
1

A Multi-layered Synergistic Approach to Motion
Planning with Complex Goals

Amit Bhatia, Matthew R. Maly, Lydia E. Kavraki, and Moshe Y. Vardi

Abstract—This paper describes an approach for solving motion
planning problems for mobile robots involving temporal goals.
The temporal goals are described over subsets of the workspace
(called propositions) using temporal logic. The approach uses an
instantiation of a multi-layered synergistic planning framework
that has been proposed recently. In this framework, a high-level
planner constructs high-level plans using a discrete abstraction
of the system, the temporal logic specifications and the low-
level exploration information. A low-level sampling-based planner
uses the suggested high-level plans and the dynamics of the
system to explore the state-space of the system for feasible
trajectories satisfying the specification. The construction and
exploration of the discrete abstraction are critical issues that
affect the overall performance of the approach. A geometry-based
approach for constructing the abstraction, and a lazy high-level
search technique for its exploration are discussed. The proposed
techniques result in computational speedups of close to 10 times
over earlier approaches for second-order nonlinear robot models
in challenging workspace environments with obstacles and for a
variety of temporal logic specifications.

I. INTRODUCTION

Traditional motion planning for mobile robotic systems
involves the construction of a motion plan for the system that
takes the system from an initial state to a set of goal states,
while avoiding collisions with the obstacles at all times. The
motion plan is also required to respect the dynamics of the
system that are typically described by a set of differential
equations. A wide variety of techniques have been proposed
over the last two decades that try to solve such problems [1],
[2].

Motivated by the desire to increase the capabilities and
automation of robotic systems, and the success in solving
conventional motion planning problems, there have been re-
cent research efforts that try to answer the following question:
“Given state-of-the-art motion planning algorithms, how can
we use them as a basic building block for solving motion
planning problems involving complex goals and robots with
complex dynamics?” In Figure 11, we show an example of
one such planning problem.

Clearly, planning problems involving complex goals are not
a trivial extension of the traditional motion planning problem.
A variety of ideas have been proposed from AI, control
theory, formal methods, and hybrid systems communities for
solving such problems [3]–[29]. Much of the earlier work has
focused on discrete planning within the AI community [3]–
[6]. The system is typically modeled as a graph and is called

Amit Bhatia, Matthew Maly, Lydia Kavraki and Moshe Vardi are with the
Department of Computer Science, Rice University, Houston, Texas, 77005,
{abhatia,mmaly,kavraki,vardi}@rice.edu

1We recommend an online version for viewing all the figures in the paper.

Fig. 1: An example of planning with complex goals. The sets shown
in blue correspond to regions of interest. The sets shown in brown
are obstacles. The goal specification is “In future, visit the region
where p1 is true, and then visit a region where p2 or p3 is true.”

a transition system. The nodes represent states and the edges
represent transitions between states and are labeled by actions
that enable the transitions. The goal specification is described
using formalisms like STRIPS [3] and Action Languages [4],
[5]. Among many others, the approaches proposed in [7]–
[11] try to combine motion planning with task planning. The
work in [12] is one of the earlier attempts to formalize the
concept of motion of robots using ideas from control theory.
This has been followed by the notion of Motion Description
Languages [13], [14], [19] and Maneuver Automaton [15],
[19].

A class of complex goals impose temporal constraints on the
trajectories of a given system. Such goal specifications are re-
ferred to as temporal goals in this paper. The goal specification
described in Figure 1 is an example of such goals. A variety
of model-checking inspired approaches have been proposed
for solving planning problems involving mobile robots and
temporal goals [17]–[30]. These approaches differ from some
of the earlier works, e.g., [16], in that the planning problem
is considered for mobile robots with dynamics. The proposed
approaches are inspired by state-of-the-art techniques used for
model-checking computer programs by the formal methods
community [31], [32]. The temporal goals are described using
a formal framework, e.g., Linear Temporal Logic (LTL, [33]),
Computation Tree Logic (CTL, [34]), and µ−calculus [35].

