Journal of Computer and System Science, In Press

Randomized Query Processing in Robot Path
Planning

Lypia E. KAVRAKI® JEAN-CLAUDE LATOMBE* RAJEEV MoTwaNIf

PRABHAKAR RAGHAVAN?

Abstract

The subject of this paper is the analysis of a randomized preprocessing scheme that has been
used for query processing in robot path planning. The attractiveness of the scheme stems from
its general applicability to virtually any path-planning problem, and its empirically observed
success. In this paper we initiate a theoretical basis for explaining this empirical success. Under
a simple assumption about the configuration space, we show that it is possible to perform
preprocessing following which queries can be answered quickly. En route, we consider related
problems on graph connectivity in the evasiveness model, and art-gallery theorems.

*Robotics Laboratory, Department of Computer Science, Stanford University, Stanford, CA 94305-2140. Partially
supported by ARPA grant N00014-92-J-1809 and ONR grant N00014-94-1-0721.

"Department of Computer Science, Stanford University, Stanford, CA 94305-2140. Supported by an Alfred P. Sloan
Research Fellowship, an IBM Faculty Development Award, and NSF Young Investigator Award CCR-9357849, with
matching funds from IBM, Schlumberger Foundation, Shell Foundation, and Xerox.

{IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598.



1 Introduction

Planning obstacle-avoiding motion for a rigid or articulated robot from a given initial configuration
to a goal configuration is an important problem in robotics [4, 19]. The set of feasible paths
depends on the robot geometry, its motion capabilities and the workspace geometry. In many
applications the environment is static and the robot must perform a series of complicated maneuvers
to achieve a sequence of goals. Examples of such applications include maintenance of cooling
pipes in nuclear plants, point-to-point welding for car assembly, and cleaning airplane fuselages.
The path planning problem is receiving increased recent attention because of further applications
(e.g., in movie generation, where planning can drastically reduce the need for input from human
animators [18], and pharmeceutical drug design where motion planning can be used to animate the
motion of a ligand molecule docking against a larged receptor molecule.

A number of recent papers in the robotics literature [10, 14, 15, 16, 27, 28] have described
the success of a class of randomized preprocessing heuristics for query processing in robot path
planning. The key idea is the use of random sampling in a preprocessing stage, following which
queries of the form “Is configuration B reachable from configuration A?” can be answered quickly.
The method is very general and can be applied to virtually any type of holonomic robot. It has
proved especially effective for robots with many degrees of freedom, where traditional methods
have either failed to yield algorithms or have yielded algorithms that are too slow for normal use.
Figure 1 depicts several positions of a robot with 7 revolute joints to which the method has been
successfully applied.

There is another motivation for such a general query processing scheme not bound to the
specifics of any particular robot: it is clearly infeasible to invest effort in tailor-made algorithms
for every robot in existence. While the scheme is general, it is possible to tailor it to any specific
type of robot and further enhance its performance [15].

This paper initiates a theoretical basis for explaining the success of this method. In our work we
focus on the geometric motion planning problem where the goal is only to determine a geometric
description of a feasible path. The actual implementation of the path would require dealing with
mechanical issues such as path smoothing, handling uncertainties, mechanical control, and dynamic
constraints [19].

Before we describe our results in detail, we review previous work in this area and discuss the
difficulties encountered in extending that work to path planning for robots with large degrees of
freedom.

1.1 Background and Motivation

The configuration of a robot at any instant is described by an ordered tuple of real values, each
entry of which is the value of one component of its position. For example, a unit square moving
freely in the plane is captured by a triple: the z- and y-coordinates of a designated corner, together
with the angle made by the line containing a designated edge with the z-axis. We therefore say that
such a square has 3 degrees of freedom, and represent its position by a point in 3-space. The motion
of the square forms a trajectory in this space. Given static obstacles in the plane that constrain
the motion of the square, we may represent them in the space as a set of forbidden regions that
must never be entered by the motion trajectory. The 3-dimensional space representing the position
of the square together with these forbidden regions is known as the configuration space for this
setting.

In general, the configuration of any robot with d degrees of freedom can be represented in a
parametric d-dimensional configuration space C. Such a configuration space can be defined for any



(@) (c) (d)

Figure 1: Several configurations of a robot arm with a fized base. This arm has 7 revolute joints,
and must maneuver through gaps in two walls. (a) a planar arm with 7 revolute joints, (b) and (c)
two different configurations of the arm, and (d) a path followed by the arm when it moves between
configurations (b) and (c).

motion planning problem and, together with a cost measure and possible constraints on the shapes
of trajectories, defines the problem completely. The obstacles in the workspace induce C-obstacles
in the configuration space that are forbidden configurations of the robot. We refer to the subset F
of the configuration space that is not forbidden as the free space; it may consist of more than one
connected component. When a query asks whether the robot can move from one configuration to
another, it is asking whether the corresponding points of the configuration space lie in the same
connected component of free space.

For instance, the position of the arm in Figure 1 may be represented in a space with 7 dimensions,
with each dimension corresponding to the angular position of one of the revolute joints. Figure 1 (a)
depicts the 7 angles giving rise to the seven degrees of freedom. Figure 1 (b) and 1 (c) depict a pair
of start and finish configurations, while Figure 1 (d) depicts a sequence of configurations found by
the algorithm for going from the start configuration to the finish configuration.

