In the Proceedings of the IEEE Intl. Conf. on Robotics and Automation, pp. 2138-2139, San Diego, 1994

Randomized Preprocessing of Configuration Space
for Fast Path Planning

Lydia Kavraki

kavraki@cs.stanford.edu

Jean-Claude Latombe
latombe@cs.stanford.edu

Robotics Laboratory, Department of Computer Science,
Stanford University, Stanford, CA 94305, USA

Abstract

This paper presents a new approach to path planning
for robots with many degrees of freedom (dof) operating
in known static environments. The approach consists of a
preprocessing and a planning stage. Preprocessing, which
is done only once for a given environment, generates a
network of randomly, but properly selected, collision-free
configurations (nodes). Planning then connects any given
initial and final configurations of the robot to two nodes
of the network and computes a path through the network
between these two nodes. Experiments show that after
paying the preprocessing cost (on the order of hundreds
of seconds), planning is extremely fast (on the order of a
fraction of a second for many difficult examples involving a
10-dof robot). The approach is particularly attractive for
many-dof robots which have to perform many successive
point-to-point motions in the same environment.

Acknowledgments: This research was funded by ARPA
grant N00014-92-3-1809. Early stages of this research benefited

from discussions with Jérome Barraquand.

1 Introduction

We present a new path planning method for robots
with many degrees of freedom (dof). We approach the
problem by defining a certain preprocessing of the con-
figuration space (C-space), after which many difficult
path planning problems can be solved in time of the
order of a fraction of a second.! The preprocessing
itself does not take very long: of the order of a few
hundreds of seconds.

During the preprocessing stage a set of collision-
free configurations (nodes) in the C-space are gener-
ated and interconnected into a network using very sim-
ple and fast planning techniques applied to pairs of
neighboring nodes. The network produced has a large

LAll the running times given in this paper were obtained by
running our planner on a DEC Alpha workstation.

¢ o ¢ o

¢ o ® o

Figure 1: Snapshots along a path of a 10-dof robot

number of nodes (order of thousands). It may contain
one or more connected components, depending on the
robot’s free space and the time spent on preprocessing.

After preprocessing, planning a path between any
two configurations is solved by connecting both con-
figurations to some two nodes A and B in the network,
and searching the network for a sequence of edges con-
necting A and B. The resulting path can be improved
using any standard smoothing algorithm. The plan-
ner fails if it cannot connect any of the two input con-
figurations to the network, or if A and B lie in two
different connected components of the network.

We have implemented our method in a program
written in C and running on a DEC Alpha worksta-
tion. We have conducted series of experiments with
the planner. Difficult path planning problems like the
one in Fig. 1 were solved in a fraction of a second after
a preprocessing time of a few minutes. The robot used
in this example has 3 prismatic and 7 revolute dof (see
Fig. 2). To the best of our knowledge existing planners

would take much longer to solve the same problem, if
they succeed at all.

Our approach is particularly suitable for robots
with many dof which perform several point-to-point
motions in known static environments. Examples
of tasks meeting these conditions include inspection
and repair in constrained environments (e.g., nuclear
plants), point-to-point welding operations to assem-
ble the body of a car, and washing/cleaning airplane
fuselages. In such tasks, many dof are needed to
achieve some final configuration of the end-effector,
while avoiding collisions of the rest of the arm with the
complicated environment. Programming such robots
is tedious and time consuming. An efficient planner
can considerably reduce the programming burden.

Section 2 gives an overview of previous related re-
search. Sections 3 and 4 describe the preprocessing
and planning stages of our approach. Section 5 pro-
vides implementation details. In Section 6 we discuss
a series of experiments conducted with the planner.