Published in Robotics Automation Magazine, IEEE, Volume 18, Number 3, p.55-64 (2011). Journal version contains additional changes.

2

While the idea of extending the discrete system semantics
to continuous and hybrid systems has been investigated [36],
[37], most of the approaches implement instantiations of the
the following two-layer architecture. At a discrete level, a
discrete plan is constructed using a discrete abstract model
of the robot, and the formal specifications. Model-checking
techniques are used to construct such a plan. The constructed
plan is then used by the continuous layer to construct a
physically feasible trajectory for the robot.

The specification language, the discrete abstraction of the
robot model, and the planning framework depend on the
particular problem being solved and the kind of guarantees
required. One of the earliest works that used temporal logic
as the specification language for the synthesis of controller
programs for robotic and manufacturing tasks is [17]. The
work in [18] investigates the problem of automatic controller
synthesis for a team of mobile robots with high-level ob-
jectives described using LTL. LTL has also been used to
solve multi-robot motion planning problems in [22], [23].
The issue of construction of a suitable discrete abstraction
has been studied independently and extensively in the formal
methods, robotics, hybrid systems, and control theory com-
munities [19], [37]–[51]. Ideally, one would like to construct
discrete abstractions that are equivalent to the exact model in
terms of observed behaviors (i.e., bisimilar [41]). However
such abstractions are known to exist only for very simple
robot models where the dynamics are essentially linear [41].
For most models of interest, the exact equivalence is typically
relaxed to an approximate one [46]–[51]. Furthermore, it is not
clear if the geometric constraints arising due to robot geometry
and the obstacles can be incorporated within such notions. An
approach that uses local controllers for motion planning with
temporal goals has also been proposed recently in [20], [21].

Inspired by the success of sampling-based algorithms in
solving conventional motion planning problems [1], [2], a
complementary set of techniques have been proposed over past
few years that use sampling-based algorithms for safety anal-
ysis and motion planning of hybrid and robotic systems [24],
[27]–[29], [52]–[59]. An important feature of sampling-based
approaches is that the required controllers for feasible trajecto-
ries are automatically constructed as a result of the exploration
process. Hence the approaches typically do not require the
existence of a particular class of controllers.

The earliest work on using sampling-based algorithms for
safety falsification [52] has been followed by more recent
works that try to improve the scalability of such algo-
rithms [57], [58]. The work in [53] has considered traditional
motion planning problems but with hybrid robot dynamics. Ex-
tensions of a class of sampling-based algorithms for planning,
control and verification of hybrid and robotic systems, have
been proposed in [54]. The work in [54] has also proposed an
extension of such algorithms for solving planning problems
in discrete spaces. The approach proposed in [56] combines
sampling-based algorithms with sensitivity analysis for verifi-
cation of high dimensional nonlinear systems. The approaches
proposed in [24], [27]–[29] use sampling-based algorithms
within sophisticated frameworks for planning problems involv-
ing complex specifications. The approach proposed in [24]

Formal Logic Sampling-based Algorithms

High-level Task

High-level description Low-level description

?
Physical robot model

Fig. 2: Combining logic with sampling-based algorithms

can be used to solve motion planning problems involving
µ−calculus specifications. An important contribution of this
approach is that instead of relying on a fixed abstraction of
the system, a sampling-based abstraction refinement technique
is used. The refinement procedure is based on incremental
sampling of the system trajectories. In contrast to single-
layered [24] and hierarchical approaches [20]–[22], [25], [30],
the framework proposed in [27] is a multi-layered synergistic
framework that can be used for planning and safety falsifica-
tion of hybrid and robotic systems with LTL specifications.

The approaches proposed in [24], [27]–[29], [52]–[54],
[56]–[59] trade strong completeness guarantees for scalability
and efficiency. This means that while such approaches can
deal with complexities arising due to model nonlinearities
and geometric constraints, they may fail to find a solution
in finite time (even if one exists). A class of sampling-based
algorithms have also been proposed recently that provide
stronger completeness guarantees for safety analysis [55], [60].

