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Abstract

The ability to efficiently sample structurally diverse protein conformations allows one to gain a

high-level view of a protein’s energy landscape. Algorithms from robot motion planning have been

used for conformational sampling and several of these algorithms promote diversity by keeping track of

“coverage” in conformational space based on the local sampling density. However, large proteins present

special challenges. In particular, larger systems require running many concurrent instances of these

algorithms, but these algorithms can quickly become memory intensive because they typically keep

previously sampled conformations in memory to maintain coverage estimates. Additionally, robotics-

inspired algorithms depend on defining useful perturbation strategies for exploring the conformational

space, which is a difficult task for large proteins because such systems are typically more constrained and

exhibit complex motions. In this paper, we introduce two methodologies for maintaining and enhancing

diversity in robotics-inspired conformational sampling. The first method addresses algorithms based

on coverage estimates and leverages the use of a low-dimensional projection to define a global coverage

grid that maintains coverage across concurrent runs of sampling. The second method is an automatic

definition of a perturbation strategy through readily available flexibility information derived from B-

factors, secondary structure, and rigidity analysis. Our results show a significant increase in the diversity

of the conformations sampled for proteins consisting of up to 500 residues when applied to a specific

robotics-inspired algorithm for conformational sampling. The methodologies presented in this paper

may be vital components for the scalability of robotics-inspired approaches.

Keywords: protein conformational sampling, robotics-inspired sampling, perturbation strate-
gies, concurrent sampling.

1 Introduction

The function of a protein is related to its three-dimensional structure and its associated struc-
tural changes (Wei et al., 2016). Detailed understanding of protein function and how diseases
disrupt function can eventually lead to treatment or prevention (Carlson, 2002). One typical
starting point is to probe a given protein’s conformational space. This is done through experi-
mental techniques, such as X-ray crystallography, cryo-electron microscopy, or nuclear magnetic
resonance (Powell, 2016; Xu et al., 2015; Marion, 2013), which can provide necessary structural
information that is refined by (or used as constraints for) computational techniques for confor-
mational sampling, such as molecular dynamics (Paquet and Viktor, 2015). Conformational
sampling can provide high-resolution information about a protein’s conformational space (Maxi-
mova et al., 2016). However, molecular dynamics methods have difficulty with rapid exploration
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of conformational space. Typical timescales for major biomolecular events are normally on the
order of microseconds or greater while the timesteps of these methods are on the order of fem-
toseconds. Enhanced sampling methods can provide an initial exploration of conformational
space that can be used to bootstrap more detailed molecular dynamics simulations.

Algorithms from robot motion planning (Gipson et al., 2012; Al-Bluwi et al., 2012) constitute
one such class of methods for enhanced exploration of the conformational space. For a great
introduction to these kinds of methods, we refer the interested reader to (Shehu and Plaku,
2016). Robotics-inspired methods have been used for conformational sampling in a variety of
cases, including protein folding (Amato et al., 2003; Thomas et al., 2007; Tapia et al., 2010), loop
sampling (Yao et al., 2008; Shehu and Kavraki, 2012; Stein and Kortemme, 2013), identifying
low-energy transitions between known conformations (Raveh et al., 2009; Haspel et al., 2010;
Al-Bluwi et al., 2013; Gipson et al., 2013), exploring conformational space (Jaillet et al., 2011;
Shehu and Olson, 2010; Gipson et al., 2013; Luo and Haspel, 2013), and improving fit to
experimental data (Devaurs et al., 2016, 2017). These methods are characterized by their
geometric reasoning to bias the exploration to unexplored regions of the space. Thus, the focus
of these methods is on generating a diverse set of conformations.

Robotics-inspired sampling algorithms can be characterized by how they make two critical
decisions. First, each algorithm must make a decision on where to sample in conformational
space. These algorithms often estimate coverage based on the local sampling density to bias
exploration towards less densely sampled regions of the conformational space. This is mainly
how several robotics-inspired approaches promote structural diversity in their exploration. Sec-
ond, once a selected region has been chosen, each algorithm must make a decision on how to
generate a new conformation. Usually the proposed conformation is generated by perturbing a
previously sampled conformation from the selected region and determining if the proposed con-
formation is valid (typically by checking the energy or for steric clashes). In this work, we will
use the term perturbation strategy to refer to how the algorithm generates new conformations
from previously sampled ones. So starting from an initial conformation, a robotics-inspired al-
gorithm iterates over deciding where to sample, often using coverage estimates (first decision),
then generating a new conformation based on its perturbation strategy (second decision).

While robotics-inspired approaches have seen many initial successes, larger proteins present
special challenges that complicate how these algorithms make the two critical decisions and
hence, hinder their ability to efficiently generate diverse conformations. First, larger proteins
have more residues, or degrees of freedom, so sampling for such systems takes more time and
memory and often requires running these algorithms concurrently across multiple cores. How-
ever, running many concurrent instances of robotics-inspired algorithms becomes memory inten-
sive because of their frequent storage and use of previously sampled conformations as described
by the first decision. In other words, robotics-inspired methods must be run for a shorter time
as the size of the protein increases. As more concurrent instances are used, the memory usage
rate increases since each instance needs to access all of the previous samples. The naive solution
to this memory issue is to write the conformations to disk and restart conformational sampling
at a randomly selected conformation, but we will demonstrate that this compromises the cov-
erage estimates to the point where these algorithms lose the ability to promote diversity. So in
addition to the memory issue, there is also the problem of coordination across the concurrent
runs of sampling.

