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Abstract

We propose the combination of techniques that solve

multiple queries for motion planning problems with

single query planners. Our implementation uses a

probabilistic roadmap method PRM with bidirectional

rapidly exploring random trees BI-RRT as the local

planner. With small modifications to the standard al-

gorithms, we obtain a multiple query planner which is

significantly faster and more reliable than its compo-

nent parts. Our method provides a smooth spectrum

between the PRM and BI-RRT techniques and obtains

the advantages of both. We observed that the per-

formance differences are most notable in planning

instances with several rigid non-convex robots in a

scene with narrow passages. This planner is in the

spirit of non-uniform sampling and refinement tech-

niques used in earlier work on PRM.

1 Introduction

Multiple query motion planning is motivated by ap-
plications where the robot operates in the same en-
vironment for a sufficiently long period of time. In
these cases, a data structure is build in a preprocess-
ing phase in order for many queries to be answered
quickly. For applications where the environment is
changing or the robot only sees a local window, a
motion planner has to efficiently explore the space
in order to solve a single query without preprocess-
ing information. In this paper we use a single query
motion planning algorithm as a subroutine for a mul-
tiple query planner. By combining these two ap-
proaches, a planner which uses the strengths of both
is obtained.

The probabilistic roadmap method (PRM) approach
to motion planning is efficient, easily implemented
and applicable to a large variety of motion plan-
ning instances [15, 9]. It is a multiple query plan-
ner which constructs a roadmap by sampling points

Figure 1: Scene for narrow

in the space and connecting them with a primitive
planner. Many implementations use a variation of
the straight line planner as the primitive local plan-
ner, although the algorithm is generic and the local
planner only need satisfy a simple property to al-
low for a probabilistically complete planner [16]. At
query time, a sufficiently good roadmap captures the
structure and connectivity of the configuration space
(C-space) well enough to resolve the query quickly.

Single query planning can be achieved with poten-
tial fields [5, 12] and more recently has been solved
by growing trees in the C-space [11, 18]. Using a
potential field planner as a local planner for PRM has
been attempted [13]. There are also approaches that
incrementally construct a roadmap by merging RRTs
that are produced as queries are resolved [21].

In this work, we examine the applicability of rapidly
exploring random trees (RRT) [18] as a local planner
for a PRM. We are primarily interested in obtaining a
planner which is effective for high-dimensional prob-
lems [17] as those arising in computational biology
[4, 2]. Our implementation focuses on the multi-
ple mover problem in three dimensions (Figure 1) by
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modifying the originally stated RRT and PRM formu-
lations so as to efficiently explore the C-space. We
have tested our planner on a variety of benchmarks
and we noticed significant improvement on clock time
and roadmap quality compared to the PRM or BI-RRT
planners. We report the results of our experiments
and discuss how to vary the input parameters to ob-
tain optimum performance.

2 Method and Implementation

Heterogenous Two-Tiered Planning The main
contribution of this paper is to propose the combina-
tion of PRM and RRT methods in order to solve mul-
tiple query planning problems more efficiently. The
general principle behind this work is to increase the
power of the local planner in order to reduce the
number of milestones needed by the PRM and to ob-
tain a more robust planner.

We use BI-RRT as a local planner for a PRM planner.
RRTs are grown at each milestone and connections be-
tween milestones are computed by BI-RRT. The RRTs
rooted at the milestones and the paths between them
are stored for use in queries. The use of RRT is akin
to a refinement phase used in some PRM implemen-
tations [15] and the extra power of BI-RRT allows
for fewer milestones in the top-level roadmap. Our
implementation uses no specific refinement or non-
uniform sampling heuristics and follows standard im-
plementations from the literature.

Configuration Space The class of problems we
considered for the purposes of our experiments with
this general planning framework consisted of multi-
ple non-convex, rigid bodies moving freely in a three
dimensional workspace with rigid, non-convex static
obstacles. As with other motion planners, obvious
generalizations to many other kinematic planning
problems are straightforward and the use of RRTs as
subroutine gives a natural way to extend the planner
to kinodynamic planning instances [7, 10, 19].

In our implementation, we represent the configura-
tion of a single robot by a point and a quaternion
(p, q). N robots operating in the workspace are rep-
resented by a tuple {(p1, q1), ..., (pN , qN)}. The di-
mensionality of the configuration space in this case
is 6N . To obtain an embedding of a single robot into
Euclidean 6-D, we catenate two points from opposite
corners of the bounding box of a given configuration
of the robot in the workspace. This construction is
used for each robot to obtain a point in Euclidean
6N -D. Distance is measured in the usual way for
these points. A straight line between two configu-
rations (si, sj) = (pi, qi, pj , qj) is defined as a lin-
ear interpolation between the two translation points
(pi, pj) and a spherical interpolation for the quater-

nion representations of the rotation (qi, qj).

