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Abstract

Research in motion planning has been striving to de-
velop faster planning algorithms in order to be able to
address a wider range of applications. In this paper
a novel real-time motion planning framework, called
decomposition-based motion planning, is proposed. It
is particularly well suited for planning problems that
arise in service and field robotics. It decomposes the
original planning problem into simpler subproblems,
whose successive solution empirically results in a large
reduction of the overall complexity. A particular im-
plementation of decomposition-based planning is pro-
posed. Ezperiments with an eleven degree-of-freedom
mobile manipulator are presented.

1 Introduction

Recent advances in the area of robot motion planning
have resulted in the successful application of these
techniques to diverse domains, such as assembly plan-
ning, virtual prototyping, drug design, and computer
animation. Much of the progress can be attributed to
the introduction of probabilistic roadmap techniques
[10] and their various extensions [1, 2, 8, 9].

Despite these advances, however, some areas of ap-
plication have still remained out of reach for auto-
mated planning algorithms. Applications requiring
robots with many degrees of freedom to operate in
highly dynamic and unpredictably changing environ-
ments fall into that category. To operate robustly and
safely in dynamic environments the ability to modify
the planned motion in real time is necessary. The
planning techniques for high-dimensional configura-
tion spaces described in the literature, however, do
not generate plans in real time.

In this paper a new planning paradigm is pre-
sented addressing these issues by decomposing the
planning problem and applying appropriate planning

algorithms to the respective subproblems. This results
in a real-time planning algorithm in high-dimensional
configuration spaces [3]. The planning paradigm is
well suited for planning problems of average difficulty,
in which a certain amount of clearance to obstacles
along a solution path can be assumed. Such plan-
ning problems occur frequently in the areas of field
and service robotics. The proposed algorithm differs
from a probabilistic approach to real-time path plan-
ning found in the literature [14], where a configuration
space roadmap is computed in the absence of obsta-
cles and portions of that roadmap are subsequently
invalidated by the introduction of obstacles.

2 Decomposition-based Motion
Planning

Decomposition-based planning is a motion planning
framework addressing motion planning problems of
average complexity, as can be encountered in field and
service robotics. In those application areas a minimum
clearance to obstacles can be assumed.

2.1 Motivation

Most of the motion planning approaches represent the
connectivity of the free space in high-dimensional con-
figuration spaces, which are designated by C. The
underlying assumption of decomposition-based mo-
tion planning is that for many applications relevant
connectivity information can be computed and repre-
sented more easily in a low-dimensional space, while
the motion of the robot must be generated in a high-
dimensional space, namely the configuration space as-
sociated with the robot. This naturally leads to a
decomposition of the overall planning task into a high-
dimensional and a low-dimensional subproblem.

The high-dimensional solution in C is connected to
the low-dimensional space W via the workspace vol-



ume V swept by the robot along its trajectory defined
in C. In other words, a path or trajectory in a high-
dimensional space can be represented as volume in
the low-dimensional workspace. Decomposition-based
planning uses this as the link between the two spaces
to divide the planning task.

2.2 Framework

Consider a planning problem P for a robot R in a
configuration space C of dimension d, with an initial
configuration q;n;+ and a final configuration qgeq;. As-
sume there exists a path 7 from qjnit t0 Qgoqr entirely
in the free space F C C. Then let V, denote the
workspace volume swept by the robot R along the path
7. For now we consider the workspace W to be the
Euclidean space R®. Furthermore, let H(7) denote the
set of paths homotopic to the path 7. The workspace
volume Vi(;) is then defined as Vi) = U, H() Vs,
representing the combined workspace volume swept
along all paths homotopic to 7.

Let us assume that there are n homotopically dis-
tinct solution paths 7;,1 < i < n to the planning
problem P. The set of all solution paths S(P) to P
is given by S(P) = U, <;<, H(7:). For a solution path
7, the relation V; C Vi(;) C Vg(p) must hold.