2 Relation to Previous Research

Path planning in a known environment has been
studied extensively over the last two decades [14]. Re-
cently there has been a renewed interest in develop-
ing heuristic, practical path planners. Very efficient
path planning methods have been designed for robots
with few dof (e.g., see [3, 8, 15]). An independently
developed method that bares resemblances with our
approach is described in [18]. In this work, a sin-
gle shot planner is implemented for robots with few
dof. The planner generates random via-points for
guiding the robot from its initial to its final configu-
ration. Carefully selected connections among the via-
points are attempted and the results are retained in
form of a graph. The planner finishes when the initial
and the final configuration of the robot get connected
through the graph. A planner for car-like robots [20]
has also been implemented based on the same prin-
ciples. Recently, the method has been extended to
robots with many dof and transformed into a learning
approach [19]. A combination of the common ideas
with the approach presented here is attempted in [9].

Planners developed for many-dof robots include the
planner proposed in [5]. This planner uses a learn-
ing scheme to avoid falling in the local minima of the
potential field function. The quantity of the stored
information however, makes the method impractical
when the number of dof is large. Ways of comput-
ing potential functions for many-dof robots and ran-
domized search techniques to escape local minima are

introduced in [3]. Other potential field methods are
described in [2]. Hierarchical cell decomposition tech-
niques for path planning with 6-dof robots are inves-
tigated in [7, 13]. A planner based on variational dy-
namic programming is introduced in [1]. Genetic algo-
rithms have been employed in [17] and use of parallel
processing techniques is investigated in [4, 16].
Among the potential field planners, the Random-
ized Path Planner (RPP) [3] has been applied to
robots having 3 to 31 dof and is often very efficient.
It has also been used in practice with very good re-
sults [6]. However, several cases have been identified
where RPP behaves poorly. The example of Fig. 1 is
one of them, but there exist simpler ones [4, 21]. More
generally, RPP may fail to find a path in reasonable
time when:
- the robot’s collision-free space in C-space consists
of several regions (which we call “traps”) connected
through narrow passages,
- the boundaries of the attraction basins of the poten-
tial’s local minima are located within or close to those
passages, and
- the initial and final configurations lie in two different
traps.
Then the potential function cannot help the planner to
find a path between two traps. The search inevitably
falls in the local minimum of the current trap. RPP
attempts to escape this minimum by performing a se-
ries of random walks, but the probability that any of
these walks finds its way through a narrow passage is
almost zero. One idea to fix this problem is to use
several potential functions, hoping that the bound-
aries of the basins of attraction for one potential will
be significantly different from the boundaries for an-
other potential. We have tried this idea and it works
well in some cases. In other cases, it seems very diffi-
cult to generate an adequate set of potential functions.
Furthermore, each failure with one potential takes a
significant amount of time, so that the number of po-
tentials that RPP may consider has to be small. The
approach presented below tries to identify “difficult”
regions in C-space and generate additional configu-
rations in those regions in order to capture well the
structure of the free C-space.

3 Preprocessing Stage

The preprocessing stage of our planner consists of
the sequence of steps outlined below. In this section
our description is for a general many-dof robot.

1. Generation of nodes. Random configurations of
the robot (nodes) are generated over the free C-space.

Care is taken to produce a rather uniform distribution.
For example, for the robot of Fig. 1, a node is gener-
ated by drawing each dof uniformly from its allowed
range. After the 10 random choices have been made,
the resulting configuration is tested for collision with
obstacles and self-collision. We keep it only if it passes
these tests. This step is repeated until a prespecified
number N of nodes has been computed. We discuss
later how the choice of N affects the algorithm. In our
examples, N is in the order of a few thousands.

2. Interconnection of the nodes with a simple
planner. We now have a set of NV nodes. Given some
metric in C-space, for each node z, all the other nodes
are sorted according to increasing distance from x; a
simple and fast planner (see Section 5) tries to connect
x to each of the K closest nodes (K is a parameter).
Each connection yields an edge of the network. Robot
paths computed here are not recorded since they can
easily be recovered. The connected components of the
resulting network are computed by a straightforward
breadth-first search algorithm.

