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Abstract— We present a new approach to path planning for
flexible wires. We introduce a method for computing stable
configurations of a wire subject to manipulation constraints.
These configurations correspond to minimal-energy curves.
The representation is adaptive in the sense that the number
of parameters automatically varies with the complexity of
the underlying curve. We introduce a planner that computes
paths from one minimal-energy curve to another such that
all intermediate curves are also minimal-energy curves. Using
a simplified model for obstacles, we can find minimal-energy
curves of fixed length that pass through specified tangents at
given control points. Our work has applications in motion
planning for surgical suturing and snake-like robots.

I. I NTRODUCTION

We are interested in motion planning for flexible objects.
Flexibility of an object often means that there is an infinite
number of shapes that the object can take on. To plan mo-
tions for these objects efficiently we have to approximate
their shapes with a finite number of parameters. We also
need a model to describe the dynamics of the object given
a certain parametrization. Applications of motion planning
for flexible objects include suturing simulations, virtual
reality simulations, routing of pipes and cables, graphics
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Fig. 1. A minimal-energy curve of length 2. The curve is held at
the endpoints, constraining both the positions and the tangents. This is
visualized using small cylinders. The bottom two plots show the curvature
and torsion along the curve.

Fig. 2. A simulated surgical suture.Image courtesy of D. Pai

animation, and modeling the backbone of flexible macro-
molecules. So far there has been only limited success in
developing planners for flexible objects. We are working
towards this end. This paper will concentrate on represent-
ing and planning for curves of fixed length when given
manipulation constraints (see figure 1). The constraints
arise from robot grippers holding the endpoints of the wire,
thereby fixing the positions and tangents at the endpoints.

The main motivation for our research comes from surgi-
cal suturing (see figure 2). A suture is a flexible wire with
negligible stretch that typically needs to go from a straight
configuration to a knot. Limited visibility and limited tactile
feedback can make this a challenging task for a surgeon.
As part of a training simulator, a motion planner for sutures
can be a very useful tool for training surgeons.

In previous work [1] we presented an approximate
representation of minimal-energy curves using only 10 pa-
rameters. We described different methods to solve for these
parameters for given endpoint constraints. Although this
parametrization produced good results overall, there were
cases where a good approximation of a minimal-energy
curve could not be found. Moreover, it is computationally
very expensive to verify if an approximation is close to
a curve that has minimal energy in the variational sense.
We therefore started investigating adaptive parametrizations
that vary the number of parameters based on the complexity
of a minimal-energy curve. We informally use the term
‘complexity of a curve’ to describe some measure of the
change in shape (i.e., curvature and torsion) along the
curve.

The outline of the rest of the paper is as follows. The
next section briefly describes some related work. Section III
explains what minimal-energy curves are and why we are
interested in them. In section IV we introduce a subdivision
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scheme for computing minimal-energy curves subject to
endpoint constraints. As part of the subdivision scheme
we need to align curves with these endpoint constraints.
This alignment procedure is explained in section V. In sec-
tion VI we present a path planning algorithm for minimal-
energy curves. Our minimal-energy curve construction can
be extended to multiple control points, which is described
in section VII. Section VIII describes our implementation
and gives some performance results. Finally, section IX
summarizes the contributions of this paper and outlines
directions for future research.

II. RELATED WORK

Motion planning for flexible objects is a very challenging
problem. Lamiraux and Kavraki [2] introduced one of the
first motion planners that deals with flexibility explicitly.
In their work a flexible object is modeled using a finite-
element mesh. They find stable configurations subject to
manipulation constraints using a global energy minimiza-
tion. Bayazit et al. [3] propose a path planner that first
produces a path where a deformable object is allowed
to penetrate obstacles. It then proceeds to deform the
object to resolve any collisions. The emphasis here is
more on realistic looking motions rather than modeling
the underlying physics. Recently, Wakamatsu et al. [4]
proposed a manipulation planner for knotting and raveling
a rope. This planner has been implemented on a 6DOF

manipulator with a camera. Ladd and Kavraki [5] applied
motion planning techniques to mathematical knots. Here,
physical realism is irrelevant, but the configuration space
tends to be more complex than in the aforementioned pa-
pers. Using an artificial potential function and by carefully
defining intermediate subgoals, they were able to untangle
very complex knots. Sometimes hyper-redundant robots (or
snake robots) are modeled as flexible curves [6]. In this
context minimal-energy curves may provide good reference
shapes for the robot that minimize joint movement.