We define V9 = V, @ b(d), where ® denotes the
Minkowski sum and b(§) denotes a ball of radius 4,
to represent the volume swept by the robot along the
path 7 grown by 6. The planning problem P is said
to be d-hard if there exists a path 7 € S(P) such that
Ve C Vs(p)- This means that at every point along
the path 7 the robot has at minimum a clearance of
¢ from the closest obstacle. The decomposition-based
planning approach presented here addresses planning
problems that are §-hard.

We want to decompose the planning problem P into
two subproblems, P; and P». The planning problem
Py can be defined as determining a workspace volume
T, called tunnel, such that V; C T for at least one
solution path 7. Since 7 and therefore V. are not
known, however, a simplified criterion has to be used
to ensure the tunnel 7' is computed in a manner that
V: C T. Such a criterion is called complete if for every
solution path 7 € H(r;) C S(P) the relation V;, C T
holds. Note that 7" might also represent paths ¢ that
are not solution paths, i.e., o ¢ S(P), but V, C T.

Alternatively, an incomplete criterion can be used,
meaning that there are solution paths 7 such that
V., € T. Such a criterion can be computed much more
efficiently, but introduces incompleteness. In choosing
an incomplete criterion the tradeoff between complete-
ness and efficiency needs to be considered carefully.

In the remainder of this paper we will be concerned
with methods that find a solution path 7 € H(r;) if
Ve C VH(z;), for a given value of §. These methods
are called d-complete.

Once we have obtained a workspace volume 7', we
define the second planning problem P, to consist of
finding a path 7 € S(P) using T to aid the planning
process. Again, various planning methods can be em-
ployed to accomplish this task and their performance
can vary. A method to solve P» can determine a path
7 such that V. C T, or alternatively use T solely for
connectivity information to determine a path 7 such
that V, C F, but not necessarily V. C T'.

The real-time performance of the proposed mo-
tion planning algorithm is the result of a tradeoff of
completeness for efficiency. This tradeoff is based in
two assumptions made during the decomposition of
the original planning problem. Let 7 € H(7;) rep-
resent a solution path to the original planning prob-
lem. The approximation of V() using T' assumes
that there exists a path 7 € H(r;) C S(P) such that
Vr: €T C Vsp)- This assumption introduces the first
loss of completeness. It is not implied, however, that
necessarily is the solution path obtained when solving
P. For most practical algorithms the volume of T is
going to be a proper subset of Vg(py, i.e., T C Vg(p).
In Section 3.2 a method is presented that allows to ex-
tend the amount of free space used beyond T without
incurring additional complexity. Finding a solution
path 7' then using T introduces a further loss of com-
pleteness. Both these tradeoffs allow decomposition-
based planning to yield real-time performance.

So far the workspace W was assumed to be the
Euclidean space R®. It is worth mentioning that the
framework can also be applied to R!, R?, and R® x t,
where t denotes time.

Various methods can be devised to solve the afore-
mentioned subproblems P; and P, and in the frame-
work of decomposition-based planning. Section 3 in-
troduces a particular choice in the context of motion
planning for mobile manipulators. The algorithms are
simple and have been shown to work effectively in
practice; other methods addressing other application
areas need to be evaluated.

2.3 Related Work

Some planning approaches presented in the literature
exhibit ideas that are reminiscent of decomposition-
based planning. The freeway method [4] can be viewed
as one of the earliest approaches based on similar con-
cepts. A particular instance of decomposition-based
planning was applied to planning motion for a robot



moving in the plane [6]. The idea of decomposing the
planning task into capturing a volume in space and im-
posing a navigation function onto that space can also
be found in an approach to planning feedback motion
strategies [16]. Here, the volume of free space is com-
puted in configuration space, resulting in larger com-
putational complexity. Other planning approaches use
projection to reduce the complexity of the planning
problem; these approaches assume that a solution to
P, of the decomposition automatically is a solution to
P, [12, 15]. Finally, the idea of dimensionality reduc-
tion of the planning problem is of integral importance
to the silhouette method [5], where the problem is re-
cursively projected into lower dimensions. This par-
ticular approach, however, differs significantly in the
way the subproblems are treated.