3. Enhancement of “difficult” regions. Typically
at the end of step 2 we have a few large components
and several small ones. The purpose of the enhance-
ment step is to add more nodes in a way that will facil-
itate the formation of a large component comprising as
many of the nodes as possible and will also cover the
more “difficult” (narrow) parts of the C-space. The
identification of these difficult parts of the C-space is
no simple matter and the heuristic that we propose
below clearly goes only a certain distance in this di-
rection. We present it in a general framework so that
other heuristics can easily fit in.

For each node x that has been found during the gen-
eration step 1, we define a weight w(zx) which should
be large whenever z “is in a difficult region”. The
weights for all x should add up to 1, as it will become
apparent later. Let us also call ezxpansion of node x
the creation at random of another node y in the free
part of the neighborhood of z. The simplest way to do
this is to choose each of the parameters that describe
the configuration uniformly at random from a small
interval centered at the corresponding parameter of x.

The following is then the heuristic scheme that we
propose. We add a user specified number M of new
nodes to our collection. This time instead of choosing
them at random as in step 1, we choose a node from
among those that step 1 generated with probability

Pr(zx is selected) = w(zx),

and we expand that node z. If y is the created node
we denote by p(y) the node z, that is the node respon-

sible for its creation. We repeat this M times. If the
function w(z) adequately identifies the difficult parts
of the C-space, our heuristic will tend to fill these more
than others.

The essential parameter in our scheme is the func-
tion w(z). In our experiments we use the results of
step 2 to build w(z). We define the degree d, of a
node z as the number of connections that z has with
other nodes at the end of step 2, and

1 |
w(x):—dz+1 /;—dt"‘]--

We regard this number as a measure of the “difficulty”
of the C-space region in which the node lies. Nodes
with low degree are in “difficult” parts of the C-space.
It is crucial to retain such nodes since they might lie
in narrow passages of the C-space and may contribute
significantly to producing a network that captures the
connectivity of the free C-space.

We have experimented with other choices of w(z)
t00. One of them is described in detail in [10] and its
effect is the expansion of all small components pro-
duced at the end of step 2. This expansion (we con-
sider as small any component with less than 1/2 the
total number of nodes) can be formulated in the con-
text of our scheme as follows: if S is the number of
nodes belonging to small components, we let w(z) = %
if a node belongs to a small component and w(z) =0
otherwise. Another possible choice of the w(z) is the
(normalized) reciprocal of the number of nodes gener-
ated in step 1 which fall within a certain distance from
the node z. Many other choices are possible. Experi-
ments showed that the degree heuristic of the previous
paragraph, works well over a large range of examples.
Let us finally point out that if the initial IV is large,
the choice w(z) = 1/N should produce results that
are almost identical to the choice of M random nodes
in the manner of step 1.

After all M nodes have been produced (M is typ-
ically close to N), we test each node y of them for
connection with its parent node p(y). In the case of
a successful connection, we record the fact that the
new configuration y has been connected with p(y) and
thus with all the nodes in the component of p(y); if
the connection fails the new node is considered as not
belonging to any component yet. Then, each node y
of the M produced is tested for connection with the
K closest among the N + M — 1 other nodes which
lie in a different component than y itself. The effect
of this addition of M nodes is a larger network, whose
connected components are then recomputed. At this
stage, components which contain a small fraction (usu-
ally less than 0.5% of the total nodes) are discarded.

4. Further reduction of the number of compo-
nents. In many examples the enhancement of step 3
yields a connected component comprising most of the
nodes when N + M is large enough. Of course, this is
not the case when the free C-space is not connected.
There are also difficult examples where the free C-
space is connected but our simple planner failed to
achieve some crucial connections.

We attempt a further reduction of the number of
components using a more sophisticated planner. For
any two components, starting with the largest, we se-
lect a pair of nodes, z in the first and ¥ in the second,
which are close to each other (according to the C-space
metric). In our implementation RPP [3] is called to
connect x and y. If it produces a connection, the two
connected components are merged into one, and a new
pair of components is considered. Instead, if it fails to
produce a connection within some short time bound,
a different pair of z and y is chosen and a new con-
nection is attempted. In this way we avoid getting
stuck at a case that may be hard to solve by RPP, or
even impossible (if the two components are not path-
connected in free space). The process is repeated a
few times for each pair of components. Eventually, if
RPP fails to produce a connection, we consider that
the components cannot be connected and we retain
them as they are. Connection paths computed dur-
ing that step are recorded, since their recomputation
would be relatively expensive.