Almost complementary to motion planning for flexible
objects is the simulation of flexible objects. Phillips et al.
[7] use a spline of linear springs. Adaptive subdivision
is used to handle stretching and contraction of the rope.
Friction is not modeled. Brown et al. [8] model a suture
as a polyline (which during rendering is replaced with a
smooth spline). Forces act on the vertices of the polyline.
Using a few simple rules the positions and velocities of
all vertices can be updated in real-time. Friction is not
explicitly modeled, but the collision resolution scheme
produces a friction-like effect. More so than the previous
two papers, Pai [9] focuses on the internal dynamics of a
suture. A suture is modeled as a so-called Cosserat rod: a
curve with coordinate frames along the curve denoting the
reference orientation. The differential equations describing
the dynamics in this representation can be solved very
efficiently. However, path planning requires inverting the
dynamics equations, which is very difficult.

Minimal-energy curves appear in geometric design in the
broader context of fair curve and surface design [10]–[14].
Here, ‘fair’ means minimizing some functional. In our case

this is energy (which will be defined more precisely later
on). Fair curve design focuses almost exclusively on planar
design. The design of fair spatial curves appears to be still
an open problem.

III. M INIMAL -ENERGY CURVES

When planning paths for, say, a suture or a snake robot,
we favor configurations with minimal strain. The main
reason we focus on minimal-strain curves is that plans
consisting of only such configurations do not rely on
dynamics and will be easier to execute. We assume that a
straight line segment without torsion represents the shape
with zero strain. The Darboux vector, defined in terms of
the Frenet frame asD = τT +κB, describes the rotational
strain along the curve. HereT andB are the tangent and
binormal, respectively, andτ andκ denote the torsion and
curvature. We assume there is no translational strain: the
suture or robot does not stretch. We define the energy of
a curve to be the integral of‖D‖2 along the curve. In
other words, the energy is the integral of the curvature
squared plus the torsion squared over the entire length of
the curve. We will first consider only curves of constant
length that satisfy constraints on the positions and tangents
at the two endpoints. This corresponds to a suture being
held by the endpoints. Finding such curves is nontrivial.
Splines tend to produce very smooth low-energy curves
that can match arbitrary endpoint constraints, but the length
of the splines is variable. A finite-element method, where
we would represent the curve by a large number of line
segments would preserve the length, but makes planning
difficult [2] because we need manyDOFs. Finding a smooth
curve of fixed length that satisfies endpoint constraints is
difficult and finding minimal-energy curves using a finite
element method is even more challenging.

Very little is known about 3D minimal-energy curves.
For planar minimal-energy curves with endpoint con-
straints the following variational condition has to be satis-
fied along the curve:κ′′(s) + 1

2κ3(s) = c · κ(s) for some
constantc [12]. Such a constraint does not exist forspatial
minimal-energy curves.

The following two observations will be important in the
rest of this paper. First, the space of all minimal-energy
curves exhibits many symmetries: a minimal-energy curve
is still a minimal-energy curve if we apply a translation,
a rotation, a uniform scaling, or a reflection. We will take
advantage of this property by only solving for minimal-
energy curves in some canonical form from which all
symmetric curves can easily be derived. Second, for a
minimal-energy curve, every segment of that curve is also
a minimal-energy curve. This means that we can locally
improve an approximation of a minimal-energy curve.
We therefore conjecture that the complexity of finding
parameters for minimal-energy curves increases linearly
with the number of parameters required to represent that
curve instead of exponentially.



IV. A SUBDIVISION SCHEME FOR

M INIMAL -ENERGY CURVES

Subdivision is an area of geometric modeling concerned
with compact representations of curves and surfaces [15].
The representations consist of a coarse mesh or polyline
and a set of refinement rules. The refinement rules define
how elements of the mesh can be subdivided into smaller
elements. The surface represented by the mesh and re-
finement rules is the limit surface obtained by iteratively
applying the refinement rules to the mesh. Typically, the
rules can be thought of as a weighted interpolation scheme.

We have developed a subdivision scheme for repre-
senting minimal-energy curves. There are two factors that
make this scheme more complicated than most subdivision
schemes. First, to minimize the energy and at the same
time maintain the constraints on the endpoints, we need
to solve a constrained minimization problem rather than
simply apply an interpolation rule. Second, we want to
maintain the length of the curve. To accomplish this, we
represent a curve as a sequence ofn segments with constant
curvature and torsion, i.e., parts of helices. When a segment
is subdivided, the sum of the lengths of the new segments
is equal to the length of the old segment. Each segment
of a curve can be described by curvature, torsion, and
length. So for a curve consisting ofn segments we need
3n parameters.