3 A Decomposition-based Mo-
tion Planning Method

In this section the decomposition-based planning
paradigm is applied to the motion planning problem
of a serial-link mobile manipulator with many degrees
of freedom (see Figures 1 and 3). As described in Sec-
tion 2, the planning problem is decomposed into two
subproblems. The first subproblem P; of identifying
a tunnel T will be addressed by a wavefront expan-
sion algorithm for free space computation. The sec-
ond subproblem P, of determining a solution path in
the configuration space will be solved using potential
field techniques and a navigation function, computed
from the solution of the first subproblem P;.

3.1 Solving P;: Wavefront Expansion

The subproblem P; consists of determining the
workspace volume 7', called tunnel, such that the vol-
ume V, swept by the robot along a solution path 7
is contained within T, ie., V; C T C Vg(;). Here
we are particularly interested in motions sweeping a
workspace volume tightly enclosed by a tube [7]. This
is motivated by the motion capabilities of a free-flying,
snake-like robot, as described in the experiments be-
low. We will base the computation of the tunnel 7" on
these tubes. For robots with different motion capabil-
ities the computation of 7" has to be modified.

In this particular instantiation of decomposition-
based planning, the tunnel T' will be determined by a
wavefront expansion algorithm [13] in the workspace.
The algorithm proceeds as follows: We compute the
radius 7 of sphere B, centered at the start configu-
ration s of the wavefront expansion by determining

the distance to the closest obstacle in the environ-
ment. This guarantees that B describes a volume of
free workspace. This sphere is inserted into a priority
queue, prioritized by the minimum distance between
the sphere and the goal location g. With its center p
and radius r we store the parent of the sphere, which
in this case is the empty set §. If the goal location is
designated by g, the priority value according to which
the sphere is inserted into the priority queue is given
by |[p — g|| — r. This represents a best-first planning
approach: the sphere nearest to the goal configuration
has the highest priority.

The algorithm now iterates until either the initial
and final configuration of the robot are connected by a
tunnel of free space of given diameter, or the priority
queue is empty. Each iteration begins by removing the
sphere B with the highest priority from the queue and
inserting into the tree A as a child of its parent. The
tree represents the currently explored free space. The
surface of B is randomly sampled; if the sample is not
contained in other spheres in the previously explored
free space, the spheres centered at those samples are
computed. Those spheres are inserted into the priority
queue and the process is repeated. Three snapshots
of the wavefront expansion are shown in Figure 1. It
can be seen that open areas are explored with fewer
and larger bubbles than tight spaces.

We now argue
the probabilistic
d-completeness of - -
this approach to P a
for tube-like paths.
Given the maximum
curvature of the the
tube k, a required
diameter d of the
tube, and a radius r of the surface patch A, we
argue geometrically how to determine the value 4.
Please refer to figure 2. The solid curve in the center
represents the spine S of the tube. The inner dashed
lines at distance r from S bound the location of
the relevant sample on B; by varying the number of
samples n we can guarantee with high probability
that a sample will fall within this bound. The outer
dashed curves indicate the required amount of free
space and hence represent the tube of diameter d. For
any given distances dj, ds of the centers of the spheres
to S we can minimize ¢', as indicated in the figure,
by varying the radii of the spheres while maintaining
coverage of the tube. The maximum of these minima
for all possible distances of the centers to S yields §.
Therefore, the proposed method will with high prob-

Figure 2: Determining §



Figure 1: Wave-front expansion to determine a tunnel 7.

ability discover a tube-shaped path with diameter d,
if there is additional free space of width § along the
tube, i.e., the method is probabilistically J-complete.