Second, defining useful perturbation strategies becomes complicated for larger proteins be-
cause such systems are typically more constrained and exhibit complex motions. Larger proteins
usually have high correlation among distant residues that results in more intricate movements.
Perturbation strategies are then less likely to capture these movements, and the probability of
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proposing a valid conformation diminishes greatly (Vitalis and Pappu, 2009). Therefore, the
ability to generate conformations highly different from the starting or reference conformation
becomes challenging. This has led to algorithms that aim to somehow encode flexibility infor-
mation into the perturbations (Shehu and Plaku, 2016). NMA-RRT samples conformations
using normal mode analysis (Al-Bluwi et al., 2013). KGS uses sampling in the nullspace of
the Jacobian of constraints to generate conformations that satisfy constraints introduced by hy-
drogen bonds (Pachov and van den Bedem, 2015). PCA-EA uses perturbations in a principal
component space defined from wildtype and mutant structures, which are then translated to the
original conformational space using a combination of reconstruction algorithms (Clausen and
Shehu, 2015). Note that defining perturbation strategies is also a problem outside of robotics-
inspired methods as PCA-EA is an evolutionary algorithm. Our approach instead makes use of
informed moves, which may be less computationally expensive because it does not require the
use of reconstruction algorithms, computing Hessians (for NMA-RRT), or computing Jacobians.

In this paper, we introduce two methodologies for maintaining and enhancing diversity in
robotics-inspired conformational sampling. The first method addresses algorithms based on
coverage estimates and leverages the use of a low-dimensional projection to define a global
coverage grid that maintains coverage across concurrent runs of sampling. This global coverage
grid keeps statistics about previously generated samples across different runs, which means
that each run no longer needs to access all of the conformations. This approach solves not only
the memory issue associated with robotics-inspired sampling methods that rely on coverage
estimates, but also the coordination problem of sampling across multiple cores. Our approach
allows robotics-inspired methods to maintain the ability to efficiently decide where to sample
conformations. The second method is an automatic definition of a perturbation strategy derived
from B-factors, secondary structure, and rigidity analysis. We also use the B-factor information
to define the low-dimensional projection and compare to prior work on defining projections
(Novinskaya et al., 2017). This method enhances diversity by focusing how our algorithm
perturbs conformations using readily available flexibility information. Our results show that
our methodology leads to a significant increase in the diversity of the conformations generated as
well as the number of conformations generated for proteins consisting of up to 500 residues when
applied to a specific robotics-inspired algorithm for conformational sampling, the Structured
Intuitive Move Selector (sims) framework for conformational sampling (Gipson et al., 2013).

The rest of the paper is organized as follows. In the next section, we will describe our
methodologies in detail, which are implemented into sims. In section 3, we show how our new
methodologies result in a significant improvement in the structural diversity of the sampled
conformations. We also provide a discussion of the relative importance of each methodology.
Finally, we conclude with a brief summary and a discussion of directions for future work.

2 Methods

2.1 Structured Intuitive Move Selector (SIMS)

We apply our methods within the Structured Intuitive Move Selector (sims) framework for con-
formational sampling (Gipson et al., 2013), which exemplifies the operation of several robotics-
inspired methods through the combined use of the Open Motion Planning Library (ompl)
(Şucan et al., 2012) along with Rosetta (Leaver-Fay et al., 2011). In this section, we provide
a high-level overview of sims that will introduce the components needed to describe our new
methodologies. A detailed description of sims can be found in (Gipson et al., 2013).

simsmakes use of ompl to determine where to direct exploration through the use of coverage
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estimates, which are encoded inside a data structure called the coverage grid. The coverage
grid data structure relies on a projection as input, which is used to map conformations to the
coverage grid. The coverage grid consists of cells from the discretization of the mapped space,
and each cell contains pointers to the conformations that are mapped to it. Deciding where
to direct exploration at any given iteration is a two step process where 1) a cell is chosen and
2) a conformation is chosen within the cell. The probability a cell is chosen is proportional
to its computed importance value, which is a function of various grid cell statistics such as
the number of conformations mapped to it. Essentially, cells that are less densely populated
are chosen more often than cells that are more densely populated. Finally, a conformation is
randomly chosen from the cell. More details are provided on the coverage grid in Section 2.2
and on the projection in Section 2.3.

sims determines how new conformations are generated through a so-called schema. The
schema encodes how to repeatedly apply small perturbations called moves to previously gener-
ated conformations. sims uses an internal coordinate representation, where only dihedral angles
are manipulated (bond angles and bond lengths are kept constant). sims’ perturbation strategy,
defined in the schema, specifies what type of moves to use, how they are applied, and how often
to apply them. The moves are applied to sets of residues called fragments, where each move-
fragment pair is assigned a weight to reflect how often to apply the move-fragment pair. The
probability that a particular move-fragment pair is chosen at any given iteration is proportional
to the weight. Ideally, the schema captures which fragments of residues might be involved in
coordinated motion and how flexible they are (through the use of the weights). Previous work
showed that secondary structure can be used to partition the protein into flexible loops, which
should be perturbed more often (given higher weight) than relatively rigid helices and sheets
(given lower weight) (Gipson et al., 2013). For each type of fragment, different moves can be
defined (e.g., loop sampling, random perturbation, energy minimization). sims makes use of
Rosetta for implementations of the moves (Leaver-Fay et al., 2011). Once the move is applied to
a fragment, side chain positions are determined by Rosetta’s side chain minimization protocol
(Das and Baker, 2008). Since sims uses Rosetta for the move implementations, sims’ pertur-
bation strategy can be easily extended to include advances in Rosetta’s own robotics-inspired
approaches to sample new conformations such as in (Stein and Kortemme, 2013). More details
are provided in Section 2.3 on how a perturbation strategy in sims is constructed.