Our implementation uses SWIFT++ [8] for collision
detection. Equally spaced points along the straight
line between two configurations are tested for colli-
sion with intersection checks. The order of the checks
is done by bisection, which increases the chances of
quick rejection of paths in collision.

PRM Implementation We use a general implemen-
tation of PRM [15]. Our interpretation of the algo-
rithm follows.

Algorithm 1 BUILD ROADMAP(n,k)

1: Generate a set of n configurations in free space S
from some distribution.

2: Let G = ∅, the empty graph on S.
3: for each configuration si ∈ S do

4: Find k neighbors for si, Nk(si).
5: for each configuration sj ∈ Nk(si) do

6: if j > i and the local planner can find a collision-
free path from si to sj then

7: add an edge (i, j) in G.
8: annotate (i, j) with the cost of the path.
9: end if

10: end for

11: end for

12: return the graph G and the set S.

The k neighbor queries are answered using a com-
bination of k-nearest neighbors and a random selec-
tion. The use of random selection offsets problems
with the metric we observed in narrow areas of the
space. As the graph is being built, the number of
connected components can be maintained by using
a fast union-find data structure. By limiting the
number of intra-component local planner checks by
a small constant, roadmaps can be constructed more
quickly without sacrificing much quality. This pass is
similar to approaches used in other PRM implemen-
tations [14].

RRT Implementation The top-level implementa-
tion of the RRT algorithm [20] is as follows:

Algorithm 2 RRT(n, s0)

1: Add s0 as the root of the tree, T .
2: for i ranges from 1 to n do

3: Generate a free configuration from a random dis-
tribution, starget.

4: Find the closest point in the tree T , sj .
5: Set si to INCREMENTAL-PLANNER(sj, starget).
6: Add si to the tree, T , as a child of sj .
7: Annotate the edge in the tree with the cost from

sj to si.
8: end for



We use the following implementation of BI− RRT.

Algorithm 3 BI-RRT(n, T1, T2)

1: for i ranges from 1 to n do

2: Generate a free configuration from a random dis-
tribution, starget.

3: Find the closest points in each tree, s1
j and s2

k re-
spectively.

4: if the local planner can connect s1
j to s2

k then

5: return the path from s1
0 to s2

0 via s1
j and s2

k.
6: end if

7: Set s1
i to INCREMENTAL-PLANNER(s1

j, starget).

8: if the local planner can connect s1
i to s2

k then

9: return the path from s1
0 to s2

0 via s1
i and s2

k.
10: end if

11: Swap T1 and T2.
12: end for

13: return no path was found.

Adapting RRT for use with PRM Each milestone
in the PRM graph is an RRT. When generating the
milestones, we begin with a random configuration
for the root and grow the RRT by a fixed number of
iterations. Each RRT can be viewed as a set of con-
figurations, the embeddings we describe earlier are
used to obtain a set of points in 6N -D. The centroid
of this point set is computed and is used as the co-
ordinates for that RRT. In Algorithm 1, the neighbor
query uses these coordinates.

The local planner for the PRM is Algorithm 3. Before
running the BI-RRT, we first compute k close pairs
between the two sets of configurations and try to use
a straight line planner to connect them. In Algo-
rithm 3, the local planner is taken to be a straight
line planner.

In the case of multi-robot motion planning the gen-
eration of the node configurations is faster if it is
done incrementally. We first choose a random order
to generate the robots in and then embed the robots
in this order. If the embedding fails at any point,
we re-embed the robot that failed until it succeeds.
This leads to a significant reduction in the number
of attempts required.

The incremental planner that we use checks collisions
by bisection and has been adapted for multi-robot
planning instances. Each robot is moved simulata-
neously towards the goal configuration. The path
is checked for collisions incrementally by adding one
robot at a time to the path and checking for colli-
sions with the environment and with the previous
robots. If a collision is found, then a new target con-
figuration for the robot being added is generated.
Although this local planner is more expensive than
checking all robots simultaneously, we found that it

is considerably more effective in covering the space.
The configuration returned by the call is the final
goal that computed. In the case where no robot can
move, no configuration is returned and outer loop
repeats without incrementing.

k-nearest neighbors The k-nearest neighbor
queries were implemented using 6N -D tree [6]. In our
experience, the efficiency of this query in practice is

significantly better than the worst case O(n
6N−1

6N ) if
some care is taken during the query. The tree is tra-
versed greedily towards the query point. When walk-
ing up the tree, if the worst point in the partial k-NN
is further than the closest point of the incrementally
constructed bounding box around the point set on
the other branch, then that branch is taken. Also,
a small performance improvement can be gained by
not splitting point sets of cardinality smaller than
some threshold, experimentally around 25 to 80.

