

OOPSMP code structure
presented by Ioan Sucan, Rice University

Previous presentation - OOPSMP for the user:

 General purpose utilities and data structures
 Implementations of popular motion planning algorithms
 Solution of problems involving one or multiple robots

OOPSMP for the developer

 First, code structure
 Plug-and-play functionality

Basic organization of OOPSMP:

 Set of classes compiled in dynamically linked libraries
 Semantically related classes are grouped in the same library
 The typical paradigm

 One abstract base class
 Different implementations of the base class are available

Basic organization of OOPSMP:

 One executable
 Loads the needed libraries
 Parses XML input file
 Instantiates the user selected class implementations
 Calls functions from the instantiated classes

Solving a motion planning problem:

 Pick a set of components: the class implementations
 Sampler, local planner, planning algorithm

 Set the planning queries and attempt to solve the problem

 The problem may not be necessarily solved
 Can a different sampler do better?
 Can a different planning algorithm do better?

 Change some of the selected class implementations
 What are the available ones?
 Overview of the available implementations follows!

Top-level organization:

 The directory structure follows the code organization

 Look at components one by one

Utilities:

 Random number generation
 Topology representation: SE(2), SE(3), ...
 Numerical integration: Runge-Kutta, ...
 Search algorithms
 Data structures
 ...

Core:

 Essential set of components for motion planning

THIS SLIDE IS DISABLED
What is available:

 Utilities
 Mathematics

 ODE solvers
 Topology representation: SO(2), SO(3), SE(2), SE(3)
 Matrix operations

 Geometry
 Collision detection for 2D and 3D

 Data structures
 Heaps, hashes, graphs, nearest neighbors

 Motion planners
 Roadmap based:

 PRM
 Tree based:

 RRT, EST, Bi-directional
 Graphics

 Display environments, states, paths

The state space (configuration space) definition:

State space sampler:

Paths:

Sampling-based motion planners:

Graphics utilities:

User programs:

The Program class:

Needs to implement the run() function
 This does the useful computation

 There exist default implementations (user programs):
 MotionPlannerProgram – solves a set of queries
 GMotionPlannerProgram – solves a set of queries and

provides a graphical interface
 ...

 A special Manager class instantiates and executes a program

What needs to be instantiated to solve a motion planning problem:

 CoreRobotData – this is the component everything connects to
 CoreRobotsData

 Workspace – this is where collision detection will be done
 Workspace2D, Workspace3D

 CollisionDetector – the method for collision detection
 PQPCollisionDetector2D, PQPCollisionDetector3D

 StateSpace
 SE2StateSpace, SE3StateSpace, ControlStateSpace, etc

 ValidStateSampler
 UniformValidStateSampler, ObstacleValidStateSampler, etc

 PathGenerator
 SE2GeodesicPathGenerator, ControlPathGenerator, etc

 LocalPlanner
 IncrementalLocalPlanner, SubdivisionLocalPlanner

 MotionPlanner
 PRM, RRT, EST, etc

 Queries – define what problems to solve

Summary:

 A set of classes grouped into libraries
 Different functionality available
 Flexible to execute, no need to recompile code for testing

various combinations
 Easy to extend
 Free for academic use

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

