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Abstract: Understanding the mechanisms involved in the activation of an immune response is essential to many fields in
human health, including vaccine development and personalized cancer immunotherapy. A central step in the activation of
the adaptive immune response is the recognition, by T-cell lymphocytes, of peptides displayed by a special type of receptor
known as Major Histocompatibility Complex (MHC). Considering the key role of MHC receptors in T-cell activation, the
computational prediction of peptide binding to MHC has been an important goal for many immunological applications.
Sequence-based methods have become the gold standard for peptide-MHC binding affinity prediction, but structure-based
methods are expected to provide more general predictions (i.e., predictions applicable to all types of MHC receptors).
In addition, structural modeling of peptide-MHC complexes has the potential to uncover yet unknown drivers of T-cell
activation, thus allowing for the development of better and safer therapies. In this review, we discuss the use of computational
methods for the structural modeling of peptide-MHC complexes (i.e., binding mode prediction) and for the structure-based
prediction of binding affinity.

1. INTRODUCTION
Although often imagined as a defense system waiting for

an infection, our immune system is also constantly engaged in
surveillance and maintenance of a complex microbiome (1, 2).
While effective responses must be triggered against cancer cells
and dangerous bacteria, harmful responses against healthy cells
and gut bacteria must be avoided (3). Other potentially harm-
ful impacts of immune responses that are undesirable include
autoimmune reactions (4), as well as reactions to therapeutic
products (5, 6) or tissue transplantation (7). For all these rea-
sons, the ability to predict what triggers an immune response is
of great biomedical interest.

The ability of a given substance to trigger an immune re-
sponse is referred to as immunogenicity (6, 8). In a broader
sense, immunogenicity refers to the activation of both sides of
adaptive immunity: cellular response (mediated by cytotoxic
cells) and humoral response (mediated by antibodies). The ac-
tivation of T-cells is a decisive step in both cases (8, 9), and it
will also be referred to as immunogenicity here. T-cells are a
special type of lymphocyte that undergo a complex maturation
and selection process, which makes them capable of recogniz-
ing “non-self” peptides (10). Note that we are referring to T-
cells in general; different subtypes of T-cells are involved on
each side of adaptive immunity (Fig. 1).

T-cells only recognize peptides displayed by Major Histo-

*Address correspondence to these authors at the Computer Science De-
partment, Rice University, Houston, Texas, USA; E-mail: dinler@rice.edu,
kavraki@rice.edu

compatibility Complex (MHC) receptors (8, 11). Specifically,
the T-cell receptors (TCRs) of cytotoxic T-cells can only rec-
ognize peptides displayed by class I MHC receptors (MHC-I),
while the TCRs of helper T-cells can only recognize peptides
displayed by class II MHC receptors (MHC-II) (Fig. 1). Given
their central role in both types of responses, MHC receptors
have long been the focus of many studies in computational bi-
ology (12–16).

Binding to MHC receptors is a prerequisite for peptide im-
munogenicity (9, 17, 18). In turn, immunogenic peptides
are needed for peptide-based vaccine design and cancer im-
munotherapy. Additional information on this topic can be found
in reviews on epitope discovery (19, 20) and reverse vaccinol-
ogy (21, 22). In this context, sequence motifs (14) and scor-
ing matrices (23, 24) were among the first computational meth-
ods used to perform sequence-based binding affinity prediction.
They were quickly overpowered by statistical learning algo-
rithms (25–27), which remain the gold standard in the field (28–
30).

Despite their unquestionable usefulness, sequence-based
methods have known limitations. For instance, statistical learn-
ing methods require an experimental dataset for training, and
predictions can be biased by the composition of this training
dataset (22, 31). Therefore, predictions for MHC variants (i.e.,
allotypes) with larger datasets available for training tend to be
more reliable than predictions for less studied allotypes. These
gaps in the training data can be a limitation for some of the
most interesting medical applications, such as personalized can-
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Figure 1. Schematic view of the role of MHCs in T-cell activation.
Class I Major Histocompatibility Complexes (MHC-I) are present in
almost every cell and involved in the surface presentation of pep-
tides derived from intracellular proteins. On the other hand, class
II MHCs are present only in “professional” antigen-presenting cells
(phagocytes) and involved in the surface presentation of peptides de-
rived from extracellular proteins. The recognition of displayed peptide-
MHC complexes by the T-cell receptor (TCR) triggers T-cell activa-
tion, clonal expansion and immunological memory. While cytotoxic
T-cells (CD8+) mediate cellular immunity, helper T-cells (CD4+) con-
trol the humoral response and have other regulatory roles. CD stands
for cluster of differentiation.

cer immunotherapy. One of the goals in cancer immunotherapy
is to find tumor-derived peptides that can bind to the MHC-I re-
ceptors of the patient, flagging cancer cells for destruction by
the patient’s own immune system (32, 33). The MHC-I genes,
however, are the most variable genes in the human genome. In
humans, the three “classical” MHC-I genes are referred to as
human leukocyte antigens (HLA-A, HLA-B and HLA-C), and
combined together encode nearly 10,000 allotypes. Most of
these MHC-I allotypes have very low prevalence in the popu-
lation, and have limited or no experimental data available for
training statistical learning methods. In spite of that, more re-
cent sequence-based methods have aimed for generalizations
based on available data (30).

An alternative approach, that is expected to be more general,
is underpinned by structure-based methods (22). As discussed
in pioneer studies in the 90’s (12, 34, 35), structure-based pre-
diction relies on the biochemical properties of the amino acids
involved in the peptide-MHC (pMHC) interaction, and do not
require allotype-specific training datasets (22). In addition, ac-
cess to structural information about pMHC complexes can be
used to explore many other questions that cannot be addressed
by sequence analysis alone. For instance, it can be used to ana-
lyze the impact of post-translational amino acid modifications,

such as phosphorylation (36), citrullination (37), and glycosy-
lation (38), which are known to affect both the binding affinity
and immunogenicity of MHC-binding peptides. It can also be
used to detail the structural basis of TCR/pMHC interactions,
which can guide the production of alternative peptide ligands
(39), allow for TCR-engineering (40), and even explain danger-
ous side-effects of T-cell-based immunotherapy (41, 42).

Three-dimensional structural data, however, is harder to ob-
tain and process than sequential data. First, experimental meth-
ods for determining the structure of protein-ligand complexes
are too expensive and time-consuming to be considered in the
context of personalized medicine. Therefore, computational
methods for structural prediction (or molecular modeling) are
a prerequisite for conducting personalized structure-based anal-
yses. However, the size and flexibility of the ligands involved
make pMHC modeling and structure-based binding affinity pre-
diction a challenging problem from a computational perspective
(43).

To overcome these challenges and perform structural anal-
yses in an efficient way, the solution has been to rely on ad-
hoc constraints based on expert knowledge or available exper-
imental data (12, 22, 43). Unfortunately, this has been done
at the expense of the so-desired generality. In this review, we
report previously proposed strategies for the efficient model-
ing of pMHC complexes (i.e., binding mode prediction) and for
structure-based binding affinity prediction. We also discuss the
main assumptions and trade-offs of the different approaches,
and how the recent advances in high performance computing
might finally allow for general and reliable methods.

2. SAMPLING, SCORING AND SCREENING
Molecular modeling has been an active field in computational

chemistry since the 60’s (44), producing several approaches for
structural prediction, analysis, and refinement (45, 46). A par-
ticular domain of molecular modeling relates to the prediction
of the bound structure of protein-ligand complexes; a problem
usually addressed with computational methods known as molec-
ular docking tools (47–50). There are two main applications
of molecular docking: binding mode prediction, also known as
geometry optimization, and virtual screening (51, 52). The first
application focuses on accurately predicting the 3D conforma-
tion of the ligand, upon binding to the target receptor. The sec-
ond one focuses on checking a large number of potential ligands
and selecting the ones that can bind to the target receptor.

