presented by loan Sucan, Rice University

G

SE(3) _,ce®

if_& .
o ates 0 {E}Utﬂﬁ
Motion Planners

Sa
mphj'}g PRM LGT:HT Iny

Graphics fate Sgy



define a model of a robot and its environment

use a physics-based simulator to compute robot actions if
certain controls are applied

this essentially provides a forward integration routine

we can do motion planning with this

examples: Vortex, ODE, PhysX, Bullet, etc.



Inherit from a base class and offer the same functionality with a
different algorithm

Declare a Factory class that can instantiate that class

Register functions to export

Create an XML file to load the new class



Adding physics-based simulation

Motion planning with the Open Dynamics Engine (ODE)

Implement a new states space (ODEControlStateSpace),
derived from ControlStateSpace

Implement a new CollisionDetector (ODECollisionDetector)

Implement a new Workspace (ODEWorkspace)



New classes that need to be added to support ODE
geometry representation:

WorkspaceODE
ODECollisionDetector



New state space class:

@ @ Multiple Robots @

ODEStateSpace




Remember:

* When adding new classes, they need to be registered,
so the user can load them from XML.

* Functions to be called externally, need to be registered
as well

/I header file of ClassName class

DeclarelnstanceFactory(ClassName, BaseClassNameFactory);

//source file of ClassName class
BeginimplementinstanceFactory(ClassName, BaseClassNameFactory);
RegisterFnFactory(fn1Name, fn1_arg_types);
RegisterFnFactory(fn2Name, fn2_arg types);

EndimplementinstanceFactory(ClassName)

<factory instance="ODECollisionDetector">
</factory>




Why do we need this?

= run existing motion planners
on problems with physics
simulation

= example: the CKBot problem




Adding complex new functionality is possible

Code reuse is maximized

Existing components can use the newly added components

The same motion planners can be now used without change



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