Each proposed conformation is automatically rejected if the computed energy of the pro-
posed conformation is above a user-defined threshold. In this work, we use Rosetta’s “score12 full”
all-atom energy function for our smaller-sized proteins and Rosetta’s “score3” energy function in
“centroid” mode for our larger-sized proteins, although other energy functions could be used as
well. Centroid mode computations in Rosetta are faster because side chains are approximated
as a single atom of varying size, which provides additional computational benefit for larger
proteins while still maintaining molecular detail. Energy thresholds are chosen to filter out
conformations with steric clashes and other highly unfavorable interactions. Energy thresholds
for this work are set to the value 0 because past experiments tend to show that conformations
with a positive Rosetta score have some degree of steric clashes. One could always lower the
energy threshold or filter out high-energy conformations in a post-processing step to obtain
sampled conformations with lower energy.

2.2 Global Coverage Grid

The first critical decision that robotics-inspired methods have to make is where to direct the
exploration. Many robotics-inspired methods, such as sims, base this decision on the computed

4



Enhancing Diversity in Protein Conformational Sampling Abella et al.

coverage estimates. Coverage estimates measure where the less-densely sampled regions of the
conformational space are located. Based on the coverage estimates, robotics-inspired approaches
incorporate a bias towards the unexplored regions of the space (Shehu and Plaku, 2016). Com-
puting coverage estimates in robotics-inspired methods becomes complicated for larger systems,
so in this section we describe a method that can maintain their ability to compute coverage.

Conformational sampling generally becomes a harder problem as the size of the considered
system increases. Unless the system is highly stable and only exhibits small-scale movements
(like side-chain rearrangements), more computational resources are needed. Energy computa-
tion takes longer so we must run simulations longer in order to sample a given number of
conformations. The conformational space is also larger so we may need more conformations to
accurately characterize the space. These complications give rise to the need to run multiple
robotics-inspired sampling across many cores. However, keeping all of the sampled conforma-
tions in memory means that the rate of memory usage increases. For the rest of this paper, we
will refer to this as the “memory issue.” While there has been work on parallelizing robotics-
inspired sampling techniques (Devaurs et al., 2013; Ichnowski and Alterovitz, 2012; Plaku et al.,
2005), these approaches do not address the fact that memory-use becomes a bottleneck for large
proteins. So in this work, we are addressing the problem of running multiple instances of sims
concurrently in an efficient manner that can also handle the memory issue.

Initially, one may consider keeping all of the sampled conformations on disk and running
separate, concurrent instances of sims across each computing core. But this means each core
must have access to all of the sampled conformations because any previously sampled conforma-
tion could be perturbed in a given iteration. This may be expensive if every iteration involves
reading and writing to disk. We could also write all the conformations to disk periodically
and restart the exploration from randomly chosen points. However, as mentioned in Section
1, this results in losing the vital coverage estimates. After a restart, the algorithm is likely to
re-explore parts of conformational space that have been densely sampled in previous runs.

Keeping all of the sampled conformations on disk appears to be unavoidable when running
multiple instances of sims for a long time. So in order to prevent excessive reading and writing
to disk, each instance of sims must work with its locally generated set of conformations. The
question becomes how each instance of sims can “get informed” of the work other instances of
sims are performing. We solve this by leveraging sims’ use of a low-dimensional projection to
keep coverage estimates and implementing a global coverage grid, whose scope reaches across
all the instances of sims.

In sims, sampled conformations are added to the coverage grid data structure through
the use of a projection (detailed in Section 2.3). The grid contains cells with conformations
mapped to them and by counting how many conformations map into each cell, we can estimate
the sampling density or coverage. Different robotics-inspired techniques such as Expansive
Space Trees (Hsu et al., 1999) and Kinodynamic Motion Planning by Interior-Exterior Cell
Exploration (kpiece) (Sucan and Kavraki, 2009) use this information to guide the sampling
towards less-densely sampled parts of the conformational space. In this work we use kpiece
since it has been shown to significantly outperform est (Sucan and Kavraki, 2009).

kpiece keeps track of various statistics for each grid cell and uses these statistics to compute
a heuristic called importance for each cell. Conformations in cells with higher importance are
perturbed more often. Importance is computed for each cell using four statistics:

(1) The number of projected conformations mapped into the cell.
(2) The number of times the cell has been chosen for expansion.
(3) The iteration in which the cell had its first conformation mapped to it.
(4) The number of cell neighbors that have conformations mapped to it.
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An increase in (1), (2), and (4) produce lower importance while a high value for (3) produces
greater importance. Indeed, these are the statistics that are lost when conformations must be
written to disk. Fewer conformations are accounted for in the coverage grid, and the importance
heuristic loses the ability to differentiate cells based on sampling density.

Our method saves global grid cell statistics into a central database along with conforma-
tions sampled from each sims instance. In this work, we used a MySQL database to handle
the read/write requests from the multiple sims instances, and created tables to simply hold the
conformations and global coverage grid. When a sims instance is started, a subset of confor-
mations is loaded along with “summarized” coverage statistics about the global coverage grid.
These “summarized” coverage statistics are an indirect way of accounting for the sampling done
by other sims instances. The sims instance then proceeds for a specified amount of time. The
sims instance maintains its own local coverage grid (using the conformations generated by the
run) enriched with the summarized coverage statistics (taken from the global coverage grid).
When a sims instance is ready to write conformations, the new conformations are written to
the database, and the global grid cell statistics are then updated. Thus, our method provides
the coordination across the sims instances that effectively maintains coverage estimates.