Both applications share a central challenge: accounting for
ligand flexibility. The greater the number of flexible bonds in a
ligand, the greater the number of “shapes” (i.e., conformations)
it can adopt. To determine the best possible binding mode, a
docking method must consider these alternative conformations,
in addition to the position and orientation of the ligand inside
the receptor’s binding cleft. This search process is referred to as
sampling (48).
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As discussed in previous publications, sampling algorithms
can be divided into three general categories: shape matching,
systematic search and stochastic search (48, 53, 54). Briefly,
matching algorithms perform geometric-based evaluations on
how much the shape of the ligand fits the shape of the recep-
tor’s binding cleft (47), often using a graph-based representa-
tion of the ligand’s structure (47, 55). These methods are usu-
ally applied to perform a fast exploration of the ligand’s rota-
tional and translational degrees of freedom, without exploring
its conformational flexibility (which is known as rigid docking)
(55). On the other hand, systematic search algorithms explore
all the degrees of freedom of the ligand (e.g., through exhaus-
tive search, fragment-based search, or conformational ensem-
ble search) (48, 53, 54). These methods are much more accu-
rate than matching algorithms, but their computational cost pre-
vents them from being used for larger ligands. Finally, stochas-
tic search algorithms randomly explore the degrees of freedom
of the ligand, using different heuristics to guide the exploration
(e.g., Monte Carlo, genetic algorithms, tabu search or swarm
optimization) (48, 53). As further discussed in the following
sections, the size and flexibility of MHC-binding peptides rep-
resents a challenge that could not be efficiently handled even
by stochastic algorithms, thus requiring additional strategies to
make the sampling problem computationally tractable.

Regardless of the sampling method, some kind of ranking of
the sampled conformations is needed to guide the sampling and
select the best binding mode. This ranking is based on a “qual-
ity” assessment of the ligand conformations, which is referred
to as scoring. Note that the scores used to rank conformations
do not necessarily correspond to accurate binding affinity es-
timates. In fact, as the number of evaluated poses can be ex-
tremely large, scoring functions usually favor computational ef-
ficiency over accuracy (56). To achieve that, numerous scoring
methods depart from explicitly calculating all relevant interac-
tions between ligand and receptor at the atomic level.

Besides allowing for the assessment and comparison of dif-
ferent conformations of a given ligand to a given protein, a scor-
ing method can also be used for screening (i.e., to assess how
strongly different ligands might bind to a given protein). First,
scoring methods can help distinguish between ligands that bind
and ligands that do not bind the protein, in a purely qualitative
manner. This requires performing a binary classification to sep-
arate so-called binders from non-binders, based on their respec-
tive scores. In this case, ligand scores do not have to correspond
to actual binding affinities, as only relative differences between
these scores are evaluated. Second, when using scoring meth-
ods that are biophysically accurate, one can quantitatively pre-
dict actual binding affinities. The capability of a scoring method
to do that is usually assessed by evaluating the correlation be-
tween these predicted binding affinities and experimental bind-
ing affinities, and not by evaluating whether they match exactly.
The differences between the qualitative and quantitative appli-

cations of scoring functions are clearly illustrated in Figure 3
of (57).

Note that the main assumption underlying a docking-based
binding affinity prediction is that the binding free energy of the
complex can be approximated by the minimum internal energy
of the system (58). In turn, the internal energy of the system
is estimated by the scoring function, for each sampled confor-
mation of the complex. Therefore, the accuracy of the binding
affinity predicted by a molecular docking tool depends on the
quality of both the sampling and the scoring. First, the sam-
pling algorithm have to succeed in generating a conformation
of the complex that presents the native set of stable interactions
between ligand and receptor. Then, these key interactions must
be identified by the scoring function, and properly summarized
into an approximated binding affinity. In other words, insuffi-
cient sampling can hinder the docking prediction as much as an
inaccurate scoring function. Insufficient sampling becomes an
even greater issue in the case of highly-flexible ligands or flex-
ible binding sites, since the search space becomes even larger
and there is less confidence that the best values of the scoring
function can be reached. It is also important to note that these
components (i.e., sampling and scoring) and applications of
structural prediction methods (i.e., geometry optimization and
virtual screening) can be explored separately, or in a combined
manner. In the context of docking-based virtual screening, for
instance, a given scoring function can be used to (i) rank differ-
ent conformations of each ligand to guide the sampling, (ii) rank
different ligands to identify strong binders, and (iii) estimate the
binding affinity of selected ligands. Here, we will discuss how
each one of these components/applications was explored in the
context of pMHC structural analysis.

3. COMPUTATIONAL METHODS FOR
BINDING MODE PREDICTION
In this section we review publications focused on describing

and validating methods for accurate binding mode prediction of
pMHC complexes. Note that many additional publications re-
port ad-hoc approaches to predict the structure of pMHC com-
plexes as part of larger pipelines for epitope discovery or ratio-
nal vaccine design (59–63), without focusing on accurate and
reproducible binding mode prediction.

3.1. Evaluation of sampling methods

The two standard experiments for validating a docking
method are self-docking and cross-docking (Fig. 2). Both meth-
ods rely on the use of experimentally-determined crystal struc-
tures of known complexes as controls. The accuracy of the
method can be measured through the deviation (i.e., the “er-
ror”) between the predicted binding mode and the correspond-
ing crystal structure. This error is usually assessed by calculat-
ing the Root Mean Square Deviation (RMSD) for the peptide
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only. An all-atom RMSD below 2 Å is classically considered a
successful reproduction of the native binding mode (64, 65).

Figure 2. Validation experiments for binding mode prediction.
Self-docking, also known as re-docking, focuses solely on sampling
the ligand. For each target complex, the structures of the ligand and
of the receptor are separated, the conformation of the ligand is ran-
domized, and the method under evaluation is used to predict the best
binding mode of the ligand to the receptor from the same (self) co-
crystallization. On the other hand, cross-docking consists of predicting
the binding mode of the ligand to a different conformation of the re-
ceptor (e.g., a model or a structure from a different co-crystallization).
Therefore, cross-docking usually requires some type of relaxation or
sampling of the receptor, in addition to that of the ligand.

3.2. Common strategies to make sampling tractable

Binding mode prediction for pMHC complexes is more chal-
lenging than most docking problems in drug discovery. In-
deed, most drug-like ligands have less than 10 flexible bonds,
while MHC-binding peptides usually have more than 30 flexible
bonds (even more than 50 for MHC-II). Interestingly, data from
the first crystal structures of pMHC-I complexes suggested the
existence of conserved structural patterns (12, 17), which were
imposed by structural constraints in the binding cleft (Fig. 3).
Aiming at leveraging these structural constraints and limiting
the computational cost of sampling, three strategies have been
devised to predict the binding modes of pMHC complexes: con-
strained backbone prediction, constrained termini prediction,
and incremental prediction (Table 1).

