i as in section III.A.2.
5: end for
6: for a training period t ∈ [1 : T1] do
7: Get odometry ut−1 and sensor reading ot.
8: for every landmark lit do
9: Use SCGP to check whether oi

t is an outlier.
10: end for
11: for every particle p do
12: Propagate ξ

p
t according to P (ξp

t |ξ
p
t−1

, ut−1).
13: if oi

t−1 not an outlier then
14: Execute the update step of the EKFs in Γm,i.
15: end if
16: Re-weight particles: q

p
t ∝ P (ot|ξ

p
t , m

p

t−1
).

17: end for
18: Update particle population with resampling.
19: end for
20: for every particle p do
21: for every landmark liT−1 do
22: Replace the GSF Γm,i with the highest likelihood EKF.
23: end for
24: end for
25: while t ∈ [T1 : T ] do
26: Get odometry ut−1 and sensor reading ot.
27: for every landmark lit do
28: Use SCGP to check whether oi

t is an outlier.
29: end for
30: for every particle p do
31: Propagate ξ

p
t according to P (ξp

T |ξ
p

T−1
, uT−1, oT ).

32: if oi
t−1 not an outlier then

33: Execute the update step of the EKF: Γm,i.
34: end if
35: Re-weight particles: q

p
t ∝ P (oT |ξ

p

T−1
, m

p

T−1
).

36: end for
37: Update particle population with resampling.
38: end while

Fig. 4. Robust Rao-Blackwellized Particle Filter Algorithm.

dev. σlow = 0.2◦ (b) high Gaussian noise Γhigh(0, σhigh)
(σhigh = 1◦) and (c) the “random” noise model, where
measurements are produced from the low Gaussian noise
model but 20% of them are discarded and replaced by bearings
produced uniformly. We are not focusing on the data associ-
ation issue in our experiments since landmarks correspond to
unique identities. One of the purposes, however, of the random
noise model is to simulate the effects of having problematic
data association. Although observations due to wrong data
association do not necessarily follow a uniformly random
distribution, this error model is considered to create similar
difficulties to SLAM algorithms as failed data association
[7]. Furthermore, we assume that each observation returns a
bearing to every landmark present in the environment.

3. Robot’s path: During each run, the robot senses the
environment on prespecified paths. These paths are either
loops (circular or rectangular) or random paths. The random

paths are constructed so that the distance between two ob-
servations follows a Gaussian distribution with mean of 10
pixels and a st. dev. of 3. The difference in orientation is
centered at zero and has a st. dev. of 10◦. The robot does not
exit the bounding rectangle that defines the environment. If it
collides with the boundary it bounces back towards the scene.
The error model for the odometry uses the assumption that
between two observations the robot moves forward a certain
distance and then rotates by some angle. Both actions are
represented independently with Gaussian distributions. The st.
dev. corresponding to the rotational term is the same as the st.
dev. of the sensing model. The translational st. dev. is 1 pixel
in the case of Γlow and 3 in the case of Γhigh.

V. RESULTS

To test an algorithm from section III, we run it on 50
different scenes for each noise setting (low Gaussian, high
Gaussian, 20% random noise), landmark density (sparse and
dense) and robot path type (loop or random path). At the
end of each run we record average localization and mapping
errors along with the runtime. We have defined the following
criteria to distinguish the performance of the algorithms.
(a) Robustness: the percentage of successful runs. A run is
considered succesful when the localization and mapping errors
are below two empirically chosen thresholds (100 pixels and
200 pixels respectively). We followed this definition of success
because we observed a binary behavior: An algorithm will
either fail resulting in very high errors or it will succeed in
reconstructing the scene fairly accurately. (b) Time efficiency:
the average amount of time it takes to run an algorithm in a
particular setting.

A. Robustness

We will first present a comparison of the various alternative
approaches within each family of algorithms, EKF, IML and
RB-PFs, in terms of robustness.

1) EKF solutions (Fig 5): The straightforward implemen-
tation of the EKF satisfactorily solves most problems with
sparse scenes under Gaussian noise model but its performance
deteriorates with denser scenes. This is due to the landmark
initialization issues of the algorithm. When there are only
a few landmarks, the mapping errors do not propagate fast
enough to the localization estimate allowing for an eventual
convergence in the mapping estimates as more observations

Fig. 5. Performance of the EKF approaches.



Fig. 6. Performance of the IML approaches.

are coming. In dense scenes the influence of wrong landmark
estimates is stronger. Furthermore, the algorithm cannot handle
the “random” noise model although we have also used the
Single-Cluster Graph Partitioning (SCGP) algorithm for outlier
rejection. Initializing landmarks with a GSF considerably
improves the performance of the EKF overall, although the
effect is less obvious with random noise. This is not surprising
since a GSF is compromised from multiple EKFs and a small
set of outliers is enough to cause an EKF to lose track of the
landmark’s state completely.

2) IML solutions (Fig 6): We have applied the SIR algo-
rithm both for the pose and the mapping filters and the results
show the weakness of the IML approach in looped paths. The
benefits of applying PFs are obvious since the algorithm is
able to solve many runs under the random noise model that
the EKF solutions could not, with the best performance for
random paths and high density scenes. We have also noticed
a degradation of performance as we increase the st. dev. in
the Gaussian noise models. We experimented with multiple
PF resampling algorithms but we were not able to improve
the performance of the IML algorithm when applied them for
the pose PFs. However, there was an improvement when we
used techniques that allow the state of the mapping filters to
change. By applying “Rough” we have managed to get results
comparable to the GSF solution for the low Gaussian noise
model, while solving many random noise model problems.
The technique which exhibited the best behavior, however, was
“Reset”. Although it still suffers from the loop problem, it has
produced impressive results in the case of random noise. The
results actually suggest that the perturbation in the input due to
the random noise improves the performance of the algorithm
compared to the high Gaussian noise model.