The configuration space representation of a motion planning problem is due to Lozano-Perez [22,
23], although it was implicit in some earlier work [24, 32]. This representation is particularly
amenable to an algebraic treatment of the problem, such as in terms of semi-algebraic sets [19]. A
semi-algebraic set is a subspace of 7 defined by quantified first-order formulas over comparisons of
polynomials with constants. It can be shown that if the obstacles and obstacle boundaries are semi-
algebraic sets, then the C-obstacles are also semi-algebraic sets. This view led to the development
of several planning methods all of which modeled obstacles as having low-degree algebraic surfaces,
and reduced the planning problem to deciding the satisfiability of sentences in the first-order theory
of reals. Specifically, Schwartz and Sharir [31] considered the setting where the d-dimensional
configuration space contains a free space defined by n polynomial constraints of maximum degree



m; they presented an algorithm that is polynomial in n and m, but doubly-exponential in d.
Canny [4] gave a different algorithm that is only singly-exponential in d. Thus, the practical
impact of such methods has been restricted to the case of a small number of degrees of freedom,
e.g., the motion planning problem for rigid robots in the plane with polygonal obstacles. Fully
polynomial algorithms are known only for extremely special situations such as motion planning
for a planar arm in a circular workspace without any obstacles (due to Hopcroft, Joseph, and
Whitesides [7] and Kantabutra and Kosaraju [13]).

Unfortunately, it is believed that these positive results are close to the best possible since most
versions of the motion planning problem are known to be PSPACE-hard, or even NEXPTIME-
hard [19]. The most basic of these results is due to Reif [29] who established the PSPACE-hardness
of the so-called generalized mover’s problem — the path planning problem for a collection of polyhe-
dral bodies linked at vertices and moving amongst a finite set of polyhedral obstacles. Path planning
for various special cases are also known to be PSPACE-hard: Hopcroft, Joseph, and Whitesides [6]
established PSPACE-hardness for planar linkages, a set of rigid 1-dimensional links connected by
revolute or fixed (possibly, multiple) joints moving in the plane; Hopcroft, Schwartz, and Sharir [8]
and Hopcroft and Wilfong [9] established the PSPACE-completeness for multiple rectangles, a set of
rectangles executing coordinated axis-parallel translations in a rectangular workspace. Joseph and
Plantiga [11] established the PSPACE-hardness for planar arms, a sequence of links connected by
revolute joints moving in the plane among polygonal obstacles. Similar results have been obtained
for problems such as motion planning with moving obstacles [4, 30] and compliant motion planning
with uncertainty [5]. In all these cases, the basic source of complexity appears to be the dramatic
increase in the difficulty of the problem with increasing dimensionality.

Practical approaches to path planning can be viewed as falling into one of the following two
categories: global methods which involve exhaustive preprocessing of the free space and require time
exponential in the dimension; and, local methods which are essentially localized heuristics that are
fast for special cases but suffer from the possibility of failure to find paths even when one exists.
One example of a global method is the technique of Schwartz and Sharir [31] that computes a cell
decomposition of the free space and uses a search graph based on this decomposition. Another
example is the roadmap method where a set of canonical paths is used to cover the components of
the free space, and the planning task reduces to determining a connection to the canonical paths.
Examples of this include the visibility graph approach of Nilsson [25] and the silhouette approach
of Canny [4]. An example of a local method is the potential field technique [1, 17] where a potential
function is defined at each point in the free space, based on an attraction component from the
goal point and a repulsion component from the obstacle boundaries, and the planning process
corresponds to a determination of the global minima of the potential function using a greedy,
local search. The problem with this approach is that with increasing dimensionality, it becomes
increasingly difficult to determine good potential functions which do not cause the planner to get
trapped in local minima.

All these approaches suffer from severe performance degradation with increasing dimensionality,
and there is a trade-off between slow but complete global planners and fast but incomplete local
planners. In this context, a recent research trend in motion planning has been the use of randomized
preprocessing to obtain global completeness using only local computations in query processing. For
example, Barraquand and Latombe [2] present an approach based on potential functions with
the twist that Brownian motion (random walk) is used to escape from local minima. While this
approach gave improved performance for simple geometries in up to 30 dimensions, it still suffers
from the need for application-specific potential functions and exhibits performance degradation with
more complex geometry. Another randomized approach proposed by Kavraki and Latombe [14] is



a probabilistic variant of the roadmap technique. This approach has been successful in practice
and is the focus of our work.

1.2 A Model for Analyzing a class of Randomized Preprocessing Schemes

We assume here that the configuration space is the cube [0,1]¢, where d is the number of degrees
of freedom for the robot. (Our definitions and results can be extended to cases where one or more
dimensions of the configuration space — say the angular position of a joint of an arm — can
“wrap around”, but for simplicity we assume [0, 1]? here.) For the purposes of this abstract, we
also assume that the space is reflexive: if a point p; in free space is reachable from py, then py is
reachable from p;. Non-reflexive spaces arise, for instance, when there are moving obstacles so that
time becomes one dimension, or if the robot has asymmetric motion capabilities such as when only
forward motion is permitted.