3.2.1. Constrained backbone prediction

The binding cleft of MHC-I receptors is “closed” at both ends
(Fig. 3A and 3C), with deeper “pockets” allowing for key inter-
actions with the “anchor” residues of peptides. Analysis of the
first pMHC-I crystal structures suggested a conserved confor-
mation of the peptide’s backbone, despite the diversity of amino
acid sequences (i.e., the diversity of side chains) (34, 70). These
observations justified the use of a backbone template that is kept
rigid or constrained during docking (Table 1). Although a back-
bone template simplifies the problem, the same template cannot
be used for MHC-I and MHC-II (Fig. 3), or even for different

Figure 3. Molecular structures of class I and class II MHCs. Molec-
ular representation of a class I MHC (A, C) and a class II MHC (B,
D). The upper panel shows a top view, while the bottom panel shows
a cross section side-view of the binding clefts. Note that the binding
cleft of a class I receptor is deeper, with “closed” extremities, while the
class II cleft is shallower, with open extremities. The pockets involved
in binding primary “anchor” residues are indicated. Together, struc-
tural differences in the shape of the cleft and the location of binding
pockets have an impact on the overall conformation of bound ligands
(e.g., peptides tend to adopt bulged conformations when bound to class
I, and more linear conformations when bound to class II). Crystal struc-
tures of both complexes were downloaded from the PDB and superim-
posed to be in the same orientation. Class I complex: HLA-A*01:01
receptor presenting a tumor-derived 9-mer peptide (PDB code 5BRZ).
Class II complex: HLA-DRB1*01:01 receptor presenting a 14-mer
bacteria-derived peptide (PDB code 1KLU). Receptor chains α and
β (or β2-microglobulin) are depicted in surface, while peptide ligands
are depicted in surface (A, B) or ball-and-sticks (C, D). Graphics were
obtained with UCSF ChimeraX (66).

MHC allotypes. The conformation of the peptide’s backbone is
impacted by the composition of the different pockets inside the
binding cleft, and the presence of alternative anchor residues.
In addition, different templates are required for peptides of dif-
ferent lengths binding to a given MHC allotype (34, 70).

In this context, the work in (17) proposed using a library of
crystallographic templates. They utilized the backbone of both
the peptide and the MHC as a template, filling in the side-chains
of the target sequence using rotamer libraries and the MOIL
package (101). The method of utilizing a “clean” backbone
to which desired side-chains are added is known as threading
(102). Note that the term threading is also used to refer to an-
other molecular modeling method, applied by tools such as I-
TASSER (103). Despite promising results on the prediction of
the buried side chains of the peptide, they noticed that a gen-
eral rotamer library from PDB-deposited structures did not in-
clude some side-chain conformations observed in pMHC crys-
tal structures (17). Therefore, the generality and accuracy of
their predictions was to some extent limited by the small dataset
of available pMHC crystal structures.
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The growing number of pMHC crystal structures continued
to reveal additional backbone variation. To try and reduce bi-
ases introduced by the template, other methods added steps of
backbone sampling or refinement to the docking process. For
instance, the work in (71) proposed pDOCK. This method com-
bines homology modeling of the MHC receptor, positioning of
the peptide based on crystal structures, and refinement of the
binding site residues using the Internal Coordinate Mechanics
(ICM) docking algorithm (104) and a biased Monte Carlo pro-
cedure. pDOCK was validated in a self-docking experiment
with 186 pMHC complexes (149 MHC-I and 37 MHC-II), re-
porting average backbone-atom RMSDs of only 0.32 Å (com-
puted for the 9-mer “core” residues). The accuracy of pDOCK
in terms of all-atom RMSD was not reported.

Another method using a backbone template was proposed in
(73). This approach was based on the Rosetta FlexPepDock re-
finement protocol (105) and validated through a series of cross-
docking experiments using 30 selected crystal structures. Inter-
estingly, the authors report good results even when the template
is known to come from a peptide bound to a different MHC al-
lotype (best all-atom RMSD of 1.8 Å among the top 5 ranking
conformations). However, the selected dataset was limited to
9-mers bound to MHC-I, and presented small backbone RMSD
differences between template and target (the largest difference
being 1.35 Å).

Most of these methods were not made available as software or
webserver, which might have limited their use by other groups.
The first webserver for the structural prediction of pMHC com-
plexes was MHCSim (68). MHCSim relied on sequence align-
ment to find the closest template from a curated dataset of crys-
tal structures, and side chains were mutated on both ligand
and receptor. Rather than providing binding mode prediction,
the goal of MHCSim is to generate initial pMHC structures
for molecular dynamics (MD) simulations. More recently, the
DockTope webserver was proposed in (65) (soon to be available
at tools.iedb.org/docktope). DockTope relies on a template-
based docking with AutoDock Vina (106), and a refinement
loop involving energy minimization followed by a new round
of docking (65, 70). DockTope was validated through the cross-
docking of 135 non-redundant pMHC-I structures, reporting an
average all-atom RMSD of only 1.96 Å. These results present
DockTope as a valuable tool for the geometry optimization of
pMHC-I complexes. Unfortunately, it only provides predictions
for key allotypes for which conserved backbone conformations
of the peptide have been observed.

3.2.2. Constrained termini prediction

An alternative assumption that is potentially more general, is
that the locations of termini residues are more conserved than
the conformation of the backbone (12). Depending on their
implementation, “constrained termini” approaches can gener-
alize across MHC-I allotypes because MHC-I binding clefts all

have approximately the same length, and termini residues will
be constrained by the same pockets. That was the rationale be-
hind the pioneer studies in (34) and (35). The work in (35) pro-
posed a modeling method involving a multiple-copy algorithm
(107) to dock the termini residues, followed by a loop closure
algorithm to fill the middle residues (108). This general strategy
was further explored and perfected by others (69, 75–78).

The most recent implementation of the “constrained termini”
strategy is GradDock (79). GradDock combines a fast peptide
binding simulator with a Rosetta-based ranking function specif-
ically designed for pMHC-I, and it is available for download
(bel.kaist.ac.kr/research/GradDock). This method was tested
through both self-docking (107 complexes) and cross-docking
(70 complexes), providing impressive results (average all-atom
RMSD around 2.5 Å). GradDock results suggest that fast virtual
screening of pMHC complexes might be possible, and that the
conserved termini assumption might be general enough to pro-
vide predictions across MHC-I allotypes. On the other hand,
the greater all-atom RMSD observed in some cases suggest this
might not be the best tool for geometry optimization.

The authors of GradDock also discuss the limitations im-
posed by the constrained termini strategy, having excluded from
their analysis known cases of alternative binding modes. A
notable example is that of a melanoma-derived 9-mer pep-
tide bound to a highly prevalent human MHC (HLA-A*02:01),
which uses an alternative anchor and has an unusual backbone
conformation (PDB code 2GTW). Being an exception to ob-
served patterns, this complex cannot be predicted by methods
relying on constrained termini or constrained backbone strate-
gies (65, 79). Since experimental data on alternative binding
modes is still limited, especially considering the diversity of
MHC allotypes, it is difficult to evaluate the actual impact of
imposing such constraints.

3.2.3. Incremental prediction

As considering the entire conformational space of the peptide
was impractical without constraints, another proposed strategy
focused on incrementally exploring the flexibility of the ligand
(e.g., one residue at a time). A fragment-based docking strat-
egy was first proposed by (80) using the package CONGEN
(109) and a similar approach was proposed by (81), using the
BRUGEL package (110). This incremental strategy was later
revisited with the publication of DynaPred (82). Instead of us-
ing a docking tool, DynaPred relies on a short MD simulation to
sample each peptide residue inside the binding cleft. DynaPred
uses a backbone template from crystal structures to help posi-
tion amino acids in the binding cleft, but allows for the flexibil-
ity of this backbone during the simulation. Conformations from
independent residues are then “stitched” together, and a mini-
mization protocol is used to generate the final conformation.