3) RB-PF solutions (Fig 7): The family of RB-PF algo-
rithms performed the best overall, exhibiting very high robust-

Fig. 7. Performance of the RB-PF approaches.

ness for all the scenes and paths when a Gaussian noise model
was applied. Fig. 7 shows the robustness levels of two RB-
PF methods: (a) an implementation that uses the “Odometry-
Based” approach and initializes landmark estimates with a
single Kalman filter (RB-PF) and (b) an implementation that
follows the description in Fig. 4 (Robust). In particular, for the
Gaussian noise model, the various RB-PFs approaches exhibit
small differences in performance with a small advantage for
the methods that use a GSF to initialize landmarks and
for the “Sensor-based” approach. Nevertheless, RB-PFs face
considerable challenges in the presense of random noise and
this is again mainly due to the inability of the Kalman filter
to handle random noise.

The advantage of using the “Robust” algorithm as described
in Fig. 4 lies in the case of outliers. The typical RB-PF ap-
proach manages to solve only 10-16% of the problems with the
random noise model and for looped paths. With the changes
we have incorporated in the algorithm, the performance in
this case reaches between 66-96%. Notice that at the same
time that the “Robust” framework manages to solve every
experiment under the Gaussian noise models. Furthermore,
among all the RB-PF based algorithms we have tried the
“Robust” framework has achieved the best accuracy levels.

From the comparison of all the methods, EKF, IML and
RB-PF based, it is obvious that different approaches face dif-
ficulties with different parameters of the experimental settings.
For example, loops are problematic for IML algorithms, dense
scenes are challenging for EKF, while sparse scenes pose more
difficulties for the typical RB-PF algorithm under the random
noise model. Nevertheless, it is apparent that the “Robust”
RB-PF-based framework we have proposed in this paper has
the most satisfactory behavior across all parameter settings. It
must also be noted, however, that the “Reset” IML algorithm
is the best solution for sparse scenes when the sensor follows
the random noise model.

B. Efficiency

Table I shows the average amount of time in milliseconds
that each method spends per step. The reported performance
has been achieved on a dual AMD Athlon 1900MPs with
one gigabyte of memory each. All of the nodes ran Debian
Linux with kernel 2.4.21. We already know that the com-
putational complexity of the Kalman filter is cubic so we
expect that it is going to be slow for densely populated scenes,



rendering it an inappropriate online algorithm for the SLAM
problem when there are hundreds of landmarks. The results
support this expectation. The EKF, and consequently the GSF
solution as well, are the slowest algorithms for scenes with
hundreds of landmarks. The GSF is slightly faster because
during the training period, there is no high dimensional EKF
matrix to be updated which reduces the average delay per step.
The IML solutions are more than three times faster for the
densely populated scenes compared with the EKF approach.
Of course, the time efficiency of PFs depends upon the number
of particles. In our experiments we’ve used 1000 particles both
for pose and mapping PFs. Note, that even in the case of
sparse environments the amount spent by the PF algorithms
is noticeable, mainly due to the cost of updating the pose PF.
Finally, the RB-PF based algorithms are much faster than the
other approaches. In particular, the typical RB-PF is up to 27
times faster than the EKF solution. The “Robust” algorithm
is a little bit slower due to the call to the outlier rejection
process, the Gaussian sum filter and mainly due to the use of
the “Sensor-based” approach instead of the “Odometry-based”
one. “Robust” is still 10 times faster than the EKF solution
and is possible to be called at a rate of 13 times per second
even in the presence of hundreds of landmarks.

TABLE I

EFFICIENCY

Millisec/Step EKF GSF SIR Reset RBPF Robust
Sparse 0.15 0.15 12.41 17.24 1.09 6.97
Dense 733.42 708.14 204.54 295.86 26.72 73.52

VI. DISCUSSION

We have performed in this paper an extensive experimen-
tal comparison of state-of-the-art techniques for the online,
bearing-only SLAM problem in a controlled environment and
for various parameters concerning landmark density, robot
path and sensor characteristics. We have focused on three
classes of algorithms that are applicable to this problem and
which are popular in the related literature: EKF, IML and
RB-PF based methods. The RB-PF approach exhibited the
best performance in our experiments but seemed to perform
poorly in the presence of outliers. In order to overcome this
problem we proposed a combination of RB-PF with an online
outlier rejection policy and a GSF for more robust landmark
initialization. The overall algorithm performed optimally in
our experiments for a noise model that followed a Gaussian
distribution and exhibited considerably improved performance
in the presence of outliers compared to a typical RB-PF
implementation.

There are many interesting problems related to bearing-only
SLAM and which can be the focus of future research. For
example, an important issue with bearing-only SLAM is how
to control the motion of a robot in order to improve the qual-
ity of the localization estimate [14]. Furthermore, achieving
bearing-only SLAM without odometry is very important for
localizing cameras that are not mounted to a robot but are
carried by a human operator. However, in this case the solution
can be computed only up to a scale factor. Another interesting

challenge is the case of moving targets. Then instead of
computing only a two-dimensional state for each landmark,
the algorithms must estimate a four-dimensional state, one
that includes velocities as well. These moving targets could
be members of a robotic team that attempts to achieve relative
self-localization using cameras. Finally, a related and equally
important problem to bearing-only SLAM is the range-only
counterpart which has also received attention recently [11].
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