Grid cell statistics on the global coverage grid are maintained centrally in a similar manner
to how an individual sims instance computes grid cell statistics on a local coverage grid. Each
grid cell computes an importance heuristic that determines how often conformations from that
cell are perturbed. In the context of the global coverage grid, (3) is no longer used to compute
importance because there is no meaningful way to define iteration when multiple cores are
sampling simultaneously. However, (1), (2), and (4) are still used.

When a sims instance is finished, the new conformations are written to the database and
the global grid cell statistics are updated. This is done by computing the change in (1) and (2)
during the course of the sims run. These values are then added to the global values of (1) and
(2) in the database. (4) is subsequently updated based on the new grid cell statistics. These
statistics are global in the sense that all the instances provide an update when their run is
finished.

When a sims instance is restarted, the kpiece sampling strategy is used to select new
starting conformations based on the global coverage grid. Additionally, the local coverage grid
is initialized to the current values in the global coverage grid. While each core is aware of the
global coverage statistics, each core can only perturb conformations that are in memory (i.e.,
generated since the start of the sims instance). However, when a conformation is generated in a
cell, the sampling density is determined not only by the conformations generated from the sims
instance but also the sampling density loaded at the start of the run (Fig. 1). The presence of
all other sampled conformations is thus accounted for indirectly.

We now claim that this algorithm also solves the memory issue. Each core will cycle through
three steps: reading conformations and statistics from the database, running a sims instance,
then writing conformations and updating the global statistics. The frequency in which each
core does this process is a user-defined parameter called the restart frequency. The memory
issue is avoided through the use of the summarized coverage and a restart frequency that is not
too low. That is, we must restart often enough such that a core will not run out of memory
from sampling too many conformations. Interestingly, there is incentive to restart often as this
is the mechanism in which the database is updated with the work that each sims instance has
done. On the other hand, saving conformations to a central database and restarting has some
computational overhead associated with it. Our experiments use a restart frequency of 6 per
hour (restart every 10 minutes). We leave it as future work to determine an optimal value for
this parameter.
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Figure 1: Pictorial representation of the effect that the use of summarized coverage statistics has
on a local coverage grid. Each blue dot represents a previously sampled conformation. Before
hitting memory limits, the exploration is proceeding in some direction depicted by the black
arrow. When the exploration restarts, summary coverage statistics are maintained and depicted
in shades of gray. Darker shades indicate more densely sampled areas that the algorithm can
use to reduce sampling redundancy.

Finally we note that when an instance syncs with the database, then the information in
the coverage grid could not be as up-to-date as possible. There could be other instances
that have explored parts of conformational space that the coverage grid is not yet aware of.
Our results in Section 3 indicate that this is not a cause for concern. Simply having some
notion of the work done by other instances is enough to see an improvement in the diversity of
conformations generated using our methodologies. The reason for this is because the original
kpiece method (Sucan and Kavraki, 2009) is inherently adaptive. If at some point of execution
multiple cores are working in the same region of the conformational space, the global coverage
grid will eventually get ‘informed’ of the work when the cores synchronize with the database.
Then when new SIMS instances are created, these instances are less likely by design to work in
the same region again because of the importance values in the coverage grid.

2.3 Defining a Perturbation Strategy using Flexibility Information

The second critical decision that robotics-inspired methods have to make is how to generate new
conformations. In other words, these methods have to define a perturbation strategy to obtain
new conformations from previously sampled ones. Defining perturbation strategies for larger
proteins is more difficult because of the high correlation among residues, and naive/uninformed
strategies will result in high rejection rates. In this section, we will describe how to generate
informed perturbation strategies through readily available flexibility information. In the context
of sims, this translates to finding a definition of the schema. Note that while we focus the
construction of the new perturbation strategy on the schema used in sims, the same ideas
can also be incorporated into other conformational sampling frameworks. We show how to
automatically generate a schema that biases perturbations towards fragments that are more
flexible using a combination of B-factors, secondary structure, and rigidity analysis.

The new perturbation strategy incorporates global structure information into the schema. In
previous iterations of sims, the default schema made use of only secondary structure information.
Alpha helices and beta sheets were made more stable than loops. However, secondary structure
is essentially local information because every secondary structure element consists of a few
consecutive residues. While in general helices and sheets are more stable than loops, helices
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and sheets from different parts of the protein may have vastly different flexibility (Novinskaya
et al., 2017). The old default schema essentially lacked tertiary structure information describing
global flexibility.

While secondary structure is readily computed or available in the PDB, tertiary structure
information is not available directly from experiment. However, an approximation can be
derived from the atom coordinates using rigidity analysis. This is done with kinari web, a
suite of tools for computing rigidity and flexibility of biomolecules (Fox et al., 2011). kinari
web uses the pebble game algorithm to compute clusters of residues that are expected to move
together (Lee and Streinu, 2008). A pdb file is inputted into the web server to get the residue
clusters. All default parameters are used in the computation. kinari outputs a file that specifies
residue clusters. Each cluster consists of a set of residue intervals. We use each residue interval
from each cluster as a separate residue grouping. These residue groupings will be used by the
schema to model parts of the protein that are supposed to move together. We could have chosen
to instead use the cluster of residues (or a set of intervals) as the residue groupings for a simpler
rigidity model, but kinari may only detect one or two residue clusters. Our definition of the
residue groupings allows for a more fine-grained decomposition of the protein.