More recently, the work in (43) proposed the use of an in-
cremental meta-docking approach called DINC. DINC is not
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a traditional fragment-based docking tool (111), and does not
explore the residues independently. Instead, DINC involves
incrementally docking overlapping fragments with a growing
number of atoms, while maintaining the number of flexible
bonds constant during this incremental process (43, 111, 112).
DINC handles the fragment expansion and the parallelization
of the search, while relying on a regular docking tool, such as
AutoDock4 (113), to perform the sampling. DINC was devel-
oped as a general tool for docking large ligands, and is avail-
able as a webserver (http://dinc.kavrakilab.org/). In the context
of pMHC structural prediction, a customized version of DINC
was tested through self-docking of a diverse set of known struc-
tures. Despite being a small dataset (25 structures), it included
very different binding modes (e.g., 10 different human MHC-I
allotypes and peptides of different lengths), and very challeng-
ing complexes (e.g., the unusual conformation under PDB code
2GTW). The reported average all-atom RMSD was 1.92 Å, and
the results were presented as a proof-of-concept for a prediction
method that could generalize across MHC-I allotypes. How-
ever, broader benchmarking of DINC is needed to evaluate its
performance and accuracy across known MHC-I and MHC-II
allotypes.

3.3. Additional challenges for modeling pMHC-II
complexes

Although some of the aforementioned methods were applied
to both classes of MHCs, MHC-II complexes represent a more
challenging problem for computational modeling. MHC-I and
MHC-II receptors have analogous functions and share general
structural features, such as having a peptide-binding cleft lim-
ited by two parallel α-helices and a floor of β-sheets. A closer
look, however, reveals key structural differences (Fig. 3). For
instance, while the MHC-I cleft is “closed” at both ends and
the peptides are forced to adopt a bulged conformation to fit in,
the MHC-II cleft is shallower and allows longer peptides to go
beyond both ends of the cleft (Fig. 3B and 3D). As a conse-
quence, a given MHC-II allotype can bind to different portions
of the same peptide (i.e., have different binding registers) (114).
The portion of the peptide binding to the MHC-II is usually 9
amino acids long (84), but MHC-II receptors can bind peptides
with up to 25 amino acids (76).

Longer peptides have a greater number of possible registers,
but not all possible registers can bind. Similar to MHC-I re-
ceptors, there are key “pockets” that are primarily responsi-
ble for the binding of “anchor” peptide residues (Fig. 3D).
In MHC-II receptors, pockets 1, 4, 6 and 9 appear to be the
most crucial determinants for binding (115, 116). These pock-
ets are hydrophobic cavities that favor hydrophobic side chains
(116, 117). Nonetheless, the structural prediction of pMHC-
II complexes is a challenging task because it entails simulta-
neously predicting the binding register and the corresponding
binding mode (69, 114).

Another peculiarity is that MHC-II receptors are hetero-
dimers formed by two analogous chains (α and β), each one
encoded by a different gene. Despite not having as many al-
lotypes as MHC-I genes, the binding cleft of MHC-II receptors
can be formed by the combination of α and β chains from differ-
ent genes, which increases the diversity of MHC-II receptors at
the cell surface, each one with slightly different peptide-binding
requirements.

Despite these additional levels of diversity, the existence of
termini anchor residues and the more linear conformation of the
core 9-mer allowed for some of the aforementioned modeling
methods to be applied to pMHC-II complexes. Most notably,
the validation datasets used by (71) and (76) included MHC-
II allotypes. In both cases, the validation was focused on the
accuracy of the backbone prediction for the binding core (Ta-
ble 1). Finally, (69) has discussed the potential generality of
a docking-based binding mode prediction method for pMHC-
II complexes, reporting very good results in both self-docking
and cross-docking experiments (with 9-mer core mean all-atom
RMSD of 0.73 Åand 1.37 Å, respectively).

4. COMPUTATIONAL METHODS FOR
BINDING AFFINITY PREDICTION
In this section we review methods previously applied for

structure-based binding affinity prediction for pMHC com-
plexes. We discuss the differences between methods for qualita-
tive ranking/classification, and methods for quantitative binding
affinity prediction.

4.1. Qualitative ranking and ligand classification

Scoring methods used to guide sampling (i.e., rank confor-
mations) are very general in nature: they are usually developed
to score any protein-ligand complex. However, in order to im-
prove accuracy, some scoring methods are intended for specific
groups of ligands and receptors. For instance, a scoring method
can be specific to peptides (as opposed to drug-like ligands), or
designed specifically for pMHC complexes (Table 2).

4.1.1. Scoring functions for protein–peptide docking

Most protein–peptide docking tools involve energy-based
scoring functions. These scoring functions have been previ-
ously classified into three main categories: Empirical, semi-
empirical and knowledge-based (56).

Empirical scoring functions are inspired by the quantum me-
chanics / molecular mechanics (QM/MM) formalism, which al-
lows calculating potential energies (118, 119). Such calculation
relies on the definition of a force field as a sum of energy terms
corresponding to both covalent and non-covalent interactions
within and between molecules. Typical energy terms evaluate
the bond stretching, angle bending and torsional angles of co-
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valent interactions, as well as Van der Waals and electrostatic
contributions of non-covalent interactions (120). Some studies
have shown that the most important term is often the electro-
static one (121). Empirical scoring functions have long been in-
volved in popular docking tools, such as AutoDock, Glide and
DOCK, as well as many others (122, 123). To achieve compu-
tational efficiency, energy terms assessing atomic interactions
can be replaced by terms derived from coarse-grained poten-
tials, such as the Go potential, that evaluate interactions between
large pseudo-atoms representing entire amino acids (124). Also
for the sake of computational efficiency, rather than considering
explicit water molecules, one can implicitly evaluate solvent ef-
fects by using Poisson–Boltzmann surface area (PBSA) or gen-
eralized Born surface area (GBSA) energy terms (121). By
adding an energy term evaluating entropic effects, for example
using empirical conformational energy analysis (CFEA) (125)
or normal mode analysis (NMA) (121), a force field allows cal-
culating free energies. One can also directly calculate free en-
ergies by using free energy perturbation techniques (126).

Semi-empirical scoring functions differ from purely empiri-
cal scoring functions in that they do not attempt to include all
physical interactions of protein–peptide poses or to recapitulate
biophysically-relevant energies (56). Nonetheless, they include
biophysically-plausible energy terms that correspond to phys-
ical properties describing the protein–peptide interface. The
physical properties that are typically considered correspond to
non-covalent interactions between peptides and proteins, such
as hydrogen bonds, electrostatic and van der Waal interactions,
hydrophobic interactions (127), as well as solvation (128, 129)
and entropic effects. These energy terms are then added to-
gether with multiplicative weights assigned to them. These
weights are usually tuned to optimize binding affinity predic-
tions given a dataset of protein-ligand complexes with known
structure (130). Classical examples of semi-empirical scoring
functions are ChemScore and X-score, but others have been de-
veloped (122, 131).

Knowledge-based scoring functions calculate pseudo-
energies that are not biophysically meaningful, but that reflect
the likelihood for protein–peptide interface properties to be
native or native-like (56). These functions are trained (i.e.,
calibrated) by performing a statistical analysis on available
structural data contained in reported protein–peptide com-
plexes (131). More precisely, an interaction potential is
calculated by implicitly estimating the change in energy associ-
ated with a change in the distance between atoms of a specific
type in a peptide and atoms of a specific type in a protein (123).
Examples of popular knowledge-based scoring functions
are DrugScore, PMF-score and SMoG (130). Note that this
methodology can also be applied in a coarse-grained fashion,
by considering distances between pairs of residues. Recently,
going away from the classical linear regression approach, new
scoring functions have been proposed, using a machine-learning

approach based on nonlinear regression (132).
Instead of using scoring functions that are only based on en-

ergy calculations, attempts have been made to enhance them
with additional information, such as co-evolutionary or muta-
genesis data (133). Other approaches complement the energetic
analyses with structural clustering or sequence-based predic-
tions. In addition, it has often been observed that combining
several scoring functions can improve their accuracy (134).