4 Path Planning Stage

Let « and y be the initial and final configurations
of the robot and suppose that a single-component net-
work was produced by preprocessing. We first connect
z to a node of the network with the simple planner: we
sort the network nodes in increasing distance from z
and start with the closest nodes. If all these attempts
fail we execute a random walk and try to connect the
final configuration of the walk to the network with the
simple planner. The length of the random walk can
be chosen uniformly in the interval [1,max_length],
where max_length is a constant. The above step can
be repeated a few times if necessary. The same proce-
dure is followed for y.

Let A and B be the nodes with which = and y
get connected. A breadth-first search of the network
constructs a path between A and B. This path is
thus the shortest in the number of nodes. The robot
paths connecting successive nodes along this path are
recomputed, unless they were produced by RPP (see
preprocessing step 4). The path between z and y can
be smoothed using any standard smoothing technique.

Js

Js
J7
Figure 2: The 10-dof robot

If the network produced by preprocessing has more
that one component, we try to connect both z and y
to the same component, starting with the largest. If
we cannot succeed, the planner declares failure. Since
we bound the total amount of time spent in the con-
nection of and y to the network, we detect failure to
connect them in a reasonable time.

5 Implementation Details

We now discuss some implementation details of our
planner using the 10-dof robot of Fig. 2 as an exam-
ple. This robot has 3 prismatic joints and 7 revolute
joints located at Jy, Ji, Jo, J3, Js, and Js. Two rev-
olute joints are located at J3. The description can be
generalized easily to any articulated linkage [11].

1. Generation of random configurations. To cre-
ate a random configuration of the robot we draw each
dof uniformly from its allowed range. Then we check
the resulting configuration for collision with the ob-
stacles and self collision. Typically a very small per-
centage of the randomly guessed configurations are
collision-free (less than 0.5%). Several optimizations
can be applied in this step. For example if the robot
has many links, we can draw the dof values in sequence
and check for collision as soon as the location of a link
gets determined. In our implementation the genera-
tion of the random configurations is very fast, so there
was no need to improve on it.

2. Distance between two configurations. Let
Ji(z), 1 = 0,...,7 denote the position of the J; (see
Fig. 2), when the robot is at configuration z. We
define the distance d(z,y) between any two configura-
tions x and y as

7 1/2
d(a,y) = (Z 17:(w) — Ji(y)H?)
1=0

where ||J;(z) — J;(y)|| is the Euclidean distance be-
tween J;(xz) and J;(y). The distance above is quick
to compute, has an intuitive meaning and can be used
for any planar articulated linkage. Other distances are
possible. For example, it may be useful to weight the
above sum. Larger weights should be assigned to the
distances of the J;’s close to the base of the robot,
since displacements of the links near the base have a

more significant effect on the robot than displacements
of the end effector.

3. Simple Path Planner. We have implemented a
simple and fast path planner for the robot of Fig. 2.
Let x and y be two configurations that we attempt to
connect and Jy,...,J7 be the points of the robot as
shown in Fig. 2. We simultaneously translate Ji, Ja,
Js3, Js, and J; along the straight line in the workspace
that connects their workspace position at configura-
tion z to the their workspace position at configura-
tion y. Then we adjust the first prismatic dof and
the positions of J; and Jg, by computing the inverse
kinematics of the robot. If during the motion, the
robot collides with an obstacle or with itself, or if a
joint reaches a limit, or an adjustment is impossible,
the planner fails. It is clear that this planner is weak.
However, it is extremely fast and has high chances of
success if x and y are close to each other. It tries to
reduce the area swept by the robot when moving be-
tween two configurations and thus increase the chances
of a collision-free path. Other planners are possible.
We have observed that the simpler planner proposed
performs better than the straight line in C-space, or
a planner that changes one dof at a time. Finally we
should note the the choice of the distance in C-space
and that of the simple planner must be closely cou-
pled: the distance should reflect the chances of the
planner to connect two configurations.