A key ingredient of the probabilistic raodmap method is a fast simple planner that, given two
points p; and p; in the configuration space, tries to connect them using a fast but simple strategy.
For example, one simple planner that has been used for this purpose [15, 16] checks whether the
line segment between p; and p; lies entirely in free space; if not, it reports failure (even though a
more complicated path might exist). This is usually implemented by a walk along the line segment
(suitably discretized), checking whether each of these discrete points is in free space. In addition we
assume that we have access to a complex planner that is expensive to run, but is error-free in that
it discovers a path between p; and p; whenever one exists, and reports failure when there is none.
One example of such a complex planner for general configuration spaces is due to Barraquand and
Latombe [2]. Such an error-free planner may be extremely slow and may not be run to completion
in practice. However, if even the complex planner cannot discover a path between two connected
configurations, then we may as well assume that these points are disconnected (i.e., we can view
connectivity between configurations as being defined by the ability of the complex planner to find
connections). Because of its expense, we seek to use this complex planner sparingly. As we will
show, with high probability the preprocessing will ensure that only the simple planner is needed
for answering queries. Our randomized preprocessing scheme may be summarized as follows:

1. [Sampling] Pick a random set of points in the free space. Call these points milestones.
2. [Simple Permeation] Try to connect all pairs of milestones using the simple planner.

3. [Resampling] For any milestones that are connected to relatively few others in this process,
pick additional milestones “near” them at random.

4. [Complex Permeation] As a last resort, try using the complex planner to connect some
pairs of milestones.

Step 4 is seldom used in practice, and would ideally be eliminated. In certain settings in practice
this elimination may be possible with resampling and other related techniques.

The result of this preprocessing may be viewed as a graph GG each of whose vertices corresponds
to a milestone, with an edge signifying that its end-points are in the same component of free space.
This graph is sometimes called a probabilistic roadmap [16].

Given a query pair of configurations ¢; and ¢z in free space, we detect whether it is possible to
move from ¢; to ¢ as follows: we use the simple planner to connect ¢; and ¢ to milestones m; and
mg respectively. We then use a graph search algorithm to determine whether the milestones m; and
mg are in the same connected component of the roadmap GG. Queries are never answered incorrectly;
with some probability though, the query processing algorithm may fail to give an answer.



In our analysis, we assume that the configuration space is available as a membership oracle:
given a point p in the configuration space, we can decide whether or not the point is in free space.
This is reasonable in implementations [15, 19]: such a membership test corresponds to checking
whether a configuration violates any of the constraints in the input, and this can be done rather
efficiently. We treat the simple planner (denoted Bg) and the complex planner (B¢ ) as black-boxes.
We assume without loss of generality that both planners are reflexzive: i.e., if a planner succeeds in
connecting p; to pg, it can also connect pz to p;. (A non-reflexive planner can be made reflexive
by applying it to both directions — from p; to pz, and from p; to p; — simultaneously.)

A word about the random sampling in Step 1 of the preprocessing: in the experimental work [14,
15, 16, 28] this is done simply by choosing a point at random from [0, 1]%. If the chosen point is in
the free space, it is retained; else it is discarded and the process repeated. Clearly a point chosen
at random in this fashion is uniformly distributed in the free space, but in order for the number
of repetitions to be reasonably small we need the free space to constitute a good fraction of the
configuration space. We assume this is the case based on empirical evidence (else no analysis is
possible). Choosing a random sample has a minuscule cost in practice compared with the other
operations, and can be repeated a very large number of times if necessary (see also Section 5).

Our main thesis is that the empirically observed success of the scheme stems from a property
we call e-goodness which we now define. Let F denote the free space. For a point p € F, let S(p)
consist of those points of F that can be connected to p by the simple planner Bg. For a subset X’
of the configuration space, let p(X’) denote its volume.

Definition 1.1 Let ¢ be a positive real. We say that a point p in the free space F is e-good
if W(S(p)) > eu(F). We say that the free space F is e-good if for all points p € F we have

1(S(p)) > eu(F).

While any non-degenerate configuration space is e-good for some positive ¢, the intent in this
definition is that the space be e-good for a “reasonably large” value of e. Many configuration
spaces arising in practice do not have the e-good property; for example, consider a crescent-shaped
region or one where a circular obstacle is tangential to a rectangular obstacle. However, in these
cases, our definition applies to the subset of free space obtained by removing a small neighborhood
of the cusp or tangency points from the configuration space. (See Section 5.2 for a more rigorous
treatment of this issue.)

1.3 Overview of Results

The first contribution of this paper is a model of computation appropriate for the analysis of the
probabilistic roadmap scheme, taking into account the realities of the problem at hand. In Section 2
we define a concrete algorithm based on the high-level outline given above. This algorithm and
its analysis do not make use of resampling (Step 3 above); we present this simplified version first
because it succinctly outlines the main ideas using only the simple notion of ¢-goodness. We argue
in Section 3 that if the free space is e-good then every point of the free space F can, with high
probability, be connected to a milestone using only Bg. In Section 4 we give a bound on the number
of invocations of the complex planner B¢ in constructing the probabilistic roadmap; this involves a
new randomized algorithm for determining connected components in a model related to the decision
tree model used in the study of evasive graph properties [21], and may be of independent interest.
We complement this with tight bounds for deterministic algorithms. These results imply bounds
on the work done in preprocessing and in query processing, in terms of the number of times B¢
and Bg are invoked; in particular, the complex planner is not used for answering queries. Section 5



summarizes results from experiments with the robot arm of Figure 1; these suggest that most
but not all points in the corresponding free space are e-good for a reasonably large value of e.
Interestingly, the resampling step seems to be helpful for settings such as this arm. We therefore
extend (Section 5.2) the definition of e-goodness and use it to explain these observations: assuming
the configuration space satisfies a weaker condition we call (¢, )-goodness for a small integer ¢, we
give an explanation for the resampling step similar to the analysis in Sections 3 and 4. Finally, our
work is related to classic problems in art-gallery theorems. In Section 6 we establish this connection,
give some new results related to our work, and mention some resulting open problems in art-gallery
theorems.