4.1.2. Ranking of pMHC binding modes

For sake of simplicity, we will treat the ranking of conforma-
tions during sampling as being merely qualitative, and we will
discuss quantitative binding affinity prediction of pMHC com-
plexes in a separate section. One of the early approaches used to
guide sampling of pMHC complexes was based on empirically-
derived residue-contact matrices (83, 127, 135–137). These ma-
trices, also known as statistical-pair potentials, encode how fa-
vorable the interaction is between two given residues (138, 139).
In (127), it was found that the so-called MJ matrix (138) only
worked for MHC allotypes with hydrophobic binding pockets.
Therefore, in follow-up studies (83, 127), the parameters of
the newer BT matrix (139) were tuned to improve performance
across all allotypes. Through a webserver (137), one can use
these matrices or one’s own scoring potentials.

FRESNO (75, 140) was one of the first scoring functions
specifically developed for pMHC complexes. This scoring
function accounts for hydrogen bonding, lipophilic interactions,
rotational entropy loss, buried polar-apolar contacts, and de-
solvation energies. FRESNO initially allowed making accu-
rate predictions for the HLA-A*02:01 allotype. It was then re-
implemented with open-source software (86), and its weights
were re-calculated, using a more diverse training set including
class II HLAs. This allowed making accurate predictions for
the class II HLA-DR15 allotype.

Some studies have used statistical learning methods to opti-
mize the weights of the scoring functions considering specific
subsets of complexes (e.g., pMHC-II structures) (69, 78, 141,
142), or to predict the correct register of MHC-II-binders (69).
For instance, the scoring function used in GradDock was opti-
mized to guide the sampling of pMHC-I complexes (79). The
authors improved a scoring function from the popular model-
ing library Rosetta, testing different combinations of terms and
weight values while performing self-docking and cross-docking
experiments.

4.1.3. Peptide classification (binders vs non-binders)

Structure-based methods have also been used to classify pep-
tides into binders vs non-binders, considering specific MHC al-
lotypes. For instance, the work in (84) reports high predictive
power for HLA-DRB1*0402 and HLA-DQB1*0503, while the
study in (85) reports an AUC of 0.9 for HLA-DQ3.2β. In an-
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other study, AUC values in the range 0.632–0.821 are reported
for MHC-II receptors (69).

In (143), AutoDock4 was used to predict the binding of every
possible peptide from a given protein sequence. Despite using
several approximations, the authors reported that a known im-
munogenic peptide had good rank (i.e., high predicted affinity).
The work in (89) used docking to derive qualitative matrices to
predict binding across 12 HLA-DRB1 proteins. Docking scores
were normalized to assess the contribution of each amino acid in
each pocket. A server was built that enables predictions across
several HLA class II allotypes (144).

In (88), a search was performed on the space of sequences as
well as conformations of the peptide. Using the Rosetta scoring
function (145), several thousand simulations were performed
for a given allotype, and the final peptide sequences across
all simulations were pooled into a single position-specific fre-
quency matrix (PFMs). Their computed PFMs showed impres-
sive similarity to experimentally-derived PFMs across seven
different HLA-As and twelve HLA-Bs (88).

Another interesting way to predict MHC-binders involves a
search for the peptide sequence minimizing affinity for a given
scoring function. In (87), the PeptX framework is based on a
genetic algorithm that explores the space of peptides for a se-
quence that binds the strongest to HLA-A*02:01. The fitness
of a particular peptide sequence was evaluated using different
scoring functions, including a variety of sequence-based meth-
ods and a structure-based scoring function, X-score (142). They
found that different fitness definitions produced distinct prefer-
ences in the peptides predicted to bind, but common peptides
were indeed found to bind experimentally (87).

4.2. Quantitative binding affinity prediction

Going beyond qualitative ranking of conformations and clas-
sification of binders vs non-binders, some methods aim at pre-
dicting realistic values of binding affinity. Two approaches for
quantitative binding affinity prediction are discussed here (Ta-
ble 2). First, we describe data-driven methods to derive binding
affinity from a single pMHC conformation. Then, we describe
simulation-based methods to derive binding affinity from an en-
semble of conformations.

4.2.1. Data-driven predictions

Statistical learning methods mentioned in previous sections
were applied to learn the weights of a given scoring function.
In this section, statistical learning methods are used to predict
binding affinities directly from structural features.

The two defining characteristics of data-driven methods are
the representation of the dataset (through features or descrip-
tors) and the type of statistical learning model. First, differ-
ent types of structural features have been investigated: residue-
residue contacts (91, 92, 94), general physical-chemical de-

scriptors (90, 93, 146), energy terms from semi-empirical scor-
ing functions (78), and features derived from molecular dy-
namics simulations (82). Second, several statistical learning
models have been used: partial least squares (90, 91, 93), sup-
port vector machines (78, 82, 146), and random forests (94).
All these methods report high prediction accuracies for their
datasets which consist of one or several MHC allotypes.

A more recent structural data-driven approach is the method
HLaffy (95). A statistical pair potential was constructed us-
ing the frequency of residue contacts present in the modeled
structures of known binders. When the input is a sequence that
was not explicitly modeled, a linear optimization problem al-
lows maximizing the constructed statistical pair potential. Fi-
nally, a Gaussian process regression scheme is used to go from
interaction profiles (encoded by the statistical pair potential) to
predicted binding affinity values. HLaffy had an average pre-
diction accuracy of 82.5% using 5-fold cross-validation.

Note that the limitations of statistical learning methods for
sequence-based predictions, mentioned in section 1, also apply
to structure-based data-driven predictions. In fact, biases are
even greater given the small number of available pMHC struc-
tures. Despite the existence of nearly 10,000 MHC allotypes in
humans, there are less than 650 pHLA structures in the PDB.
In addition, more than one third of these structures relate to the
same HLA allotype (HLA-A*02:01). Therefore, a scoring func-
tion using weights learned from all available pHLA structures
would certainly overfit HLA-A*02:01, while lacking training
on most other allotypes.

4.2.2. Simulation-based predictions

Other methods for binding affinity prediction are based on
simulations, such as MD and Monte Carlo. MD simulations
track the time evolution of a molecular system using a potential
energy function, also known as a force field. MD-based meth-
ods hold a lot of promise in that they are completely model-
based and do not require any experimental data for training.
However, they are the most demanding computationally, and
as such have most often been used to analyze important con-
tacts in pMHC complexes with known affinity/immunogenicity
(141, 147–154). We direct the interested reader to a dedicated
review on the use of MD for pMHC systems (155). Here we
highlight some recent work not covered in that review.

By far, the most extensive use of MD for computing pMHC
binding affinities has been through the protocol named ES-
MACS: enhanced sampling of molecular dynamics with the ap-
proximation of continuum solvent (99). This technique relies
on calculating free energy with the MM/PB(GB)SA method,
which was mentioned in section 4.1.1 (156). The free energy of
binding is computed as the free energy of the complex minus the
free energies of the peptide and receptor (121). Typically, these
free energies are derived from conformations sampled from a
single MD simulation of the whole complex. This is in contrast
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with the so-called 3-trajectory variant, where the free energies
are derived from three separate simulations: for the complex,
the protein alone, and the peptide alone. Not performing the 3-
trajectory variant means assuming that using the conformations
sampled from the peptide bound to the receptor allow comput-
ing the free energy of the peptide alone, which neglects impor-
tant changes in entropy between the bound and unbound states
of the peptide.