This paper presents a summary of the work in [28], [29].
The approach described in this paper is motivated by the
following question (Figure 2): “Given state-of-the-art model
checking techniques, and sampling-based motion planning
algorithms, how can the two be combined for solving motion
planning problems involving complex goals and robots with
complex dynamics?” The focus is on solving problem in-
stances involving nonlinear robot models with finite geometry,
complex workspace environments, and high-level temporal
goals. In this paper, recent research efforts towards solving
such problems efficiently using a multi-layered synergistic
framework that has been proposed recently for solving a
variety of planning problems [27], [58], [59] are discussed.
An important focus of the current work is on addressing the
scalability issues, both in terms of the complexity of the robot
model, and the complexity of high-level specifications.

II. MULTI-LAYERED SYNERGISTIC PLANNING

The work on multi-layered synergistic planning is an in-
stantiation of the recently proposed planning paradigm [27],
[58], [59]. The paradigm has been used previously for safety
analysis of hybrid systems with reachability specifications [58]
and for conventional motion planning involving complex mo-
bile robot models and environments [59]. The framework is
inspired by earlier works [61], [62] that introduced a discrete
search component for solving planning problems. The frame-
work introduces a discrete component to the search procedure
by synergistically utilizing the discrete structure present in
the problem. The framework consists of the following steps:
a) Construction of a discrete abstraction for the system, b)

3

High-level planning for the abstraction using the specifications
and the exploration information from the low-level planner, c)
Low-level sampling-based planning using the physical model
and the suggested high-level plans. Note that there is a two-
way exchange of information between the high-level and the
low-level planning layers in steps b) and c). This kind of
synergy helps to systematically convey information regarding
physics of the problem from the low-level layer to the high-
level layer. The constraints arising due to temporal goals are
systematically conveyed to the low-level layer from the high-
level layer using synergy.

The construction of the discrete abstraction and the two-
way synergistic interaction between the layers are critical
issues that affect the overall performance of the approach.
It has been experimentally shown in [27], [28] that in the
absence of synergy, the overall approach does not scale. As
part of ongoing research, Bhatia, Kavraki and Vardi have
been investigating the issue of construction of the discrete
abstraction while trying to answer the following question:
“How should the discrete abstraction be constructed and
explored in the high-level search layer such that the overall
performance of the approach improves?” While the idea of
breaking the planning problem into multiple layers is not new,
the proposed approach differs from related approaches [22],
[24], [25], [61]–[63] in that there is a two-way, synergistic
interaction between different layers of planning.

A. Basic Framework

The instantiation of the multi-layered synergistic framework
used for motion planning is shown in Figure 3. Below is a short
description. For more details the reader is referred to [28], [29].

a) Framework for system and specifications: The robot
is modeled as a dynamical system driven by exogenous inputs
and is denoted by H . The model can be either continuous
or hybrid. In all cases, the robot is assumed to have finite
geometry. The state-space of the system is denoted by S. Let
Π = {p0, p1, p2, . . . , pN} denote the set of boolean atomic
propositions. Each proposition denotes a region of interest in
the workspace for the robot. Every such region is referred to
as a propositional set. p0 denotes the free region of workspace
where no other propositions are true. The planning problems
considered in the work have a finite horizon. A particular class
of LTL formulas called co-safe LTL formulas can be used to
describe finite horizon specifications of the system [64]. Co-
safe LTL formulas are the LTL formulas such that any good
trace satisfying the formula has a finite good prefix. A finite
good prefix for a formula is a finite prefix such that all its
trace extensions satisfy the formula (cf. [64]). The co-safety
formulas are the same as the guarantee formulas introduced
in [65]. The temporal goals considered in the work are
expressed as syntactically co-safe LTL formulas using atomic
propositions. Syntactically co-safe LTL formulas are the LTL
formulas that contain only the Next (X), Until (U), and
Finally (F) operators, when written in positive normal form
(i.e., the negation operator ¬ occurs only in front of atomic
propositions, see [64] for more details). As an example, the

init

1

1
p1

2(p1 & p2)||(p1 & p3)