Given manipulator constraints like the endpoints and
tangents where a suture is held, we can quickly find a
minimal-energy curve that satisfies those constraints. The
idea is to start with a simple curve that just satisfies the
endpoint constraints and keep refining it as long as we can
lower the energy of a curve. The basic refinement step can
informally be stated as follows: as long as the difference
in curvature and torsion between a segment and one of
its immediate neighbors is larger than some threshold,
subdivide both and optimize the curve parameters of the
subdivided segments so as to simultaneously minimize the
energy and the error in the endpoint constraints. Here we
make use of the observation that we can locally change
the shape to get closer to a minimal-energy curve. We
also take advantage of the symmetries by solving only
for minimal-curves in ‘canonical form’ and aligning these
curves through an affine transform and scaling with the
desired endpoints and tangents. Typically the error in the
endpoint constraints is very close to zero after the first
subdivision step. Subsequent steps minimize the energy
while maintaining the constraints.

The parametrization supports the following operations
in a straightforward manner: downsampling to a coarser
resolution, upsampling to a finer resolution, computing the
distance (or shape difference) between two curves, and
finding points along a curve. All these operations take
time linear in the number of segments. Using upsampling
and downsampling we can represent a curve at different
levels of detail. Curves in this representation can also be
compressed really well using, e.g., wavelets [16].

Let a piecewise-helical curve consisting ofn segments
be described by an×3 matrix q, where rowi contains the
parameters for segmenti: (κi, τi, si). If a curve segment
qi is subdivided into smaller segments, described by the
matrix qnew, the curvature and torsion parameters of the
smaller segments are optimized to minimize

energy(qnew) + K · (exp(err(qnew))− 1) (1)where

energy(q) =
∑n

i=1(κ
2
i + τ2

i ) · si, (2)

K is a penalty constant, and the error is measured after
alignment, as described in the next section. Note that we
arelocally optimizing the shape and at the same time trying
to satisfyglobal endpoint constraints. Each subdivision can
be performed fairly quickly, since we are minimizing over
only a small number of parameters.

In our implementation we have chosen to subdivide
each segment into two smaller segments. Subdividing one
segment would give usfour parameters to optimize over:
two curvature parameters and two torsion parameters. But
satisfying the constraints requires at leastfive degrees
of freedom: three for the endpoint position and two for
the endpoint tangent. We therefore need to subdivide two
segments at once, giving us eight degrees of freedom, three
of which can be used for energy minimization. Initially,
we start off subdividing two helical segments of equal
length with arbitrary curvature and torsion. To decide which
segments to subdivide in subsequent steps we consider the
difference in curvature and torsion between consecutive
segments. Let the difference between segmenti and i + 1
be defined as(

(κi+1 − κi)2 + (τi+1 − τi)2
) ·max(si, si+1). (3)

Generally speaking, the minimization in a subdivision step
will minimize the energy by smoothing out the difference
in curvature and torsion. We maintain a priority queue
of the differences between all consecutive segments. The
largest difference is assigned the highest priority. We keep
subdividing as long as the error in the endpoint constraints
is larger than some threshold and as long as the difference
between some consecutive segments is larger than some
other threshold. If the difference in curvature and torsion
between any pair of consecutive segments is small then
subdividing is not going to reduce the energy much.

V. A LIGNMENT OF A CURVE TO MATCH CONSTRAINTS

In our subdivision scheme we maintain a curve in
canonical form and use an alignment procedure to match up
the curve with the endpoint constraints as best as possible.
As we mentioned before, the curve representation would
not change if we apply a translation, rotation, scaling,
or reflection to the endpoint constraints. The alignment
procedure returns the transform that brings the endpoint
constraints in canonical form such that the error (as defined
below) is minimized.

First, we scale the curve in canonical form to have the
desired length. Next, we translate and rotate the curve such
that the Euclidean distance between the endpoints of the



curve and the desired endpoint positions is minimized. Fi-
nally, we apply a rotation about the line passing through the
endpoints that minimizes the angles between the endpoint
tangents of the curve and the desired tangents. All these
transforms can be computed analytically. We can combine
the scaling, translation and rotations into one transform
that aligns the curve with the constraints. The error in the
alignment is simply a weighted sum of the error in the
endpoint positions and the error in the tangents.