Since the configurations in the RRT are added incre-
mentally and in a spatially local way, an invariant
which requires that the tree is fairly well balanced is
maintained. The ratio of the point sets on the left
and right side cannot be too small or too large. When
this occurs at some subtree, the tree is collapsed and
rebuilt as a balanced tree. In our experiments, this is
necessary but happens sufficiently infrequently that
it amortizes well. The trick of not splitting leaves
with small point sets greatly reduces the amount of
time spent rebalancing trees.

Queries Query handling is done by connecting the
two query configurations to the roadmap and pro-
ceeding by graph search. We find the k-nearest mile-
stones for each configuration and alternately try to
connect them using the BI-RRT algorithm. As soon
as both query configurations lie in the same con-
nected component, we cease computation and return
the path. We applied some simple path smoothing
to the resulting path to improve the quality of the
output.

3 Methodology and Results

The PRM of RRTs has several parameters which we
will now describe: N , the number of robots, n, the
number of milestones used in the PRM layer, m, the
number of RRT iterations per milestone, k, the num-
ber of iterations that BI-RRT is run for, cNN , the
number of nearest neighbor milestones to use for PRM,
cr, the number random neighbor milestones to use
for PRM, and ccp, the number of close pairs to check
before running BI-RRT.

In our experiments, we measure time and precision.
Time is measured for the preprocessing phase (pp
time) and for average time to respond to a query



(a) Types of robots (b) Random (c) Fence

Figure 2: Robots and scenes for the experiments

(aq time). We also record the number of SWIFT++
collision detection calls for preprocessing (pp coll.)
and per query (aq coll.). Precision is measured by
taking some number of non-trivial random queries
and counting the fraction solved positively.

The experiments were carried on dual Athlon
1900MPs with 1 gigabyte of RAM. Computation
is monolithic, sequential and fits inside the core so
there is no disk access.

We tested on a variety of benchmarks (Figure 3).
The robots we used are illustrated in Figure 2(a).
Problem “fence1” uses one robot of type C and prob-
lems “fence2” and “narrow2” use two copies of C.
Problem “random3” uses one A, one C and one D.
Problem “narrow4” uses one B, two C and one D
and we have added one A and one C for “narrow6”
and “empty6”. Finally, problems “narrow8” and
“empty8” also include one B and one D.The scenes
are also shown. In Figure 1, the scene for the narrow
passage is shown. In Figure 2(b), the scene filled with
random polyhedra is shown. Finally, in Figure 2(c),
the scene with the fence is shown.

In Figure 3, we compare three different motion plan-
ners. A standard PRM, a BI-RRT, and the PRM of
RRTs. Each planner uses the same code base and
corresponds to different parameter settings. A PRM

is obtained by setting m = 0, k = 0 and ccp = 1. A
BI-RRT is obtained by setting n = 0 and ccp = 0. In
setting the remaining parameters, we tried a variety
of settings and chose good tradeoffs for each with an
emphasis on precision.

4 Discussion

In Figure 3, we summarize our results for the var-
ious benchmarks. The most important difference
that we note is significant increase in reliability over

PRM and over BI-RRT. In our implementation, PRM of
RRTs generally outperforms PRM for multiple query
problems. Typically, for the cost of two or three
BI-RRT queries, we can preprocess the space with
PRM of RRTs to obtain a structure which answers
queries more robustly and more quickly than BI-RRT.
The differences between the methods were more pro-
nounced in the examples with more complex scenes
and with more robots. We use fairly standard im-
plementations of RRT and PRM. We think it is likely
that improvements to either subroutine would be an
improvement for our planner.

The method we present has common attributes with
other refinement and non-uniform sampling tech-
niques used in PRM planning. RRTs have a tendency
to grow towards obstacles. This gives a tendency
to throw more configurations near obstacles which
resembles the technique of OBPRM [1]. The rejec-
tion sampling and local improvement of RRT is simi-
lar to the enhancement phase of early PRM planners
[14, 15].