2 Algorithms and Results

For the remainder of the paper, we say that two points py, ps € F are mutually visible when Bg
can connect p; and p;. We use this terminology primarily for brevity, and our usage is inspired
by a commonly used simple planner [16, 15] that checks whether the straight line segment joining
p1 and py is in F (equivalently, p; and p, are mutually visible in F); however, our entire analysis
works for any simple planner Bg.

Let 5 € (0, 1] be a positive real constant which represents the failure probability we can tolerate
in the preprocessing (this will become clear in the statements of Theorems 2.1, 2.2 and 2.3). Let
s=(c/e)(In1/e+1n4/3), where c is a fixed positive constant large enough that for any z € (0, 1],
(1- :C)(C/””)(lnl/“g“n‘l/ﬁ) < zf/4; clearly, ¢ = O(1) suffices. The algorithm for preprocessing is listed
in Figure 2.

1. Pick s points in F at random, and call these milestones.
2. Invoke Bg on every pair of milestones.

3. Pick a representative milestone from each component that results. Let V' be the set of
these representatives and |V| = n.

4. Invoke the Randomized Permeation algorithm (Figure 5) on these representatives.

Figure 2: The Preprocessing Algorithm

As we will see in Section 4, Step 4 probes the “edge-slots” of the roadmap, trying to determine
the structure of the connected components without expending too many calls to Br. Note that the
algorithm in Figure 2 does not make use of resampling; we will get to this in Section 5. In practice
Step 4 is a last resort; much if not all of the connectivity information should have been discovered
before this step. Step 4 is the only preprocessing step in which the B¢ is invoked; this will become
clear in Figures 4 and 5.

The query processing algorithm is listed in Figure 3. Given the query points ¢; and ¢z, we
connect them to milestones m; and my using Bg as in Figure 3. Here v € (0,1] is the allowable
failure probability for a query. For each i, Step la can be implemented using s invocations of Bg,
one for each milestone. Each trial of Step 1b can be implemented using s invocations of Bg.

For an e-good free space F call a set of milestones M adequate if the volume of the subset of F
not visible from any milestone of M is at most (¢/2)u(F). Intuitively, if we were to place a point
source of light at each milestone, we would like a fraction at least 1 — €/2 of F to be illuminated.



1. Fori=1,2 do:
(a) If ¢; can see a milestone v, set m; = v.

(b) Else Repeat log(2/4) times:

i. Choose v; uniformly at random from S(g;);

1. If a milestone is visible from v; then set m; to be that milestone.

(c) If all log(2/7) trials fail then declare FAILURE and halt.

2. If m; and my are in the same component of G then output YES else output NoO.

Figure 3: The Query Processing Algorithm

Note that as € increases, the requirement for adequacy grows weaker but the number of milestones
needed becomes smaller.

Theorem 2.1 The preprocessing stage will generate an adequate set of milestones with probability
at least 1 — 3.

Theorem 2.1 only says that most of F is likely to be visible from some milestone in M; using
this property alone, we can show that queries can be answered quickly. However, we need a stronger
property — which we may think of as permeation — to guarantee that queries can be answered
correctly. Permeation is essentially the following: for any two milestones in the same connected
region of F, we can infer this connectedness from the preprocessing algorithm. Theoretically, we
cannot hope to show that the use of Bg alone will provide such permeation: if F consists of two
spheres each of diameter 1/2 and the spheres touch at a single point p, we have a free space that
is e-good for € = 0.5. Yet it is extremely unlikely that Bs can yield permeation in this case (if for
instance Bg simply checks visibility between milestones). In such configuration spaces, the use of
the complex planner B¢ in Step 4 is inevitable to ensure a good overall success probability. Define a
function g() on an ordered k-tuple of positive integers ny, ng, ..., ng by g(ni, ng, ..., ng) = Sk ing.

Theorem 2.2 Let S be a set of n milestones lying in k connected components denoted Sy, ..., Sy
such that |Sy| > |Se| > ... > |Sk|. The preprocessing stage will determine the partition correctly
and the expected number of invocations of Bo is at most

29(|51|7 |SQ|7 sy |Sk|)

which is O(nk) in the worst case. With high probability, the number of invocations of B¢ is within
O(logn) of its expectation.

Theorem 2.3 Suppose that the set of milestones chosen during preprocessing is adequate. Then
the probability that the query processing algorithm outputs FAILURE is at most v. When the query
processing algorithm does not output FAILURE, it correctly answers the query by either producing a
path or declaring that none exists.

In fact, our analysis will imply that the expected number of executions of Step 1b in the query
processing algorithm (Figure 3) is at most 2.



3 Nearly Complete Coverage

This section establishes Theorems 2.1 and 2.3. The expectation of the volume of points not visible
from any of the s randomly chosen milestones in M is

Bliu({p € F [ p & UnewSmD)= | Prlp ¢ UnenS(m) (1

The probability that a fixed point is not visible from any of the s milestones is at most (1 — €)”.
Thus, the above is bounded by

[ =0 = nF =0 < /s (2)

By the Markov inequality, it follows that

Prlu({p € F | p € UnemS(m)}) > u(F)e/2] < /2.