4. Choosing N. For many-dof robots, this parameter
should be set to at least a few thousands. Increasing
N generally reduces the time needed for path planning
and improves the quality of the path obtained, but it
also increases preprocessing time. If V is set too small,
no nodes may be generated in “difficult” regions of
C-space, thus there will be no enhancement of these
regions during step 3 for preprocessing. N should be
determined by experimentation.

5. Choosing K. Preprocessing step 2 attempts to
connect each node z to the K closest nodes in the net-
work. On the one hand, K should not be too small,
because we want to give our simple planner a good
chance to make connections. On the other hand, mak-
ing it too large increases the running time unnecessar-
ily, since the simple planner cannot connect nodes that
are far apart. A few successful connections per node
are enough to ensure large connected components. In
our experiments we used K = 20.

6. Choosing M. At preprocessing step 3 we add M
nodes to enhance “difficult” regions of the C-space.
Setting M close to N gives good results. We select a

node to be expanded with the probability distribution
function of step 3. To expand a configuration x we let
each dof take a random value in an interval centered
around its value at . We set this interval to about 1/6
of the range of the dof. Also, we decrease this interval
as we move towards the base of the robot. If we vary a
lot a dof near the base we may create a configuration
which is not close to the initial one.

7. Collision checking. Collision checking can be im-
plemented analytically or with a discretized C-space
bitmap for each link of the robot. To create a C-space
bitmap we assume that each link of the robot is free
to translate and rotate and we precompute for each
link a three dimensional C-space bitmap that explic-
itly represents the free subset of the link’s C-space
(the “0”s) versus the part that gives rise to collision
with an obstacle (the “1”s). When testing for colli-
sion, the planner tests each link against its C-space
bitmap, which is very fast. Each telescopic link of
our 10-dof robot can be modeled as two links. This
technique is practical only for 2D workspaces, since
3D workspaces would require the generation of six-
dimensional bitmaps. We use it in our planner (we
discretize each dof to 128 values) and in particular we
compute the C-space bitmaps with the use of the Fast
Fourier Transform [12]. For self-collision, each link of
the robot is tested against the others.

6 Experimental Results

The planner is implemented in C and we used a
DEC Alpha workstation (Model Flamingo) running
under DEC OSF/1 for our experiments. This machine
is rated at 121.5 SPECmark89. In this section, we
analyze in depth the performance of our method with
a difficult example.

Fig. 3 shows 8 configurations of the robot of Fig. 2
and the environment in which the robot moves. No-
tice that the gates in its workspace are not of the same
width: one is almost three times wider than the other.
Path planning problems can be defined by selecting
any two of these configurations. We summarize the
results of our experiments in two tables. The first,
given in Fig. 4(a), is obtained using our enhancement
technique. The second, in Fig. 4(b), is given for com-
parison purposes and contains results obtained with-
out enhancement. The sum of N and M is the same
in the corresponding rows of the two tables.

The first column in the tables of Fig. 4 gives the
time spent on preprocessing (in seconds) for comput-
ing networks with different number of nodes. Smaller
networks in these tables are not part of larger net-

- - 4TI ITEDhTEe> TS <
o Co Cs Cy
- - 4D T TPfbhEe;> Tmwse> g
Cs Cs Cr Cs
Figure 3: Various configurations of the 10 dof robot