Both RRT and PRM are well-known to be extremely
sensitive to the interplay between the metric and the
incremental planner [18, 3]. We also made this obser-
vation in our implementation. In environments with
thin features, in particular the fence environment,
BI-RRT tended to produce many configurations that
were stuck near obstacles. BI-RRT also makes use
of locality and is capable of answering easier queries
while avoiding difficult and irrelevant parts of the
space. In environments with a single narrow fea-
ture, the BI-RRT is forced to do a similar amount of
work to the PRM or PRM of RRTs preprocessing phases
to answer a single query. This phenomena also ac-
counts for the better performance of BI-RRT on the
random example compared to other examples where
resolving a query can be often be done without con-



PRM pp time(s) pp coll. aq time(ms) aq coll. precision
empty 6 3.75 45202 23.03 217 0.952
empty 8 507.09 1179373 232.19 484.8 0.882
narrow 2 452.8 1030952 307.67 137 0.991
narrow 4 467.79 830600 217.1 148.91 1
narrow 6 1426.32 2040998 269.58 1105 0.242
narrow 8 10544.89 60554186 375.81 710.4 0
random 3 2657.21 3945703 452.63 1130.31 0.544
fence 1 200.83 1671408 503.46 9559 0.597
fence 2 1147 2654280 356.52 1836 0.12125

BI-RRT pp time(s) pp coll. aq time(ms) aq coll. precision
empty 6 319.92 9607 0.978
empty 8 4207 75917 0.995
narrow 2 154297 1954355 0.418
narrow 4 n/a n/a 23250.72 695309 0.357
narrow 6 208022 316989 0.54
narrow 8 1073393 10900158 0.25
random 3 9493.96 94367 0.804
fence 1 4484.52 213279 0.0133
fence 2 254954 344255 0.0

PRM of RRT pp time(s) pp coll. aq time(ms) aq coll. precision
empty 6 0.5489 15016 116.1 3200 0.985
empty 8 5.984 103528 1296.75 22261.58 0.97
narrow 2 96.17 8062836 7.426 393.27 1
narrow 4 84.42 3889115 46 2128.45 0.999
narrow 6 421.43 11947585 941.696 26003 0.941
narrow 8 7302.14 10822951 10327 16362 0.68
random 3 25.58 253330 7186 70816 0.961
fence 1 186.46 6713599 56.42 2666.38 1
fence 2 220.63 8789764 143.92 5828 0.875

Figure 3: Comparison of Planning Algorithms

sidering the whole space. Finally, we believe that
the efficiency of the PRM of RRTs derives in part from
offering the BI-RRT calls easier queries as they come
from the nearest neighbor clustering.

The algorithms we use are designed to have several
opportunities for early exit as a speed enhancement.
In collision detection, bisection checking on a path
allows for early exit for paths with many collisions.
In the PRM layer, only checking edges between dif-
ferent components and halting when all components
were determined produced better results. Finally,
the BI-RRT algorithm can make an early exit by
quickly checking k close edges before beginning or
once a path between the roots has been found. To-
gether these early exit opportunities allow for good
overall time improvements without a loss in reliabil-
ity. Since PRM of RRTs uses all of these opportunities

for early exit, the time improvements are most sig-
nificant.

In some of experiments, clock time for PRM of RRTs
was far superior to PRM even though fewer collision
checks occurred in the second method. This occurs
for several reasons. Using bisection for collision de-
tection quickly rejects bad edges, however a large
number of edge checks are initiated. The incremen-
tal planner will continue checking an edge once a
failure occurs. PRM of RRTs checks fewer edges but
works harder for each edge. This is reflected in the
running time. Also, the nearest neighbor queries
lead to super-linear growth in the running time. On
more difficult examples, PRM needs many milestones
to succeed and the k-D tree has many points in it.
As the number of points in the tree grows, this cost
begins to dominate the running time since it is the



only super-linear cost in the implementation. The hi-
erarchical representation of PRM of RRT yields much
smaller trees and this problem does not manifest as
seriously.

The results we present were for good parameter se-
lection for each method. In a new example, select-
ing the correct parameters can be difficult, partic-
ularily for PRM of RRTs since the tradeoff between
the number of milestones and number of BI-RRT

iterations is more sensitive. In general, generat-
ing no more than several hundred initial milestones
and using dense PRM seemed to be the best setting.
Once this amount is fixed, varying the number of
BI-RRT iterations generates a tradeoff between pre-
cision and time. The incremental planner, metrics
and C-space representation can be varied to opti-
mize performance as with other motion planners us-
ing similar frameworks. We showed how to provide
parameters that yield a smooth spectrum between
the PRM and BI-RRT approaches. The planner we
obtained was effective for high degree of freedom
problems obtained by putting multiple non-convex
rigid robots in various scenes. In many cases the ad-
vantages of this technique were striking. Although
further experimentation is needed to better under-
stand parameter sensitivity, we believe the frame-
work we describe is useful as we attempt to solve
increasingly difficult planning problems.
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