The schema used in sims specifies fragments, which consist of groups of residues, and moves,
which define perturbations on the fragments. Each fragment is assigned a weight which describes
how frequently the fragment is chosen to be perturbed. sims currently has 5 major moves that
are briefly defined as follows:

1. Minimization involves a few steps of an energy minimization protocol on the fragment.
We use the “dfpmin armijo nonmonotone” protocol 1 and run until a tolerance of 0.01.

2. Loop sampling involves sampling a random loop conformation with the constraint that the
endpoints remain in the same position.

3. Rigid-body sampling involves rotating and translating one part of a domain relative to
another. This is done by a displacement of one loop endpoint relative to the other.

4. Random single perturbation involves randomly perturbing a single residue’s dihedral angles
within a given fragment.

5. Randomize all involves perturbing all the dihedral angles in a given fragment.

In addition to the rigidity analysis, which has been used before in robotics-inspired sampling
(Thomas et al., 2007; Luo and Haspel, 2013; Andersson et al., 2016), our method assigns a
weight to each fragment using B-factors. sims relies on a starting conformation which is derived
from experiment. These experiments will have some measure of uncertainty, which is usually
correlated with flexibility or movement. For X-ray crystallography experiments, B-factors (also
known as temperature factors) describe the displacement of the atomic positions from their
mean values (Trueblood et al., 1996). These B-factors can be easily extracted from a pdb file
(coordinates of a protein conformation derived from experiment) to generate the projection.
B-factors can also be generated from prediction tools (Yuan et al., 2005). As a reminder, the
probability a move-fragment pair is chosen is proportional to its assigned weight. Thus, using
B-factors as the weights naturally biases the fragments that are more flexible.

For a system with n residues, n B-factors corresponding to the alpha carbon atoms in the
backbone are extracted from the pdb file. Then for each factor bi, 1 ≤ i ≤ n, a user-defined

1https://www.rosettacommons.org/docs/latest/rosetta_basics/structural_concepts/

minimization-overview
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range [blow, bhigh] of the B-factors is imposed using the following transformation.

ti(bi) =


blow, if bi < blow

bhigh, if bi > bhigh

bi, otherwise

(1)

This transformation is done because we are only interested in the relative flexibility of the
fragments to each other. B-factor data may contain noisy values for fragments that may overly
dominate and cause the method to over sample this region. For our experiments, we normally
set blow = 20 and bhigh = 50. Next, the following transformation is applied to each ti:

f(ti) = exp(ti/α) (2)

This transformation essentially spreads the values farther apart from one another. The amount
of spreading can be controlled using another user-defined parameter α. The use of an exponen-
tial function here is to space the larger B-factors away even further from the smaller B-factors
such that the flexible residues are sampled more often. All of our experiments use α = 10. The
weight of each fragment is then computed by summing each f(ti) in the fragment.

Using kinari, secondary structure information, and B-factors, the schema can be auto-
matically generated. We propose to generate a schema that consists of three major classes
of fragments. The first is a class containing only a single fragment that is defined over the
whole protein. This class is sampled 10% of the time and is used to occasionally generate
structures with a lower energy (minimization) or try disruptive whole protein perturbations
(rigid-body sampling). When this fragment is sampled, minimization is chosen 90% of the time
and rigid-body sampling is chosen 10% of the time.

The second major class of fragments is generated using secondary structures. This class of
fragments constituted the majority of the fragments in previous iterations of sims. We place less
overall influence on this class since we only sample this set 40% of the time (compared to 90%
previously). The secondary structure information is extracted from the pdb file. Alpha helices
and beta sheets are treated as loops if they are less than 5 residues in length. A fragment
is then defined for each consecutive interval of residues with the same secondary structure
classification. Loops can be perturbed using loop sampling (10%), random single perturbation
(30%), randomize all (30%), or rigid-body sampling (30%). Helices and sheets are generally
more stable so we use random single perturbation (50%) or rigid-body sampling (50%). In
previous work, sims manually defined loops to be sampled with greater weight than helices and
sheets. Fragments are sampled with a weight computed from the B-factors described earlier.

Finally, the third major class of fragments is generated using the residue groupings from
kinari. Since each residue grouping is predicted to moved together, a fragment is defined for
each interval of residues between the residue groupings (intervals at the ends are not counted).
In other words, the parts of the protein that we wish to perturb are the residues that lie in
between tertiary structures, which we call hinges in this work. Note that this work uses ‘hinges’
in a different manner as is used in the rigidity analysis community. When these hinges are
perturbed, the surrounding parts move together as a rigid body. Each fragment is weighted
using B-factors and can be perturbed using loop sampling (10%), random single perturbation
(35%), randomize all (20%), or rigid-body sampling (30%). This class of fragments is sampled
50% of the time.

The increased emphasis on tertiary structures is more aligned with the intended use of
sims for sampling large backbone motions. All of the percentages given above were determined
empirically and further research may fine tune these values.
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Finally, recall that sims uses a projection that maps a conformation to the coverage grid.
The projection can be automatically generated using B-factors. For a system with n residues,
the projection will be of dimension d × 4n, where d is the dimension of the projection. sims
uses the sine and cosine of each dihedral angle in the system (two per residue) for a total of 4n
degrees of freedom. The sine and cosines are done to embed the angles to a Euclidean space.
We can use the B-factors to define the projection used by sims for the coverage grid. Again we
extract n B-factors corresponding to the alpha carbon atoms in the backbone. The B-factors
are processed to produce f(ti) for each residue. A vector of size 1× 4n is created by replicating
each B-factor four times consecutively. This operation is done because every four elements in
a single row of the projection correspond to a single residue.