3.2 Solving P,: Potential Fields

Using the tunnel 7' computed by solving P;, we now
determine a path 7 for the robot. This will be ac-
complished by imposing a local-minima free potential
function on the free space representation determined
by the wavefront expansion algorithm. This potential
function will result in forces on the robot, causing it
to move to its goal location, while avoiding obstacles.

For a robot to react to obstacles in the environment,
proximity information needs to be translated into joint
motion. Such proximity information can be easily ob-
tained by distance computation in the workspace. A
virtual force F acting on the robot as a result of prox-
imity to obstacles can be computed. Its direction is de-
termined by the line segment connecting closest points
on the robot p, and on the obstacle p,; the magnitude
is inversely proportional to the length of the line seg-
ment. The force F can then be translated into joint
torque I' using the Jacobian J at configuration q of
the robot: T' = J7(q)F, where J is the Jacobian of the
manipulator at point p,, the point at which the force
acts. This effectively maps the low-dimensional force
vector F from the workspace into the high-dimensional
joint space of the manipulator. Using this mapping re-
active obstacle avoidance can be achieved.

During the execution of a task by a robot, it is desir-
able to link reactive obstacle avoidance with task ex-
ecution. The framework for combining task behavior
and obstacle avoidance behavior relies on the general
structure for redundant robot control. In this struc-
ture the torques I' that are applied to the robot are
computed as follows:

T = JTF . + [I — JT7T] SUTE ()

2

[11], where J is the Jacobian of the manipulator at the
current configuration q, J designates its dynamically

consistent pseudo inverse, J; is the Jacobian in con-
figuration q at point p;, Fyasr describes the forces de-
fined by the task, and F; denotes the repulsive forces
exerted on the points p; on the robot by obstacles.
The forces attracting the robot to the goal and re-
pulsing it from obstacles are derived from a potential
function. The attractive forces act at the operational
point, usually the end-effector, and the repulsive forces
act at the point on the robot closest to the obstacle.
Equation 1 provides a decomposition of the joint
torques into those caused by forces at the end effector
(JTF) or operational point and those that only affect

internal motion of the robot ([I - JTjT] > JzTF,)

This decomposition can be exploited to use task-
independent degrees of freedom of the robot for ob-
stacle avoidance in the nullspace. Simple obstacle
avoidance without the incorporation of task behavior
can be achieved by mapping attractive and repulsive
forces to joint torques using equation T' = JT(q)F.
Here, the forces F are the combination of forces to
accomplish the task F;qsx and forces F,ps to avoid
obstacles: F = Fqor + Fopst - Since there is no de-
coupling, obstacle avoidance behavior can affect task
execution behavior.

We exploit the framework described above and rep-
resented by equation 1 to solve the planning problem
P5, using a distance-based, local-minima free poten-
tial function imposed on the free space representation
computed as described in Section 3.1 [3]. This po-
tential function can be computed based on the par-
ent/child relationship of the spheres in the tree A
(see Section 3.1) and the Euclidean distance of their
centers. The gradient of this navigation function N,
defining the task for the robot, can be used to derive
the force Fi,sr = —VN required to accomplish that
task. The repulsive forces F ,p5¢ = —VVipstacie derived
from a repulsive potential V,ps¢qceassociated with the
obstacles can be used for collision avoidance.

Using this scheme for reactive motion generation,
we want to compute a path 7 using T such that
V. C S(p) O T. The assumptions we have made in
Section 3.1 based on the J-completeness of the prob-
lem guarantee that a path 7' exists such that V,» C T.



But now that relevant free space connectivity is rep-
resented in the tunnel 7', we do not need to restrict
the search for 7 to the volume of 7. Using the nav-
igation function N defined on T, we can guide the
end-effector through 7" to the goal position. For the
remaining links of the robot the reactive scheme of
equation 1 is used, effectively extending the volume
within which we search for 7 to Vg (;,), where the path
T is homotopic to 7;: 7 € H(r;).