Thus with probability 1 — 3/2 the “shadow region” not visible from any m € M has volume at
most p(F)e/2, in which case it follows that for any p € F, the volume of the subset of S(p) visible
from some m € M is at least pu(S(p)) — u(F)e/2 > p(F)e/2.

This establishes Theorem 2.1 and leads to Theorem 2.3: for either query point g;, the probability
that a random point chosen from S(¢;) is not visible from any m € M is (¢/2)/S(¢;) < 1/2. The
probability that we fail on log(2/+) trials is less than v/2. Since we do this for the two query points,
the overall failure probability is at most ~.

4 Permeation

This section establishes Theorem 2.2. En route, we connect our problem to the decision tree model
used to study evasive graph properties, and prove some related results. The permeation problem
is the following: given a free space F containing n < s milestones, determine which milestones
are reachable from each other. (Note that because of Step 2 in the Preprocessing Algorithm of
Section 2, n may be much smaller than s.) Given any pair of milestones the complex planner B¢
will decide whether they are connected. The graph G can be computed with O(n?) invocations of
B¢ by trying it on every pair of points, but we show that far fewer invocations may suffice.

We work with the following abstract version of the permeation problem. The input is a graph
G(V, F) with n vertices, consisting of & disjoint cliques. The goal is to determine this clique partition
of G. The cost of an algorithm is measured by the number of entries it examines in the adjacency
matrix of GG. This is the edge probe model used in the study of evasive graph properties [21].

The vertices correspond to the points in F, and an edge is present between two vertices if the
corresponding points are connected, i.e., lie in the same component of F. Since the complex planner
is error-free, we obtain that the points in a given component of F form a clique in G, and that
there are no edges between two distinct cliques. A probe into the adjacency matrix corresponds
to an invocation of Bg, and in this abstract version we do not distinguish between deciding the
presence of an edge and actually searching for a path in F but it is easy to see that there is no loss
of generality in this.

Let N(n,K) denote the non-deterministic complexity of this problem. A non-deterministic
algorithm is only required to verify that some partition into k cliques is the right partition.

Theorem 4.1 For 1 <k <mn, N(n, k) =0O(n+ k?).



1. Mark all vertices in V' as being LIVE.
2. Initialize z « 1.

3. While z < n do:
(a) T(z) « 0.
(b) For y =z + 1 to n do:
1. If vertex y is marked LIVE

then probe the edge (z,y) in G.

ii. If edge (z,y) is probed and found present
then mark y as DEAD and add y to T'(z).

(c) Output {z} UT(z) as being a clique.
(d) Mark z as being DEAD.

(€) Set z to the smallest numbered LIVE vertex, or n + 1 if there are no LIVE vertices

left.

Figure 4: The Deterministic Permeation Algorithm

Proof: The algorithm must make at least one probe on each of the n vertices. It must also
have verified that each of the (g) pairs of cliques is in fact disconnected. O

We now characterize the worst-case deterministic complexity of this problem, denoted T'(n, k).
Consider the following deterministic algorithm: by probing all edge slots incident on an arbitrary
vertex z, determine the neighborhood of z, say I'(z); let C, = {z} U '(z), and output C,; then,
recur on the vertex-induced subgraph G[V \ C;]. The proof of correctness is obvious, so we focus
on the analysis of the running time. The number of levels in the recursion is k, since one of the &
cliques is removed from G prior to each recursive call. The number of probes made in the process
of determining each such clique is at most n. The total number of probes is O(nk). In Figure 4,
we illustrate the Deterministic Permeation Algorithm, which is an iterative version of the recursive
algorithm. The iterative version will prove useful when describing a randomized algorithm. By the
preceding discussion, we have:

Theorem 4.2 The Deterministic Permeation Algorithm correctly solves the permeation problem
using O(nk) probes.

The following lower bound establishes that the Deterministic Permeation Algorithm is optimal.
Theorem 4.3 For 1 <k <n, T(n,k) = Q(nk).

Proof: We present an adversary argument in terms of the complementary problem: given a
graph G which is a complete k-partite graph for some &, determine the k-partition of the vertices of
G into independent sets. The adversary responds to each probe for an edge by some deterministic
algorithm, and its strategy is to say that edges are present, as far as possible. The adversary chooses
a value k initially, and ensures that the graph it constructs (adaptively) is a complete K-partite
graph for some K € {k — 1,k,k+ 1}. The algorithm can be provided this information without
affecting the following argument.

The adversary maintains a graph H in which the edges are those edges of G which have been
probed already and for which the response was that the edge is present. When the adversary is



forced to concede that an edge (i, j) is absent in G, it then collapses the two vertices i and j into
a single meta-vertex whose neighborhood is the union of the neighbors of ¢ and j. Collapsing two
vertices is equivalent to conceding that they are in the same independent set of the k-partition;
meta-vertices can also be collapsed into each other. The missing edges in H correspond to edge
slots in G that have not been probed so far.

Any probe involving an edge (7, j), where ¢ is contained in a meta-vertex ¢* obtained by some
earlier collapses, will be treated as referring to the edge (i*, 5) since all vertices in ¢* have exactly
the same set of neighbors. The adversary can reveal this graph H together with the meta-vertex
structure to the algorithm without affecting the lower bound argument, and so we can assume that
the algorithm never makes redundant queries such as probing for an edge between two vertices
which belong to the same meta-vertex.

The adversary maintains the following invariants at all times.