The other d− 1 dimensions are generated randomly. For each extra dimension, we generate
a 1 × 4n random vector, where each element is drawn from a standard Normal distribution.
Finally, the vectors are made orthonormal using the Gram-Schmidt process. The full projection
is constructed vertically with the B-factor row at the top and the other randomly generated
rows below to get a d× 4n matrix. Conformational sampling using this projection is compared
with the automatically generated projection used in (Novinskaya et al., 2017).

3 Results

Our main objective was to determine the effect our new methodologies had on the diversity of
the conformations sampled. All of our experiments are run on a single compute node with two
Intel E5-2650v2 Ivy Bridge EP processors for a total of 16 cores, where each core runs an instance
of sims. All runs are done for 100 minutes and write conformations to disk every 10 minutes
(restart frequency is 6 restarts per hour). Energy thresholds for all the experiments are set to
the value 0 because past experiments tend to show that conformations with a positive Rosetta
score have some degree of steric clashes. All the projections used are 2-dimensional. In the
discussion below, we call the version of sims with the new methods, “sims 2.0,” which includes
the global coverage grid implementation along with the new perturbation strategy defined in
the schema as described in the previous section. The version without the new methods is called
“Naive sims.”

3.1 Proteins Used in Experiments

We illustrate the benefits of our new methods on four proteins of varying sizes: Cyanovirin-N
(CVN) (Botos et al., 2002), Calcium-loaded Calmodulin (CaM) (Anthis et al., 2011), Ribose-
Binding Protein (RBP) (Björkman et al., 1994; Björkman and Mowbray, 1998), Maltodextrin-
Binding Protein (MBP) (Quiocho et al., 1997), and a single subunit of GroEL (Skjaerven et al.,
2011, 2012). CVN, CaM, RBP, and MBP are smaller sized proteins that we have previously
studied in the context of evaluating random projections (Novinskaya et al., 2017). The GroEL
subunit is a larger and more constrained system consisting of about 500 residues. We also
depict the B-factors and the KINARI information onto the structures to give a sense of how
the new method is defining in the schema.

3.1.1 Cyanovirin-N

CVN is a 101 residue bacterial protein (PDB 3EZM) that exhibits antiviral activity towards the
human immunodeficiency virus. CVN shows large scale motions from the correlated activity of
three loop regions at residues 24–28, 50–55, and 75–80. These same loop regions are found as
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(a) (b)

Figure 2: Cyanovirin-N. a) Colored by B-factors; b) Colors based on kinari web output:
clusters (white), hinges (black). The B-factors and hinges reflect the flexibility of the three
loop regions at residues 24–28, 50–55, and 75–80.

(a) (b)

Figure 3: Calmodulin. a) Colored by B-factors; b) Colors based on kinari web output: clusters
(white), hinges (black). Note that the B-factors reflect the flexibility of the middle alpha helix
which sims 2.0 could exploit.

flexible from Fig. 2a. From Fig. 2b, KINARI classifies two of these these loop regions (residues
24–28 and 40–54) as hinges (which we defined in the previous section as the residues in between
residue groupings). When constructing the schema as described in the previous section, the
range of the B-factors are 10–20, instead of the default 20–50.

3.1.2 Calmodulin

CaM is a 144 residue protein (PDB 1CLL) involved with interactions between calcium ions and
other proteins. B-factors show the flexible parts of the protein are found in residues 5–20, 35–
41, 52–57, 67–80, 87–93, 107–116, and 126–129, which is represented in Fig. 3a. Note that the
flexible helix at residues 67–80 would have been treated as a more stable part of the structure
(and hence, not perturbed frequently) if only secondary structure information was used. The
computed hinges in Fig. 3b are loops located at residues 41–43, 57–62, and 114–116.
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(a) (b)

Figure 4: Ribose-Binding Protein. a) Colored by B-factors; b) Colors based on kinari web
output: clusters (white), hinges (black). The hinges computed with kinari do not correspond
to the three loop regions in the center. However the B-factors for these loop regions are indeed
weighted more heavily than the two domains.

3.1.3 Ribose-Binding Protein

RBP is a 271 residue protein (PDB 1URP, chain A) that consists of two domains connected
by three loop regions located at 91–104, 226–237, and 253–269. The first two regions are more
constrained and have to move in a coordinated way. Interestingly, the B-factor distribution in
Fig. 4a shows that the most flexible parts are mainly the alpha helices at the end. The kinari
output in Fig. 4b also predicted that most of the protein move together (residues 3–205 and
211–268), leaving a single hinge at residues 206–210 that is not part of the three main loop
regions. Nevertheless, the B-factors for the main loop regions indeed show greater flexibility
than the surrounding two domains.

3.1.4 Maltodextrin-Binding Protein

MBP is a 370 residue protein (PRB 3MBP) that consists of two domains on each end terminal.
MBP is known to exhibit protein-wide conformational changes between the open and bound
forms that involves movement in nearly all the residues. The B-factor distribution in Fig. 5a
show most flexibility at the extreme ends of the protein, which will allow the schema to focus
on the two domains. However, kinari predicted that most of the protein is rigid, so there is
only a single major hinge shown in Fig. 5b.

3.1.5 GroEL Subunit

GroEL (PDB 1XCK) is a molecular chaperone consisting of 14 identical subunits forming
two heptameric rings. We extract out chain A and use this as input to kinari web. Each
subunit consists of 524 residues arranged into three domains (Fig. 6a): equatorial (1–133, 409–
524), intermediate (134–190, 377–408), and apical (191–376). The apical domain has the most
movement, facilitated by hinges located in the intermediate domain (Skjaerven et al., 2011,
2012). The equatorial domain remains mostly stable.