Using this reactive scheme to generate a path in
conjunction with the connectivity information repre-
sented by T and obtained as a solution to P, it is
possible to compute a solution path to the original
motion planning problem in real time. The simpli-
fying assumptions that were made to obtain a solu-
tion to P; are partially compensated for by the pow-
erful reactive scheme applied to determine a solution
to problem P,. In certain situations, however, this
scheme can fail. These situations are characterized
by the occurrence of a structural local minima of the
robot; while the potential function is free of local min-
ima for a point robot, an articulated robot with many
joints can get trapped when the various forces acting
in the workspace do not result in a motion of the robot.
This fact can be attributed to the conscious tradeoff
of completeness for efficiency.

Note that this particular implementation of
decomposition-based planning not only determines a
solution path to the given planning problem, but im-
plicitly defines a trajectory in real time. This is a
significant advantage over other planning approaches,
where subsequent to the path planning process a time-
parameterization has to be imposed onto the resulting
solution path.

4 Experimental Results

The real-time motion planning algorithm described
above was implemented on a 175MHz SGI 02. It
was applied to an eleven degree-of-freedom manipula-
tor, consisting of a free-floating base with four degrees
of freedom and a Mitsubishi PA-10 manipulator arm
with seven degrees of freedom (Figure 3).

Depending on the complexity of the environment
and the size of its local minima, the computation of
the wavefront expansion (problem P;) was performed
at rates between 3 and 100 Hz. The computation of
the tunnel 7" and the numerical navigation function
can be performed in parallel with the control loop for
reactive motion generation of the robot (problem Ps).
Each time a new solution to P; becomes available, the
control loop for P uses the new navigation function

to determine the motion of the robot.

Figure 3 shows a series of snapshots from a pre-
liminary implementation of the algorithms described
above. Figure 3 a) shows the environment, the robot
in its initial position, and the initial result of the
adaptive wavefront expansion algorithm, shown as a
branching tree-like graph in space, with its root at the
goal configuration for the end-effector. In part b) of
the figure an obstacle is blocking the original path for
the end-effector and a new free space representation
and navigation function are computed, as can be seen
in c¢). Figures 3 d) and e) show the result of subse-
quent real-time computations of the navigation func-
tion, following invalidation by an unforeseen obstacle.
Note that repulsive forces originating from obstacles
in the environment cause the robot to avoid collisions
in a reactive manner, as can be seen in Figures 3 d)
and e), where the robot passes a narrow region of free
space. All degrees of freedom of the robot are used to
avoid the obstacles.

5 Conclusion

To achieve real-time motion planning for robots with
many degrees of freedom, a motion planning paradigm
based on problem decomposition was proposed. The
paradigm addresses planning problems in which a min-
imum clearance to obstacles can be guaranteed along
the solution path. The overall planning problem is de-
composed into two planning subtasks: capturing rele-
vant connectivity information about the free space in
a low-dimensional space and planning for the degrees
of freedom of the robot in its high-dimensional config-
uration space. The solution to the lower-dimensional
problem is computed in such a manner that it can be
used as a guide to efficiently solve the original plan-
ning problem. This allows decomposition-based plan-
ning to achieve real-time performance for robots with
many degrees of freedom.

This paper also presented a particular implementa-
tion of the decomposition-based planning framework,
using an adaptive wavefront expansion algorithm to
efficiently capture a volume of free space, which is in
turn used to guide reactive motion control to find a
trajectory for the robot, solving the original planning
problem. Preliminary experimental results with an
eleven degree-of-freedom robot were presented, verify-
ing the real-time performance of the planner. The pro-
posed framework can be extended in various directions
[3], including alternative solutions to the planning sub-
problems, a more complete theoretical grounding, or
the integration with configuration space planners.
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Figure 3: Real-time planning in a dynamic environment.
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