Prepr. (sec) | Final nodes N M C1 C2 C3 C4 C5 C6 C7 | C8
183.81 1432 750 750 0.00 | 1.73 | 1.73 | 0.02 | 0.02 F F 0.00
157.68 2805 1500 | 1500 || 0.00 | 0.27 | 3.17 | 0.00 | 0.02 F 1.53 | 0.12
(a) 172.53 3842 2000 | 2000 || 0.07 | 9.17 | 0.03 | 0.02 | 0.03 F 0.02 | 0.03
288.97 5903 3000 | 3000 || 0.02 | 0.02 | 0.03 | 0.02 | 0.18 | 852 | 0.02 | 0.03
483.98 8866 4500 | 4500 || 0.05 | 0.05 | 0.02 | 0.02 | 0.03 | 0.83 | 0.02 | 0.03
595.74 10901 5500 | 5500 (| 0.02 | 0.02 | 0.02 | 0.03 | 0.05 | 1.48 | 0.03 | 0.03
785.43 12905 6500 | 6500 || 0.03 | 0.03 | 0.03 | 0.03 | 0.05 | 6.48 | 0.03 | 0.05
882.58 14905 7500 | 7500 || 0.05 | 0.08 | 0.03 | 0.03 | 0.07 | 0.33 | 0.03 | 0.07
Prepr. (sec) | Final nodes N M| C1 C2 C3 C4 C5 C6 Cc7 C8
73.43 1397 1500 0 F F F 0.02 | 0.02 F F 0.00
159.13 2847 3000 0 F F F 0.02 | 0.02 F F 0.00
(b) 216.32 3794 4000 | 0 F F F | 0.02 | 0.02 F F 0.00
342.62 5734 6000 0 F F F 0.02 | 0.03 F F 0.02
568.44 8795 9000 0 0.02 | 1.25 | 0.02 | 0.02 | 0.05 F 0.02 | 0.03
747.82 10790 11000 | 0 0.02 | 0.98 | 0.03 | 0.02 | 0.03 | 5.25 1.82 | 0.03
891.85 12805 13000 | O 0.02 | 0.03 | 0.03 | 0.03 | 0.05 F 0.02 | 0.05
1113.47 14691 15000 | 0 0.03 | 0.10 | 0.03 | 0.03 | 0.05 | 11.07 | 11.22 | 0.05

Figure 4: Preprocessing and connection to network times (a) with enhancement, (b) without enhancement M = 0

works; all networks were produced independently.
Preprocessing time includes the generation of N initial
network nodes, their interconnection with the simple
planner, the addition of M nodes in the “difficult” re-
gions of the C-space, and the reduction of the number
of the resulting components using RPP. The bound
on the running time of RPP (for each call) was set to
20 seconds. Column 2 shows the number of nodes in
the largest component produced and columns 3 and 4
the values of the parameters N and M. In columns 5

through 12 we give the time required to connect con-
figurations Ci,...,Cg of Fig. 3 to the precomputed
networks. When this time is 0.00 this means that it
took less than 0.01 seconds to connect the configu-
ration to the network, and when it is more than 1
second, this indicates that a few random walks were
performed. An ‘F’ denotes failure to obtain a connec-
tion of the configuration to the precomputed network
after 35 random walks (their lengths are chosen uni-
formly in the interval [100,15000]).

Prep. N+M Gene | Conne | Expan | RPP
time ration ction sion Con.

183.9 7504750 1.5 30.9 15.7 135.9
288.9 | 300043000 5.9 152.7 103.2 26.9
595.7 | 550045500 11.0 312.3 260.3 12.1

Figure 5: Breakdown of the preprocessing time (in
seconds) for some of the networks of Fig. 4(a)

To estimate path planning time between two con-
figurations we add the time needed to connect these to
the network to the time required to obtain a path on
the network. Typically, less than 0.1 seconds are spent
searching the networks considered here. Our planner
is not guaranteed to return a path. It fails to find a
path between two configurations if it cannot connect
them to the same component. But since the time al-
lowed for these connections is bounded, the planner
detects failure in a reasonable time.

A breakdown of the preprocessing time for some of
the networks of Fig. 4(a) is given in Fig. 5. Notice from
the latter figure that when N + M is small, RPP may
take long to connect components. This is because a
few rather isolated components may be present at the
end of enhancement. The time taken by RPP reduc-
tions gets smaller when the number of nodes increases.