VI. PATH PLANNING FOR M INIMAL -ENERGY CURVES

The path planning problem for minimal-energy curves
can be stated as: when given endpoint constraints for a
start and goal curve can we find (a) minimal-energy curves
that satisfy those constraints, and (b) a deformation from
the start curve to the goal curve such that all intermediate
curves are also minimal-energy curves and are not colliding
with any obstacles. The planner we present below is
described in terms of a roadmap-based method [18], but it
is not tied to any roadmap construction algorithm. In fact,
it could also be used with a tree-based planner [19], [20].
Various algorithms have been proposed for the construction
of roadmaps and trees elsewhere, and will not be discussed
in this paper. Instead, we will focus on the specifics of the
local planner for minimal-energy curves.

To solve the path planning problem we propose the
following approach. First, a roadmap of all minimal-energy
curves is pre-computed in the absence of obstacles. Due to
the symmetries that exist in the space of these curves, it
suffices to build a roadmap for curves in canonical form.
The local planner that connects minimal-energy curves
is described below. The second step is to build another
roadmap for the environment of interest that may include
obstacles. The local planner for this roadmap uses the
roadmap of the first stage as a lookup table. It will just
need to check whether paths in the first roadmap after
applying the alignment transform are collision-free. This
approach is reminiscent of the planner described in [21].
Whereas Leven and Hutchinson pre-compute a roadmap in
configuration space and modify this roadmap as obstacles
are added, we only do this for “shape space”. By taking
advantage of the symmetries in the configuration space, we
can re-use the roadmap for shape space in other parts of
the configuration space.

The problem that the local planner needs to solve can
be stated as: given two minimal-energy curves, does there
exist a deformation from one curve to another such that
all intermediate curves are all minimal-energy curves? The
solution we found is very similar to the approach we
took in [1]. We find a sequence of minimal-energy curves
connecting the start and goal curve such that consecutive
curves are at most a distanceε apart. The distance between
two curves is defined as

d(q0, q1) =
√∫ 1

0

(
(κ0(s)− κ1(s))2 + (τ0(s)− τ1(s))2

)
ds.

Because the curves have piecewise-constant curvature and
torsion, the integral simplifies to a summation. The path
planner recursively finds a path as follows. It first computes

Fig. 3. A path of minimal-energy curves. The inset shows the start and
goal curves. The start curve connects start0 and start1, the goal curve
connects goal0 and goal1.

minimal-energy curves for the start and goal. It then
linearly interpolates the curvature and torsion between the
two curves to obtain a curve that has distanceε/c, c >
1, to the start curve. This solution is downsampled to
a very coarse resolution and is used as an initial guess
for a minimal-energy curve that satisfies the interpolated
endpoint constraints. The ability to quickly go from a
complex representation to a very coarse one is critical in
our path planning algorithm.

The interpolation scheme for the endpoint constraints
is slightly more complicated. A straight-line interpolation
between endpoints would not work well, for instance, be-
cause this may cause the curve to “fold up” onto itself and
cause large shape changes. Instead, we linearly interpolate
the mid-point between the endpoints. We use spherical
interpolation to determine the position of the endpoints
relative to the mid-point. The tangents are also spherically
interpolated.

Given the interpolated endpoint constraints and the initial
guess for the curve parameters, we apply our subdivision
scheme to obtain a minimal-energy curve. If the distance
between the resulting curve and the starting curve is larger
thanε, the path planner fails. Otherwise we make the new
curve the starting curve and recurse. The planner terminates
if the distance between the start and goal is less thanε or if
some maximum number of iterations is exceeded (in which
case the planner fails). The path returned by the planner
consists of all the minimal-energy curves generated.

Figure 3 shows an example of a path as found by our
path planner. Figure 4 shows the curvature and torsion of
the minimal-energy curves that constitute the path. From
this figure it is clear that the planner is “well-behaved”:
the change in shape along each curve is smooth, as is the
change in shape along the path.

VII. M ULTIPLE CONTROL POINTS

So far we have assumed that the only control points and
tangents that a minimal-energy curve needs to pass through
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Fig. 4. Curvature and torsion along a path of minimal-energy curves.

Fig. 5. A minimal-energy curve of length 9 passing through 13 control
points and tangents to spell the word “cello.”

are at the endpoints. In practice a curve may collide with
obstacles in the environment or with itself. We would like
to model the constraints imposed by the obstacles as well.
Solving for the contact points such that the curve is at an
energy minimum is extremely difficult in general. To make
the problem more tractable we will assume that contact
points are given as well as the tangents at those points. We
can think of this as a curve passing through a number of
cylinders.