1. The chromatic number of H is k; in particular, it maintains a partition of the (meta)-vertices
into k£ non-empty color classes C, ...,y such that each color class is an independent set.
By the definition of H, none of the edges between the (meta-)vertices in a color class have
been probed yet, and all edges that were probed and deemed present are between two distinct
color classes.

2. For each meta-vertex, every vertex therein has had at least k—1 incident edges already probed
that were deemed to be present in G.

Initially, the adversary arbitrarily partitions the vertices into £ non-empty color classes; since H is
empty then, this ensures the first invariant. The second invariant holds trivially since there are no
meta-vertices at the beginning.

Thereafter, the adversary responds as follows to a probe (4,7) by the algorithm. Note that a
probe involving an edge (¢, j), where i is contained in a meta-vertex *, will be treated as referring
to the edge (i*, 7).

e If ¢ and j belong to distinct color classes, it will say that the edge is present and will add this
edge to the graph H.

e If 7 and 5 belong to the same class C'., then it will check to see if there exists a color class C}
with ¢ # r such that at least one of ¢ and j does not have neighbors in Cy. Suppose that i
does not have any neighbors in C%, then the adversary will transfer ¢ from C, to C} and will
then respond as in the previous case (i.e., say that the (¢, 7) edge is present).

e Finally, there is the case where both 7 and j belong to the same component C,. and each has
at least one neighbor in every other color class. In this case, the adversary will concede that
the edge (7, ) is indeed absent and will then collapse 7 and j together.

The first invariant holds since edges are only introduced between vertices in distinct color classes.
The color classes remain non-empty since a vertex is transferred from a color class only when it
has at least two vertices. To verify the second invariant, observe that when two vertices (¢, j) are
collapsed, both have at least one neighbor in the remaining & — 1 color classes.

The algorithm can terminate only when the number of (meta)-vertices in each color class is
down to one, and there is an edge between each pair of color classes, since otherwise the algorithm
cannot be certain of the k-partition of GG, or even whether there is a k-partition in the first place.

We claim that, upon termination, every one of the n vertices must have at least k£ — 1 edges
incident on it which were probed and deemed to be present in GG. The second invariant implies that

10



1. Permute the vertices randomly so that each is labeled by an integer in {1,...,n}.

2. Invoke the Deterministic Permeation Algorithm.

Figure 5: The Randomized Permeation Algorithm

this is true for any vertex which participated in a collapse and is a part of some meta-vertex when
the algorithm terminates. A vertex which did not participate in any collapse must also have at least
k — 1 edges incident on it since it is the only vertex in its color class, and there is an edge from its
color class to every other class. Thus, the total number of edges probed and deemed present in G is
at least n(k—1)/2. Also, there must be at least n — k edges which were probed and deemed absent
in G, since in going from n vertices to k vertices at least n — k collapses need to be performed and
each collapse requires a distinct absent edge. Thus, the total number of probes must be Q(nk). O

We now give a randomized algorithm that beats the lower bound of Theorem 4.3 when the sizes
of the k cliques differ significantly. This is crucial in our application to motion planning because
in practice the free space F often consists of components of one large component and several small
ones. The Randomized Permeation Algorithm (see Figure 5) labels the vertices in a random order
and then invokes the Deterministic Permeation Algorithm.

Let wy > wg > - -+ > wy, be the sizes of the cliques in an instance G arranged in a non-increasing
order, where n = Zle w;. Denote by C; the ith largest clique in G.

Theorem 4.4 The Randomized Permeation Algorithm correctly determines the clique structure
and incurs an expected cost that is at most

2g(wy, we, ..., wg) —n — k.
Furthermore, with high probability, the cost is at most
O(g(wy, wq, ..., wg) logn).

Remark: Observe that the worst case is when all w; are equal to n/k, in which case the
expected cost is O(nk). On the other hand when there is one giant clique and k£ — 1 cliques of size
O(1) the expected cost is ©(n + k?), which is essentially the non-deterministic lower bound.

Proof: The proof of correctness follows from that for the Deterministic Permeation algorithm.
We start with the analysis of the expected cost.

We say that a clique C; beats another clique C if some vertex of C; occurs before all vertices
of C; in the random permutation chosen by the Random Permeation Algorithm. The probability
that C; beats C'; is the same as the probability that a uniformly random choice from C; UC; yields
a vertex of (;, and, clearly, the latter is w;/(w; + w;).

We divide the edge slots of the graph into intra-clique and inter-clique edge slots. For each
t, the number of intra-clique edge slots in C; that are probed is precisely w; — 1, since the only
such probes are between the earliest vertex (according to the random permutation) of C; and the
remaining vertices of C;. The total number of such probes is

k

Z(wi— 1)=n-—k.

=1

11



Fix some ¢ and j, and suppose that C; beats C’;. The inter-clique edge slots between these two
cliques are between the earliest vertex of C; and all vertices of C;. This gives a total of w; probes
that are “charged” to C; (the beaten clique). The expected total charge to clique C; is given by

— w; + w
ity ! 7

To bound the expected total number of inter-clique edge slots that are probed, we sum the
charges to the various cliques and obtain

S wiwj Qwa]
Z Z w; + w;y N Z Z w; + w;

j=11i#j j=11:<g
k
< DD 2w
=11y
= QZ(j—l)w]
7=1

= 2g(wn,...,wg) — 2n.

Adding together the bounds on the expected number of intra- and inter-clique edge-slots that are
probed, we obtain the desired bound.