In Fig. 6b, notice that the high B-factors correlate to apical domain which is known to be
the most flexible part. Fig. 6c shows the parts of the subunit from which we treat as hinges.
Note how the hinges are mostly loops located between major helices/sheets in the system.
Perturbing these hinges will in turn affect the alpha helices and beta sheets, analogous to a
rigid body transform.

12
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(a) (b)

Figure 5: Maltose-Binding Protein. a) Colored by B-factors; b) Colors based on kinari web
output: clusters (white), hinges (black). There was only a single major hinge detected by
kinari. However, the B-factor distribution will result in weighting the two domains highly.

(a) (b) (c)

Figure 6: A single subunit of GroEL. a) Colored by domain: equatorial (blue), intermediate
(white), apical (red); b) Colored by B-factors; c) Colors based on kinari web output: clusters
(non-black), hinges (black). The B-factors reflect the flexibility of the apical domain while
hinges roughly define regions between major domains.

3.2 Increased Number of Generated Conformations

In this section, we want to get a sense of how many conformations sims 2.0 can produce
given a certain number of cores. With conformational sampling for larger systems the energy
computation becomes more expensive, so the rate in which conformations are produced becomes
vital. Producing more conformations is more efficient in the sense that the method is rejecting
conformations less often. Note that all of the conformations produced are required to be below
an energy threshold. We run experiments on a varied number of cores (1, 4, and 16) to assess
the effect that our new methods have on scalability. Table 1 records the average number of
conformations produced.

Table 1 clearly shows that as the number of cores used increases, the difference in the
number of conformations produced by sims 2.0 compared to Naive sims increases. Note that
all of the conformations produced are below the user-defined energy threshold. For a given
number of cores, the rate in which conformations are being produced by sims 2.0 is greater
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than naive sims. Hence, the rejection rate of the proposed conformations is lower in sims 2.0.
As discussed earlier, high rejection rates in sampling for larger proteins was an issue preventing
the scalability of robotics-inspired approaches (in how conformations are generated). sims 2.0
would make more efficient use of resources when the search requires up to 16 cores.

3.3 Improved conformational space coverage

The results from the previous section say nothing about the diversity of the conformations
produced. In this set of experiments, we fix the number of cores to 16 and assess how well
sims 2.0 generates diverse conformations. We use Cα rmsd to measure distances between
conformations to emphasize the changes in protein backbone.

3.3.1 Nearest Neighbor Distances

We first measure the closeness of the conformations from each other. This is done by tracking
the distance of each conformation to its nearest neighbor. This is a measure of how “spread out”
the conformations are from each other. If the conformations are all similar to its neighbor, then
the algorithm may not have produced a structurally diverse set of conformations. Another way
to interpret a small value using this measure is that neighboring conformations are more likely
to have been sampled next to each other (one conformation was perturbed to get the other).
So if the average nearest neighbor distance is higher for one method, then the average effect of
each perturbation was greater and hence, produce a more rapid exploration. From Fig. 7 we see
that sims 2.0 indeed produces conformations that are farther apart from each other compared
to “Naive sims.”
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Figure 7: Density of nearest neighbor distances (averaged over ten runs) for CVN (a), CaM
(b), RBP (c), MBP (d), and GroEL subunit (e). sims 2.0 produces more conformations that
are farther apart from each other.
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3.3.2 Expansiveness

We now measure the expansiveness of the conformational search. A more expansive search
means that farther parts of the conformational space are sampled given the same starting point.
Fig. 8 shows a density plot of the distances of each conformation from the start conformation.
The same start conformation was used for these experiments for a given protein. In addition
to producing more conformations, sims 2.0 also produces more conformations that are farther
from the start. Therefore, sims 2.0 produces a more expansive search than “Naive sims.”

3.3.3 Isolating each improvement

These results taken together show that sims 2.0 produces more diverse conformations with the
new methods compared to “Naive sims.” We now end this section by investigating which specific
method contributed most to the improved expansiveness. We focus the following experiments
on the GroEL subunit system. Results for the other proteins were qualitatively similar.

We first ran an experiment with sims 2.0, where the global coverage grid did not send
summarized coverage estimates when a sims run restarted. This run is similar to “Naive sims
” except with the new perturbation strategy. Fig. 9 shows the effect this had on expansiveness.
It appears that since no synchronization was occurring, the exploration was not as expansive
likely due to the increased amount of repeated work done amongst the cores.

Next we focus on the projection defined by B-factors. We ran two additional experiments.
The first is sims 2.0 using a random projection (randomProj ) (Gipson et al., 2013). The second
is sims 2.0 using a projection constructed from secondary structure (ssProj ) as mentioned in
(Novinskaya et al., 2017). The results in Fig. 9 imply that the projection definition is not vital to
the exploration. The exploration using a random projection only appears to be marginally worse
than one from sims 2.0. Additionally, the projection using secondary structure information
does not provide much improvement over the runs using a random projection. This is likely
due to the fact that we are using a linear, 2-dimensional projection to represent a complex,
high-dimensional conformational space. Thus, even though we use B-factors to incorporate
flexibility into the projection definition, this translates to a relatively small improvement in
how coverage is computed since the space is so simplified and much information is lost in the
projection operation.

Finally, we focus on the schema improvement. We ran an experiment with sims 2.0 using
a schema defined using only secondary structure information. The new schema appears to
contribute the greatest since the density curve with a Naive schema is most similar to the one
corresponding to “Naive sims ” even though the other improvements are included. The density
curve with a Naive schema also implies that the improvement in the number of conformations
produced was also due to the new schema, since the height of the density curve of Naive schema
is lower than the one from sims 2.0. This demonstrates how important the schema is to the
exploration because it essentially encodes how sims 2.0 explores the space.