Large variations in computed free energies have been ob-
served when sampling from single, long MD trajectories, as
opposed to ensembles of short simulations (156). Therefore,
the study in (99) aimed to produce precise estimates of binding
free energies by performing the 3-trajectory variant using en-
sembles of short MD simulations. For a given system (pMHC
complex, MHC, or peptide), 50 replica MD simulations, 4 ns
each, were ran using different initial velocities starting from a
given crystal structure. For 12 diverse peptides bound to HLA-
A*02:01, computed binding affinities had a Pearson correlation
coefficient of 0.80 with experimental binding (99).

Another interesting work features hierarchical natural move
Monte Carlo simulations to explore pMHC detachment pro-
cesses (100). The pMHC system is represented in a coarse-
grained manner: each amino acid is modeled by its alpha car-
bon, its carbonyl oxygen, and the center of its side chain. The
study involves 32 peptides bound to HLA-A*02:01; 100 inde-
pendent simulations were performed for each peptide until de-
tachment. The authors found that the average time it took for
a simulation to completely sample the peptide detaching cor-
related with experimental binding affinity. Using these aver-
age simulation times and an appropriate cutoff, their method
achieved an AUC of 0.85 when discriminating binders from
non-binders.

Simulation-based predictions have also been applied to
MHC-II systems. For instance, the work in (96) used simu-
lated annealing of pMHC-II models and correlated the inter-
action terms from the AMBER force field with experimental
affinity. The study in (97) compares three different ways of
computing binding affinity for pMHC-IIs, including simula-
tion, statistical pair potentials and contact analysis (97). How-
ever, the conclusion was that, while predictions made by these
structure-based methods are significantly better than random,
they are still not on par with the leading sequence-based meth-
ods. More recently, a computational suite for the optimization
of protein and ligand conformations – Proteus – was proposed,
featuring MM/PB(GB)SA calculations for pMHC-IIs and con-
sidering different pH values (98).

5. FUTURE CHALLENGES IN THE SEARCH
FOR IMMUNOGENICITY
A recent study described the use of an ensemble refinement

approach to reveal hidden dynamics in crystal structures of

pMHC and TCR/pMHC complexes (157). By generating an
ensemble of conformations (Fig. 4), all compatible with data
from a given X-ray crystallography experiment, the authors il-
lustrated how differing interpretations can be made using a sin-
gle conformation as opposed to the whole ensemble. In fact,
the ensemble derived from some pMHC crystal structures con-
tained not only alternative peptide side chain configurations,
but even alternative binding modes, with significantly differ-
ent backbone conformations and coordination networks. These
results are compatible with findings from molecular dynamics
studies and highlight the need to consider the whole ensemble of
peptide conformations, rather than a single binding mode. This
suggests the need for a new paradigm in structural predictions.
Instead of trying to find a single top scoring conformation that
matches the corresponding binding mode observed in a crystal
structure (e.g., cross-docking), a more reasonable goal would
be to find an ensemble of peptide conformations that is “equiv-
alent” to that of the crystal structure. This new goal would also
require new metrics that could evaluate the accuracy of binding
mode predictions in terms of the generated ensemble (157).

Figure 4. Side view of a pMHC complex after ensemble refinement.
Alternative conformations of selected MHC side chains are depicted in
sticks, as well as alternative conformations of the ligand. All alternative
conformations are compatible with the x-ray experimental data, and
were obtained through a procedure of ensemble refinement (157). The
single peptide conformation displayed in the crystal structure is repre-
sented in a darker shade of grey. Part of the conformational “frame” of
the binding site can also be observed (i.e., a lateral alpha-helix and a
floor of beta-sheets, both depicted in cartoon). Graphics were obtained
with UCSF Chimera (158).

A paradigm shift from single binding modes to ensembles
of conformations would also require new methods for ranking
and binding affinity prediction, adding complexity to an already
difficult problem. As discussed in previous sections, there is an
inherent tradeoff between accuracy and scalability of binding
prediction methods. Simulation-based affinity prediction tools
can be more accurate and provide additional interpretability of
molecular interactions, but cannot be used for peptide screen-
ing (97). On the other hand, docking-related scoring functions
and data-driven approaches may be scalable, but their accu-
racy is not yet at the level of sequence-based methods. For in-
stance, scoring functions notoriously suffer from a strong lack
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of accuracy, which is only partially explained by their focus on
computational efficiency. Several evaluation studies of docking
tools (some involving datasets containing pMHC complexes)
have shown that existing scoring functions often fail to identify
near-native poses (52, 53, 64, 159). Scoring functions also show
limitations in distinguishing binders from non-binders, recapit-
ulating known rankings, and reproducing experimental binding
affinities (160, 161).

In a broader context, recent findings in drug discovery re-
veal that the binding kinetics is a decisive factor for drug ef-
ficacy and safety (162, 163). In this context, the dissociation
rate constant (Koff ) becomes a more important measure than
binding affinity. However, this value is much harder to esti-
mate computationally. It requires extensive sampling of transi-
tion states, derived from multiple paths from bound to unbound
states (162). Considering that Koff is impacted by the resi-
dence time (i.e., the average time that the ligand stays in the
binding site), and that the residence time is usually at the scale
of minutes or hours, computing transition states becomes almost
impossible with conventional MD simulations (with time scales
of ns to µs). However, recent advances in the development of
“optimized” MD sampling algorithms and the fast growing pro-
cessing capacity of modern CPUs and GPUs are opening new
avenues for Koff prediction (162, 163).

In the context of pMHC complexes, there is also evidence
that pMHC stability is a better predictor of immunogenicity
than pMHC binding affinity (164). As expected, predicting
the Koff of peptides is a much harder problem as compared to
drug-like ligands. Peptides are bigger and have a more complex
network of interactions, which results in a much longer unbind-
ing process (100). However, the advances in sampling methods
discussed in this review could allow for the fast generation of a
meaningful ensemble of bound peptide conformations, despite
the use of imperfect scoring functions. In turn, these confor-
mations could be used as seeds for “optimized” MD sampling
algorithms, such as adaptive sampling (165? ? ), allowing for a
more efficient prediction of Koff rates for pMHC complexes.

6. CONCLUSION
Over the past decades, different sampling methods have been

applied to the structural prediction of pMHC complexes (Table
1). These methods are very diverse, relying on a variety of tools
and procedures. In addition, research groups have used differ-
ent datasets and metrics to report their results (e.g., α-carbon
RMSD or all-atom RMSD). Therefore, a fair comparison of
all these approaches would be difficult and beyond the scope
of this review. Instead, we have focused on highlighting the
main assumptions and trade-offs behind these approaches. We
have proposed a classification of these methods into three gen-
eral strategies: constrained backbone prediction, constrained
termini prediction and incremental prediction. Note that each
strategy solves a different formulation of the pMHC structural

prediction problem. For instance, using a backbone template
dramatically reduces the conformational space that must be ex-
plored, as compared to docking the entire ligand with full flex-
ibility. On the other hand, relying on a template reduces the
generality of the proposed method. This is particularly relevant
for peptides with unusual binding modes and for MHC allotypes
lacking experimental data.

Despite all the challenges, the latest publications show im-
pressive results and suggest that sampling is not anymore a lim-
itation for pMHC binding mode prediction. It is also worth
noting that different methods might be better suited for differ-
ent docking applications (51). For instance, the efficient sam-
pling of GradDock (79) combined with a pMHC-specific scor-
ing function makes this tool potentially useful for large-scale
virtual screening, while the higher accuracy of DockTope (65)
and DINC (43) make them more suitable for geometry opti-
mization.