We observe from the table of Fig. 4(a) that if a
small network is created, it does not capture very well
the structure of the robot’s free C-space and attempts
to connect configurations C1, ..., Cg to it may fail or
take a few seconds. However, when N + M is suffi-
ciently large (in this example when M + N > 6000),
a large component comprising most of the generated
configurations is formed and path planning is in the
order of a small fraction of a second, which is quite
impressive. Preprocessing itself is in the order of few
minutes. In particular, 5 minutes are enough for our
example as line 4 of Fig. 4(a) indicates.

Comparison between the corresponding lines of the
tables in Fig. 4(a) and Fig. 4(b) shows that, in this
case at least, the method does not perform very well
when enhancement is omitted. More nodes are re-
quired to obtain a network which captures adequately
the structure of the free C-space. This is inferred by
the number of failures to connect to the network in
Fig. 4(b), where no enhancement is done. As a result,
more time is needed to create a network to which all
C1,...,Cg can be connected in a few seconds. This
time is 12 minutes in our example (line 6 in Fig. 4(b)).
Still the result is not very stable: line 7 in Fig. 4(b)
shows a larger network than the one of line 6, but we
failed to connect configuration Cg to it. Such behavior

(b)

Figure 6: Networks produced in approximately 785
seconds (a) without enhancement, N = 11500, M =0
and (b) with enhancement N = M = 6500

» aa J9

¢ o

(a) (b)
Figure 7: Preprocessing time required to answer al-
most any path planning query in a fraction of a second
(a) 70 seconds, (b) 150 seconds

is infrequent when enhancement is used.

Also, for fixed running time the network obtained
with enhancement is usually denser. Fig. 6 illustrates
this. It shows in (a) the component produced in 785
seconds whrn N = 11500, M = 0, and in (b) the one
produced in the same time with enhancement (N =
M = 6500). In these figures the robot configurations
corresponding to the network nodes are drawn one on
top of the other and it is impossible to distinguish
them. But one can see which parts of the workspace
have been attained and which ones have not.

We end this section with some general remarks.
The example we used is difficult because it has a very
narrow door and we ask the robot to go through it.
Many interesting examples are not that difficult. Then
our method spends less time in preprocessing. We
show in Fig. 7 two such examples. The first of them
involves an articulated linkage with 7 dof. The sec-
ond shows the robot we considered above but in a
workspace with a wider gate. For this case, after a
preprocessing of only 150 seconds we can connect all
the configurations of Fig. 3 to the network in less than
0.1 sec. Here, a single component is produced at the
end of the enhancement step. Other examples can be
found in [11].

7 Conclusion

We have described a new method for planning paths
for robots with many dof. In this paper we analyze
its performance on a difficult example. We have ex-
perimented with many 6 to 10 dof robots with very
good results. With our technique, an initial cost is
paid once in preprocessing the C-space. Afterwards,
almost any path planning problem can be solved in a
short time. An element of the success of the method
is that it heuristically identifies the “difficult” regions
of the C-space and enhances the information it has
about them. Our approach is particularly useful in
cases where repeated motions are to be carried out
over the same environment, as is the case for many
inspection, welding, and riveting tasks. Possible ex-
tensions of the method include:

e Some methods need to be devised to guess good
values of the parameters of our algorithm. Adap-
tive/learning techniques may be useful.

e During path planning the network can be searched
for the shortest path between two nodes, or the path
that keeps a minimum clearance with the obstacles.
In general, we may want to encode some features of
the paths in the network edges and search for optimal
paths for these features during path planning.

o After a path planning query, the network can be
enhanced with the initial /configuration as new nodes,
and the paths that connect these to the network.

e An extension of the method to changing environ-
ments is an interesting direction.

e Our experiments were conducted in 2D. Our plan-
ning approach would remain unchanged in 3D. The
dimension of the workspace does not affect the num-
ber of generated nodes (this depends on the dimension
of C-space), but expensive collision checking would in-
crease preprocessing times.

References

[1] J. Barranquand and P. Ferbach, “Path planning
through variational dynamic programming”, TR 33,
Paris Res. Lab., DEC, Paris, France, 1993.