3.4 Discussion

We have shown that with the addition of the global coverage grid and a perturbation strategy
enriched with flexibility information, sims 2.0 can more efficiently generate conformations that
are also distributed more diversely as compared to Naive sims. All of the comparisons done were
under the same computing budget, and the conformations generated were all under the same
energy threshold. These new methodologies present promising steps toward making robotics-
inspired conformational sampling better suited for larger proteins. While the example proteins
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Figure 8: Density of distances to start conformation (averaged over ten runs) for CVN (a),
CaM (b), RBP (c), MBP (d), and GroEL subunit (e). sims 2.0 produces more conformations
that are farther from the start conformation.
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Figure 9: Density of distances to start conformation (average over ten runs) for the GroEL
subunit. (TOP) woSync (blue) corresponds to the runs where the synchronization of coverage
statistics was turned off. Since the distribution shifted to the left, the exploration was less
expansive than sims 2.0. (MIDDLE) randomProj (green) corresponds to the runs where a ran-
dom projection was used. ssProj (purple) corresponds to the runs where secondary structure
information was used to construct the projection. Since the distributions barely shifted, the
definition of the projection does not appear to have much impact on the expansiveness. (BOT-
TOM) The new schema appears to have the greatest impact since the run that uses a schema
with only secondary structure information (Naive Schema, red) has a density curve that is most
similar to “Naive sims ” (old, gray).
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ranged from about 100 to 500 residues, additional work may be required for proteins that
are greater than 500 residues in length. Since our results show that the construction of the
perturbation strategy contributed most to the improvement in structural diversity, we may have
to adjust the parameters in the schema construction in order to handle even larger systems. For
example, the kinari results for RBP and MBP did not provide any significant decompositions
of the protein that the schema could exploit, and perhaps adjusting the parameters in the
kinari software could provide a better set of residue groupings. Our results also show that for
a given number of cores, sims 2.0 produces conformations at a faster rate than Naive sims. This
points to the additional benefit of adding flexibility information to the perturbation strategy.
Our experiments only went up to 16 cores to represent more modest computational resources
like a high-end desktop. However, more work is needed to characterize how sims 2.0 performs
in a large-scale setting with hundreds of cores.

4 Conclusion

Robotics-inspired approaches rely heavily on two critical decisions: where to focus sampling in
the conformational space and how to sample new conformations. As the protein size increases,
robotics-inspired methods that run across multiple cores become memory-intensive, coverage
estimation becomes more expensive to maintain, and the definition of a useful perturbation
strategy becomes difficult. In this paper, we introduced two methodologies to maintain and
enhance the diversity of conformations sampled and implemented these in sims. First, we
proposed to maintain a global coverage grid that eliminates the memory bottleneck for large
proteins and enables efficient conformational sampling across multiple cores. Next, we presented
a perturbation strategy using flexibility information from B-factors, secondary structure, and
rigidity analysis.

For sims, our results show a significant improvement in the diversity of the conformations
generated with our methods for proteins consisting of up to 500 residues. We also showed that
our methods increased the number of conformations generated at faster rate as the number
of cores increased. We demonstrated that the new perturbation strategy provided the most
dramatic change in diversity in terms of expansiveness (as measured in terms of distance from
the start conformation). Our methods solve both the memory problem associated with sims
as well as the coordination problem of sampling across multiple cores. Our new perturbation
strategy is also a practically free way to obtain informed moves that improve structural diversity
over a simple, naive strategy.

For future work, we plan to apply these ideas to other robotics-inspired conformational
sampling frameworks. The ideas introduced in Section 2.2 apply to robotics-inspired methods
that keep track of coverage, while the ideas in Section 2.3 apply more generally to robotics-
inspired methods. Also, we will work on improving SIMS 2.0 through a variety of directions. We
can combine our global coverage grid with other existing perturbation strategies. Furthermore,
we will also begin to investigate new ways to keep track of coverage. Our experiments showed
that the currently-used projection definition does not greatly affect the expansiveness of the
exploration so we have begun to look at non-linear projections. This work also showed that the
most significant improvement in terms of diversity came from the new perturbation strategy.
We will investigate the benefits of a dynamically changing perturbation strategy that perturbs
conformations differently as a function of the currently chosen conformation.
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Table 1: Number of Conformations Produced (averaged over 10 runs) for four different proteins.
Standard deviations shown in parentheses. As the number of cores increase, the new version of
sims produces conformations at a faster rate.

1 Core 4 Cores 16 Cores
sims 2.0 28294 (2203) 122067 (10903) 315989 (17105)

CVN Naive sims 10710 (1501) 43136 (3064) 176813 (6721)
Difference +17584 +78931 +139176
sims 2.0 25977 (2950) 106321 (9415) 272604 (6154)

CaM Naive sims 6822 (789) 27383 (1314) 111247 (4348)
Difference +19155 +78938 +161357
sims 2.0 13078 (1385) 50693 (1689) 164588 (6032)

RBP Naive sims 2183 (177) 8729 (803) 32125 (1024)
Difference +10895 +41964 +132463
sims 2.0 4721 (194) 19483 (2836) 60921 (6846)

MBP Naive sims 997 (74) 4747 (1891) 14699 (2016)
Difference +3724 +14736 +46222
sims 2.0 3026 (162) 11120 (623) 38763 (2729)

GroEL Subunit Naive sims 850 (39) 3495 (223) 13739 (392)
Difference +2176 +7625 +25024
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