On the other hand, the development of fast and accurate scor-
ing functions represent an unmet need for both pMHC binding
mode prediction and structure-based binding affinity prediction.
Similar to what was discussed for binding mode prediction, dif-
ferent approaches for binding affinity prediction make differ-
ent assumptions and trade-offs. Fortunately, recent advances
in high performance computing are allowing for computation
intensive applications, which are expected to have a huge im-
pact on both binding mode and binding affinity prediction. Al-
though no single tool is yet capable of solving all these prob-
lems, we are finally getting closer to the point where different
structure-based methods can be used to address specific prob-
lems in medicinal chemistry. Hopefully, structural methods
will soon be combined with sequence-based methods, provid-
ing general and accurate predictions that will help researchers
and physicians to tackle some of the most challenging health
care problems of our time.
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Stevanović S. SYFPEITHI: database for MHC ligands
and peptide motifs. Immunogenetics. 1999;50(3-4):213–
219.

[15] Doytchinova IA, Flower DR. Quantitative approaches
to computational vaccinology. Immunol Cell Biol.
2002;80(3):270–279.

[16] Tong JC, Tan TW, Ranganathan S. Methods and pro-
tocols for prediction of immunogenic epitopes. Brief
Bioinformatics. 2007;8(2):96–108.

[17] Schueler-Furman O, Elber R, Margalit H. Knowledge-
based structure prediction of MHC class I bound pep-
tides: a study of 23 complexes. Fold Des. 1998;3(6):549–
564.

[18] He L, De Groot AS, Gutierrez AH, Martin WD, Moise
L, Bailey-Kellogg C. Integrated assessment of pre-
dicted MHC binding and cross-conservation with self re-
veals patterns of viral camouflage. BMC Bioinformatics.
2014;15 Suppl 4:S1.

[19] Lundegaard C, Lund O, Buus S, Nielsen M. Ma-
jor histocompatibility complex class I binding predic-
tions as a tool in epitope discovery. Immunology.
2010;130(3):309–318.

[20] Sharma G, Holt RA. T-cell epitope discovery technolo-
gies. Hum Immunol. 2014;75(6):514–519.

[21] Masignani V, Rappuoli R, Pizza M. Reverse vaccinol-
ogy: a genome-based approach for vaccine development.
Expert Opin Biol Ther. 2002;2(8):895–905.

[22] Koch CP, Pillong M, Hiss JA, Schneider G. Computa-
tional resources for MHC ligand identification. Mol In-
form. 2013;32(4):326–336.

[23] Parker KC, Bednarek MA, Coligan JE. Scheme for rank-
ing potential HLA-A2 binding peptides based on inde-
pendent binding of individual peptide side-chains. J Im-
munol. 1994;152(1):163–175.

[24] Peters B, Tong W, Sidney J, Sette A, Weng Z. Exam-
ining the independent binding assumption for binding of
peptide epitopes to MHC-I molecules. Bioinformatics.
2003;19(14):1765–1772.

[25] Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund
O, Nielsen M. NetMHC-3.0: accurate web accessible
predictions of human, mouse and monkey MHC class I
affinities for peptides of length 8-11. Nucleic Acids Res.
2008;36(Web Server issue):W509–512.

11



Antunes et al.

[26] Nielsen M, Lund O. NN-align. An artificial neu-
ral network-based alignment algorithm for MHC class
II peptide binding prediction. BMC Bioinformatics.
2009;10:296.

[27] Lundegaard C, Lund O, Nielsen M. Prediction of epi-
topes using neural network based methods. J Immunol
Methods. 2011;374(1-2):26–34.

[28] Han Y, Kim D. Deep convolutional neural networks
for pan-specific peptide-MHC class I binding prediction.
BMC Bioinformatics. 2017;18(1):585.

[29] O’Donnell TJ, Rubinsteyn A, Bonsack M, Riemer AB,
Laserson U, Hammerbacher J. MHCflurry: open-source
class I MHC binding affinity prediction. Cell Syst.
2018;7(1):129–132.

[30] Andreatta M, Nielsen M. Bioinformatics tools for
the prediction of T-cell epitopes. Methods Mol Biol.
2018;1785:269–281.

[31] Wang S, Bai Z, Han J, Tian Y, Shang X, Wang L, et al.
Improving the prediction of HLA class I-binding pep-
tides using a supertype-based method. J Immunol Meth-
ods. 2014;405:109–120.

[32] Lizée G, Overwijk WW, Radvanyi L, Gao J, Sharma P,
Hwu P. Harnessing the power of the immune system to
target cancer. Annu Rev Med. 2013;64:71–90.

[33] Galluzzi L, Chan TA, Kroemer G, Wolchok JD, Lopez-
Soto A. The hallmarks of successful anticancer im-
munotherapy. Sci Transl Med. 2018;10(459).

[34] Sezerman U, Vajda S, Cornette J, DeLisi C. Toward
computational determination of peptide-receptor struc-
ture. Protein Sci. 1993;2(11):1827–1843.

[35] Rosenfeld R, Zheng Q, Vajda S, DeLisi C. Computing
the structure of bound peptides: application to antigen
recognition by class I major histocompatibility complex
receptors. J Mol Biol. 1993;234(3):515–521.

[36] Mohammed F, Stones DH, Zarling AL, Willcox CR, Sha-
banowitz J, Cummings KL, et al. The antigenic iden-
tity of human class I MHC phosphopeptides is criti-
cally dependent upon phosphorylation status. Oncotar-
get. 2017;8(33):54160–54172.

[37] Durrant LG, Metheringham RL, Brentville VA. Au-
tophagy, citrullination and cancer. Autophagy.
2016;12(6):1055–1056.

[38] Galli-Stampino L, Meinjohanns E, Frische K, Meldal M,
Jensen T, Werdelin O, et al. T-cell recognition of tumor-
associated carbohydrates: the nature of the glycan moi-
ety plays a decisive role in determining glycopeptide im-
munogenicity. Cancer Res. 1997;57(15):3214–3222.

[39] Chen S, Li Y, Depontieu FR, McMiller TL, English AM,
Shabanowitz J, et al. Structure-based design of altered
MHC class II-restricted peptide ligands with heteroge-
neous immunogenicity. J Immunol. 2013;191(10):5097–
5106.

[40] Pierce BG, Hellman LM, Hossain M, Singh NK, Van-
der Kooi CW, Weng Z, et al. Computational design of
the affinity and specificity of a therapeutic T cell recep-
tor. PLoS Comput Biol. 2014;10(2):e1003478.

[41] Raman MC, Rizkallah PJ, Simmons R, Donnellan Z,
Dukes J, Bossi G, et al. Direct molecular mimicry en-
ables off-target cardiovascular toxicity by an enhanced
affinity TCR designed for cancer immunotherapy. Sci
Rep. 2016;6:18851.

[42] Antunes DA, Rigo MM, Freitas MV, Mendes MFA, Sini-
gaglia M, Lizée G, et al. Interpreting T-cell cross-
reactivity through structure: implications for TCR-based
cancer immunotherapy. Front Immunol. 2017;8:1210.

[43] Antunes DA, Devaurs D, Moll M, Lizée G, Kavraki LE.
General prediction of peptide-MHC binding modes us-
ing incremental docking: a proof of concept. Sci Rep.
2018;8(1):4327.

[44] Feldmann RJ. The design of computing systems
for molecular modeling. Annu Rev Biophys Bioeng.
1976;5:477–510.

[45] Marrone TJ, Briggs JM, McCammon JA. Structure-
based drug design: computational advances. Annu Rev
Pharmacol Toxicol. 1997;37:71–90.

[46] Muhammed MT, Aki-Yalcin E. Homology modeling in
drug discovery: overview, current applications, and fu-
ture perspectives. Chem Biol Drug Des. 2018;.