[2] J. Barraquand, B. Langlois and J.C. Latombe, “Nu-
merical Potential Field Techniques for Robot Path
Planning”, IEEE Tr. on Syst., Man, and Cyb.,
22(2):224-241, 1992.

[3] J. Barraquand and J.-C. Latombe, “Robot motion
planning: A distributed representation approach”,
Intl. J. of Rob. Res., 10(6):628-649, 1991.

[4] D. Challou and M. Gini, “Parallel Robot Motion
Planning”, Proc. of IEEE ICRA, GA, 46-51, 1993.

[5] B. Faverjon and P. Tournassoud, “A Practical Ap-
proach to Motion-Planning for Manipulators with

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

Many Degrees of Freedom”, Robotics Research 5,
H. Miura and S. Arimoto, eds., MIT Press, Cam-
bridge, MA, 424-433, 1990.

L. Graux, P. Millies, P.L.. Kociemba, and B. Langlois,
“Integration of a Path Generation Algorithm into Off-
Line Programming of AIRBUS Panels”, Aerospace
Automated Fastening Conf. and Ezp., SAE Tech. Pa-
per 922404, Oct. 1992.

K. Gupta and Z. Guo, “Sequential search with back-
tracking”, Proc. IEEE Intl. Conf. on Rob. and Au-
tom., Nice, France, 2328-2333, 1992.

Y. Hwang and N. Ahuja, “A potential field approach
to path planning”, IEEE Tr. on Rob. and Autom.,
8(1):23-32, 1992.

L. Kavraki, J.-C. Latombe, M. Overmars and
P. Svestka, “Probabilistic Roadmaps for Fast Path
Planning”, in preparation, Jan. 1994.

L. Kavraki, J.-C. Latombe, “Randomized Prepro-
cessing of Configuration Space for Fast Path Plan-
ning”, Tech. Rep. STAN-CS-93-1490, Comp. Sci.
Dept, Stanford Univ., Sept. 1993.

L. Kavraki, J.-C. Latombe, “Randomized Preprocess-
ing of Configuration Space for Path Planning: Artic-
ulated Robots”, submitted to JROS, 1994.

L. Kavraki, “Computation of Configuration-Space
Obstacles using the Fast Fourier Transform”,
Proc. IEEE Intl. Conf. on Rob. and Autom., Atlanta,
GA, 255-261, 1993.

K. Kondo, “ Motion planning with six degrees of
freedom by multistartergic bidirectional heuristic free
space enumeration”, IEEE Tr. on Rob. and Autom.,
7(3):267-277, 1991.

J.-C. Latombe, Robot Motion Planning, Kluwer Aca-
demic Publishers, Boston, 1991.

J. Lengyel, M. Reichert, B.R. Donald, and D.P. Gree-
berg, “Real-Time Robot Motion Planning Using Ras-
terizing Computer Graphics Hardware”, Proc. SIG-
GRAPH’90, Dallas, 327-335, 1990.

T. Lozano-Pérez and P. O’Donnell, “Parallel robot
motion planning”, Proc. IEEE Intl. Conf. Rob. and
Autom., Sacramento CA, 1000-1007, 1991.

E. Mazer, J.M. Ahuactzin, G. Talbi and P. Bessiere,
“The ariadne’s clew algorithm”, manuscript, 1992.
M. Overmars, “A random approach to path plan-
ning”, RUU-CS-92-32, Comp. Sci., Utrecht Univ., the
Netherlands, October 1992.

M. Overmars, P. Svestka, “A probabilistic learning ap-
proach to motion planning” RUU-CS-94-03, Comp.
Sci., Utrecht Univ., the Netherlands, Jan. 1994.

P. Svestka, “A probabilistic approach to motion plan-
ning for car-like robots”, RUU-CS-93-18, Comp. Sci.,
Utrecht Univ., the Netherlands, April 1993.

X. Zhu and K. Gupta, “On local minima and random
search in robot motion planning”, manuscript, 1993.