We now turn to the task of proving the high probability bound. Fix a clique C; and note that
the total charge to C; is the size of C; multiplied by the number of other cliques that beat it.
Since there are j — 1 cliques that are larger than C;, at most j — 1 of the cliques that beat C;
are larger than C;. Let X; be the random variable denoting the number of cliques smaller than
C'; that beat C; let Y; be the random variable denoting the total number of vertices from cliques
smaller than C; that are earlier than all vertices in C}; and, ﬁnally, let Z; be a random variable
having the geometric distribution with parameter p; = w;/ Z -w; and expectation 1/p;. Clearly,
X; <Y}, and Y] is stochastically dominated by Z;. The plobablhty that Z; is larger than 2p; Ylnn

is bounded by
1

) 2p_1lnn —2Inn __

(1 —pj;)Ps <e =3

Thus with probability at least 1 —1/n, we have, for each j, X; < 2pj_1 In n. This implies that, with
high probability, the total number of inter-clique edges probed is given by

M»
M»

(7 -1+ X;) < (G —1+2p; YIn n)w;
7=1 7=1
k k
< E((J—l)w]—l—annEwZ
J=1 =3
k
= Z]ug—n—l—?lnanug
7=1 7=1

= (1+2Inn)g(w,...,wg) —n.

Adding in the number of intra-clique edge slots that are probed, we obtain the desired result. O

12



5 Experiments and Extensions

5.1 The Robot Arm Example

The robot arm of Figure 1 was tested for e-goodness using 9000 random samples; on a DEC Alpha
workstation, it took 9.24 seconds to create the random configurations, and 1399 seconds* to try
connecting all pairs using Bg. (These figures underscore that random sampling is not a significant
component of the cost.) The samples with the “most” visibility could see about 0.06 (i.e., 6%)
of the remaining samples, suggesting that they are 0.06-good. As many as 3.3% of the random
samples could see no other random samples, and fully 22% could see 0.001 (i.e., 0.1%) or less; in
other words, only about 78% of the configuration space is 0.001-good or better. (For e = 0.001,
we have (1/¢)In1/e = 6908, which is of the same order as our number of samples.) We conjecture
that the resampling step (Step 3 from our high-level outline of Section 1) leads to better coverage
of the space in situations such as Figure 1. We have observed that it helps eliminate the need for
the Complex Permeation step of the outline of Section 1 in some examples. To address this we
introduce a generalization of the notion of e-goodness.

5.2 The Extended Definition

Let us say that a point p in free space is (¢, 1)-good if p(S(p)) > eu(F), corresponding to our
original definition of e-goodness for a point. Next, we say a point p in free space is (¢,?)-good
if u({qg € S(p) | qis (¢,t —1)-good}) > pu(S(p))/2. For t > 1, we say that F is (¢, t)-good if
p({p € Flpis (¢,1)-good}) > u(F)/2 and every point of F is (¢,1)-good for ¢ < t. If F is (¢,t)-
good for a small value of £, we can give a theoretical basis for the resampling step (Step 3 in the
outline of Section 1). The main idea is that single links discovered by Bg in the algorithms of
Section 2 are now simulated using ¢-link paths found by resampling and connecting using Bg. This
leads to a generalized definition of an adequate set of milestones, and eventually to a version of
Theorem 2.3 in which the number of invocations of Bs is larger by a factor of 2. This extension
requires that we can still sample the visibility region of a query point. In practice, this is often
accomplished by defining an appropriate “neighborhood” for any point p, from which a sample
likely to be in S(p) can be chosen.

6 Related Combinatorial Results

A number of combinatorial problems concerning art-gallery theorems [26] are related to our work.
For instance, given a simple polygon that is e-good we ask: how many guards are necessary and
sufficient to cover the entire polygon? (Another way of thinking of this is to imagine point sources
of light being placed in the polygon with the objective of illuminating the entire interior.)

The following would be an ideal result: given an ¢-good configuration space S, a random sample
of poly(1/¢) points from the free space F will “illuminate” the entire free space with high probability.
In practice it may be reasonable to assume that the number of “holes” in the free space w is “small”
(for instance, bounded by a slowly growing function of the input size).

*In implementations used in practice, several additional techniques offer substantial savings over the timings
reported here. For instance, we dynamically update a representation of the connected components after testing
each pair of configurations. Thus we would not test a new pair if they are known to belong to the same connected
component.

13



Conjecture 6.1 A random sample of poly(w + 1/€) points is likely to cover an e-good free space
with w holes.

At present we only have the most rudimentary results of this type; for instance, we give an
upper bound on € so that one guard suffices to cover an e-good simply-connected region. In fact, a
Helly-type theorem due to Krasnosselsky [20] immediately yields:

Theorem 6.1 Let R be a compact, simply-connected e-good region in Fuclidean d-space for ¢ >

d/(d+1). Then there is a point p in R such that S(p) = R.

Broder, Dyer, Frieze, Raghavan and Upfal [3] have initiated progress in extending the above
result: they show that if € = 1/3 4+ ¢ for a simply-connected region in the plane, the number of
guards is polynomial in 1/§; they also give a bound for arbitrary spaces in which the number of
guards grows with the diameter of the region. Kalai and Matousek [12] have shown that for simply
connected regions in the plane, O(% log %) guards suffice. Various interesting questions remain. For
instance, even the existential version of Conjecture 6.1 would be useful: given an e-good space F
with w holes, there exists a set of poly(w + 1/€) points which covers F.