[47] Halperin I, Ma B, Wolfson H, Nussinov R. Principles of
docking: an overview of search algorithms and a guide
to scoring functions. Proteins. 2002;47(4):409–443.
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M
-D
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+
G
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(4)
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s
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C
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odeling

+
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raw
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backbone
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1.2

Å
,A

ll-atom
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L
iu

etal.,2014
(73)
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ock

(R
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constrained
backbone

self-docking
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only
9-m

ers,4
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IM
H
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s

and
1
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Å

,A
ll-atom
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Å
R
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D
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1-E
M
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cross-docking
(135)

8-m
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and
9-m

ers,only
4
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H
C

s
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Å

,A
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:1.96
Å
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etal.,2006

(74)
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M
D

w
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sim
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annealing
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constrained
backbone

self-docking
(41),cross-docking

(12)
8-m

ers
to

10-m
ers,only

1
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IM
H

C
B

ackbone:1
Å

*,A
ll-atom

:1.5
Å
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osenfield
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m
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,loop

closure,m
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ini

self-docking
(1)

only
1

9-m
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H
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B
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,A
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:np
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an
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(34)
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search

w
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E
M

constrained
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self-docking

(1),cross-docking
(4)

1
4-m

er,1
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er,1
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er,2
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IM
H

C
s

B
ackbone:0.83

Å
,A

ll-atom
:np

R
ognan

etal.,1999
(75)

m
odeling,rotam
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closure,E
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constrained
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ini
self-docking

(5)
8-m

ers
and

9-m
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H
C

s
B

ackbone:1.2
Å

,A
ll-atom

:np
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(76)

docking
w

ith
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M
+

loop
closure

constrained
term

ini
self-docking

(40),cross-docking
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8-m
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to
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ers,8
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Iand
6
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C

s
C
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,A
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:np
B
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(77)
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A
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B
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Å
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yeong
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(79)
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ock
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self-docking
(107),cross-docking
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8-m
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to
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ers,82

class
IM

H
C

s
B
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**,A
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Å
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Sezerm

an
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O
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G

E
N
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entalprediction
cross-docking

(4)
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4
9-m
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H

C
s

A
ll-atom

:
<

1.6
Å

D
esm

etetal.,1997
(81)

fragm
ent-based

docking,rotam
er(B

R
U

G
E

L
)

increm
entalprediction

self-docking
(1),cross-docking

(1)
1

8-m
erand

1
9-m

er,1
class

IM
H

C
B

ackbone:0.8
Å

/1.3
Å

,A
ll-atom

:np
A

ntes
etal.,2006

(82)
D

ynaPred
(nearnative

exploration
w

ith
M

D
)

increm
entalprediction

cross-docking
(20)

only
9-m

ers,1
class

IM
H

C
B

ackbone:1.53
Å

,A
ll-atom

:np
A

ntunes
etal.,2017

(43)
D

IN
C

(A
utoD

ock4
+

increm
entalm

ethod)
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entalprediction
self-docking

(25)
8-m

ers
to

10-m
ers,10

class
IM

H
C

s
C

-alpha:0.99
Å

,A
ll-atom

:1.92
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R
M

SD
,R

ootM
ean

Square
D

eviation.np,notprovided.*U
pperthreshold

for
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ofthe
dataset.**R

eported
averages

vary
depending
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sam

ple
size,butare
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self-docking
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cross-docking.

Table
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m

ethods
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to
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C

binding
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prediction
Publication

(R
ef.)

Tool/M
ethod

Validation
(size)

D
atasetC

om
position

R
ognan

etal.,1999
(75)

FR
E

SN
O

scoring
function

C
orrelation

(84)
C

lass
I:H

L
A

-A
*02:01,H

L
A

-A
*02:04,H

-2K
k

A
ltuvia

etal.,2004
(83)

PR
E

D
E

P,residue-contactm
atrices

C
lassification

and
C

orrelation
(>

1000)
C

lass
I:2

H
L

A
-A

,4
H

L
A

-B
,H

-2D
b,H

-2D
d,H

-2K
b,H

-2L
d

Tong
etal.,2006

(84)
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scoring
function

C
lassification

(139)
C

lass
II:H

L
A

-D
Q

3.2
β

Tong
etal.,2006

(85)
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scoring
function

C
lassification

and
C

orrelation
(84)

C
lass

II:H
L

A
-D

R
B

1*0402,H
L

A
-D

Q
B
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L

iao
etal.,2011

(86)
M

odified
version

ofFR
E

SN
O

scoring
function

C
orrelation

(>
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C
lass

Iand
II:H

L
A

-A
2,H

L
A

-D
R

15,H
L

A
-D

R
1,and

H
L

A
-D

R
4

K
napp

etal.,2011
(87)

PeptX
,genetic

algorithm
C

lassification
(>
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C

lass
I:H

L
A

-A
*02:01

Y
anoveretal.,2011

(88)
R
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C

lassification
(>
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C

lass
I:7

H
L

A
-A

,12
H

L
A

-B
A

tanasova
etal.,2011

(89)
E

piD
O

C
K
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quantitative

m
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C
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(4540)
C

lass
II:12

H
L

A
-D

R
B

1
D

oytchinova
etal.,2002

(90)
Q

SA
R

C
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(266)
C

lass
I:H

L
A

-A
*02:01

D
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etal.,2004
(91)

Q
SA
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C
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(90)

C
lass

I:H
L

A
-A

*02:01
Jojic

etal.,2006
(92)

custom
scoring

function
w
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w
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C
lassification

and
C
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(>
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C

lass
I:4

H
L

A
-A

,5
H

L
A

-B
A

ntes
etal.,2006

(82)
D

ynaPred,SV
M
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quantitative

m
atrices

and
M

D
-derived

energy
features

C
lassification

(>
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C
lass

I:H
L

A
-A

*02:01
B

ordneretal.,2006
(78)
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M
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scoring

function
term

s
C

lassification
(331)

C
lass

I:H
L

A
-A

*02:01,H
-2K

b
Tian

etal.,2009
(93)

Q
SA

R
C
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(152)

C
lass

I:H
L

A
-A

*02:01
B

ordner,2010
(69)
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forestusing

scoring
function
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s

C
lassification

(>
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C
lass
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an
and

m
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allotypes
Saethang

etal.,2013
(94)

random
forestusing

residue-residue
contacts

and
topologicaldescriptors

C
lassification

(>
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C
lass

I:H
L

A
-A

2
M

ukherjee
etal.,2016

(95)
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statisticalpairpotentials
to
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as

features
forG

aussian
process
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C

lassification
and

C
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(>
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A
ny

C
lass

Iw
ith

experim
entalbinding

affinity
data

D
avies

etal.,2003
(96)

sim
ulated

annealing,A
M

B
E

R
force

field
C

lassification
(>
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C

lass
II:4

H
L

A
-D

R
1

Z
hang

etal.,2010
(97)

position
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free
energy
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M
D
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M

M
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SA
C
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(3882)

C
lass

II:H
L

A
-D

R
B
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Polydorides

etal.,2016
(98)
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ization
ofprotein
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conform
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C
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(1)**
C

lass
II:H

L
A

-D
Q

8
W

an
etal.,2015
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M

D
,M

M
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(G
B

)SA
C
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(12)

C
lass

I:H
L

A
-A
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K

napp
etal.,2016

(100)
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M

onte
C

arlo
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ulations
C

orrelation
(32)

C
lass

I:H
L

A
-A

*02:01

C
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puting
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be
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w
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experim
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reports

affinity
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peptides
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binders
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*T

hese
studies
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binding
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a
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to
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text.**O
nly
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an

exam
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theirtool.
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