To find a minimal energy configuration we solve for
each curve segment between consecutive control points
separately while maintaining the global length constraint.
Initially, we allocate to each segment a length of the
curve proportional to the work space distance between the
endpoints of the segment. The workspace distance between
control pointi and i + 1 is defined as

dw(i, i + 1) = ‖pi − pi+1‖+ arccos(ti · ti+1),
wherepi andti specify the position and tangent of control
point i. If we think of tangents as points on a sphere, then
the distance between tangents corresponds to the length
of the shortest geodesic on the sphere connecting two
tangents. So the work space distance is simply the sum of
the distance between the positions and the distance between
the tangents. This distance is only used as a heuristic to
start the energy minimization.

After we have found initial guesses for the lengths
needed to connect consecutive control points, we solve
each minimal-energy curve segment separately. The energy

of the whole curve is simply the sum of the energies of
the curve segments. Suppose we haven curve segments
and the lengths of the segments are given byl1, . . . , ln.
Then we can further minimize the energy of the curve
by varying the initial guesses forl1, . . . , ln−1. (Note that
ln = L − ∑n−1

i=1 li.) We have used a general constrained
optimization technique for this. The constraints arise due
to upper and lower bounds on theli’s. A lower bound
for li is the Cartesian distance between the corresponding
control points, since a curve segment needs to be long
enough to connect the control points. An upper bound for
li is obtained by subtracting the lower bound for alllj ’s
(j 6= i) from L. In other words, we cannot use a curve
length for theith segment that would make it impossible to
satisfy the lower bounds on the other segments. The energy
minimization will not necessarily find a global minimum,
but in our simulations it produced good results. Figure 5
shows a minimal-energy curve of fixed length connecting
13 control points. The control points are drawn as small
cylinders to emphasize that the curve also needs to match
the tangents at those points. Our approach works in 3D;
the curve in figure 5 is planar only because it is easier to
visualize.

VIII. N OTES ON THEIMPLEMENTATION

The subdivision scheme and the path planner described
in this paper have been in implemented in C++. We also im-
plemented Matlab bindings, so that almost all functionality
in the C++ classes can be accessed from Matlab. For energy
minimization we made use of a nonlinear optimization
library called OPT++ [22]. In particular, in the subdivision
step we used the quasi-Newton method with numerically
computed derivatives, and in the optimization of curve
segment lengths we used a derivative-free parallel direct
search.

We evaluated the performance of the subdivision scheme
by randomly selecting constraints for the endpoints and
timing how low it takes to compute the corresponding
minimal-energy curve. The positions were picked uni-
formly at random within a unit ball, and the tangents were
picked uniformly at random as points on a unit sphere.
The curve length was set to be 2, the branching factor was
2, the subdivision tolerance was 0.001, and the minimum
segment length was set to 0.002. We generated 50,000
random curves and computed the following statistics:

time (s) error energy #segments
mean 0.209 5.01× 10−3 15.90 59.3

median 0.167 5.64× 10−5 14.64 48.0
std. dev. 0.154 0.0484 8.86 41.8

The error denotes the error in the endpoint constraints after
alignment as described in section V. These results were
obtained on a Linux workstation with an AMD Athlon
XP 2600 processor. From the table above we see that the
computation of minimal-energy curves is reasonably fast.
Note also that the number of segments needed to represent
a minimal-energy curve varies significantly, which shows
the benefit of a variable-resolution representation. It helps



speed up path planning by using only as many parameters
as necessary.

IX. D ISCUSSION

This paper described a new approach to path planning
for flexible curves. We introduce a subdivision scheme to
construct representations of minimal-energy curves. The
size of the representation adapts automatically to the ge-
ometric complexity of the underlying curve. With this
representation it is easy to find paths between minimal-
energy curves such that all curves along the path are
also minimal-energy curves. This work has applications in
simulated and automated suturing, and hyper-redundant /
snake robots.

In future work we plan to explore the following prob-
lems. We would like to develop a more complete model
for flexible objects in contact with obstacles. The results
in section VII where we modeled contact points as being
fixed in space are a starting point, but even finding the
contact points such that a curve is at an energy minimum is
very difficult. The location depends on the geometry of the
obstacle and on the contact kinematics between the curve
and the object. Another issue that needs to be addressed
is the situation where control points are not in general
position. For instance, for planar minimal-energy curves
changing the torsion will not help in minimizing the energy.
So in our subdivision scheme the effective number ofDOFs
can be too small to minimize the energy and at the same
time satisfy the endpoint constraints. To solve this problem,
we need to recognize that we are at or near a singularity
and increase the number of segments to be subdivided.
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