Acknowledgement

We thank Don Knuth for helpful discussions. We are also grateful to David Hsu for pointing out
an error in an earlier version of the paper.

References

[1] J. Barraquand, B. Langois and J.-C. Latombe. Potential Fields for Robot motion planning.
IEEFE Transactions on Systems, Man and Cybernetics, 22(2), March 1992, 224-241.

[2] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed representation
approach. International Journal of Robotics Research, 10:628-649, 1991.

[3] A.Z. Broder, M.E. Dyer, A.M. Frieze, P. Raghavan and E. Upfal. Private communication,
1995.

[4] J.F. Canny. The Complexity of Robot Motion Planning. MIT Press, 1988.

[5] J.F. Canny and J.H. Reif. New Lower Bound Techniques for Robot Motion Planning Problems.
In Proceedings of the 28th IEFE Symposium on Foundations of Computer Science, pp. 49-60,
Los Angeles, CA, 1987.

[6] J.E. Hopcroft, D.A. Joseph, and S.H. Whitesides. Movement Problems for 2-Dimensional
Linkages. SIAM Journal of Computing, 13(3):610-629, 1984.

[7] J.E. Hopcroft, D.A. Joseph, and S.H. Whitesides. On the Movement of Robot Arms in 2-
Dimensional Bounded Regions. SIAM Journal of Computing, 14(2):315-333, 1985.

[8] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. On the Complexity of Motion Planning for Multi-
ple Independent Objects: PSPACE-hardness of the ‘Warehouseman’s Problem’. International
Journal of Robotics Research, 3(4):76-88, 1984.

14



[9] J.E. Hopcroft and G.T. Wilfong. Motions of Objects in Contact. SIAM Journal of Computing,
15(3):768-785, 1984.

[10] Th. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees of freedom —
random reflections at c-space obstacles. In Proceedings of the IEFE International Conference
on Robotics and Automation, pp. 3318-3323, San Diego, CA, 1994.

[11] D.A. Joseph and W.H. Plantiga. On the Complexity of Reachability and Motion Planning
Questions. In Proceedings of the First ACM Symposium on Computational Geometry, pp. 62—
66, Baltimore, MD, 1985.

[12] G Kalai and J. Matousek. Guarding galleries in which every point can see a large area.
Unpublished manuscript, 1995.

[13] V. Kantabutra and S.R. Kosaraju. New Algorithms for Multilink Robot Arms. .Journal of
Computer and System Science, 32(1):136-153.

[14] L. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration space for fast path
planning. In Proceedings of the IFEFE International Conference on Robotics and Automation,
pp. 2138-2145, San Diego, CA, 1994.

[15] L. Kavraki. Random Networks in Configuration Space for Fast Path Planning. PhD Thesis,
Stanford University, 1995. Technical Report STAN-CS-TR-95-1535. Department of Computer
Science, Stanford University, 1995.

[16] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps for path
planning in high dimensional configuration spaces. Technical Report STAN-CS-TR-94-1519,
Department of Computer Science, Stanford University, 1994.

[17] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. International
Journal of Robotics Research, 5(1):90-98, 1986.

[18] Y. Koga. On computing multi-arm manipulation trajectories. Technical Report STAN-CS-
TR-94-1530, Stanford University, 1994.

[19] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.
[20] S.R. Lay. Convex Sets and their Applications. John Wiley, 1982.

[21] L. Lovasz and N. Young. Lecture notes on evasiveness of graph properties. Technical Report
CS-TR-317-91, Computer Science Department, Princeton University, 1991.

[22] T. Lozano-Pérez. Automatic Planning of Manipulator Transfer Movements. IFFFE Transac-
tions on Systems, Man and Cybernetics, SMC-11(10):681-698, 1981.

[23] T. Lozano-Pérez. Spatial planning: a configuration space approach. ITEEE Transactions on
Computers, 32:108-120, 1983.

[24] T. Lozano-Pérez and M.A. Wesley. An Algorithm for Planning Collision-Free Paths Among
Polyhedral Obstacles. Communications of the ACM, 22(10):560-570, 1979.

[25] N.J. Nilsson. A Mobile Automaton: An Application of Artificial Intelligence Techniques. In
Proceedings of the 1st International Joint Conference on Artificial Intelligence, pp. 509-520,
Washington, DC, 1969.

15



[26] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

[27] M. Overmars and P. Svestka. A probabilistic learning approach to motion planning. In
Proceedings of the Workshop on Algorithmic Foundations of Robotics, 1994.

[28] M. Overmars. A Random Approach to Motion Planning. Technical Report RUU-CS-92-32,
Department of Computer Science, Utrecht University, 1992.

[29] J.H. Reif. Complexity of the Mover’s Problem and Generalizations. In Proceedings of the 20th
IEEE Symposium on Foundations of Computer Science, pp. 421-427, 1979.

[30] J.H. Reif and M. Sharir. Motion Planning in the Presence of Moving Obstacles. In Proceedings
of the 25th IFEFE Symposium on Foundations of Computer Science, pp. 144-154, 1985.

[31] J.T. Schwartz and M. Sharir. On the ‘Piano Movers’ Problem: Il. General Techniques for Com-
puting Topological Properties of Real Algebraic Manifolds. Advances in Applied Mathematics,
4:298-351, 1983.

[32] S. Udupa. Collision Detection and Avoidance in Computer Controlled Manipulators. PhD
thesis, Department of Electrical Engineering, California Institute of Technology, 1977.

16