1

p2||p3

1

Fig. 4: NFA Aφ describing all the finite good prefixes for the
syntactically co-safe LTL formula φ = F (p1 ∧ F (p2 ∨ p3)).

specification described in Figure 1, “In future, visit the region
where p1 is true, and then visit a region where p2 or p3 is true”
can be written as the LTL formula φ = F (p1 ∧ F (p2 ∨ p3)).
Given a syntactically co-safe LTL formula φ, it has been
shown that a Non-deterministic Finite Automaton (NFA) Aφ
can be constructed (with at most exponential blowup) that
describes all the finite good prefixes satisfying φ [64]. For
the LTL formula described above, the corresponding NFA is
shown in Figure 4. It has been shown recently that using
a minimized Deterministic Finite Automaton (DFA) for an
NFA can offer significant computational speedups for model
checking and falsification of temporal specifications for hybrid
systems (cf. [27], [66]). In light of this result, a minimized
DFA is used in the proposed approach.

b) High-level search layer: This is the layer that han-
dles most of the discrete nature of the problem. Given a
robot model H , a discrete abstraction M of the system is
constructed. The abstraction M contains a set D of states
and the transition relations between the abstract states. The
abstraction techniques proposed in [28], [29] are based on
decomposition of the workspace. However, alternate abstrac-
tion techniques that use additional information about the
system (e.g., dynamics) can also be used in the framework.
Given a decomposition of the workspace, the elements of
the decomposition correspond to the states of the abstraction.
The transition relations between abstract states are determined
by using adjacency information among the elements of the
decomposition. Every system state is mapped to an abstract
state by first projecting it onto the workspace and then using
the workspace decomposition to map it to the set D. Further
details on the construction of the discrete abstraction are
presented in Section II-B.

Given a specification φ defined over the set of propositions
Π, the high-level layer searches the product Aφ × M for
promising high-level guides. To construct such guides, ideas
and tools from model checking and graph search algorithms
are used [31]. The idea of using the product Aφ × M for
discrete planning has also been used before [22], [25], [63].
An important difference in the proposed approach is that the
vertices and edges in the graph representation of Aφ × M
are assigned weights. These are used to synergistically convey
the low-level exploration information to the high-level layer.
Every high-level state (z, d) ∈ Aφ × M is assigned a
feasibility estimate ρ(z, d). Here z is a state of Aφ and d
is a state of the abstraction. An edge connecting a pair of
high-level states ((zi, di), (zj , dj)) in Aφ×M is assigned the
weight (ρ(zi, di) ·ρ(zj , dj))

−1. The edge weight estimates the
feasibility of transition between the corresponding high-level

4

 Robot model
 +
 LTL semantics

Sampling-based
 tree search

Solution

High-level guide

Exploration information

 LTL formulaAutomaton

Synergy layer

Problem definition

High-level search layer Low-level search layer

Specification
 Monitor

Discrete abstraction

Discrete search
 over

?

?

Fig. 3: Synergistic multi-layered approach for motion planning with LTL specifications

states (zi, di) and (zj , dj) while respecting the dynamics of
the robot. Further details on the real-valued function ρ are
discussed as part of the synergy layer. A high-level guide is
computed as the shortest path from an initial state of Aφ×M
to the set of accepting states using Dijkstra’s algorithm. To
account for the fact that the weights are an estimate of
feasibility, the high-level search layer also computes a random
path occasionally, which need not be the shortest one.

c) Low-level search layer: A high-level guide ζ con-
structed by the high-level search layer may or may not be
feasible for the robot. This is checked incrementally at the low-
level search layer by exploring the state-space S of the robot.
The suggested high-level guide ζ is used to bias the search
such that the resulting exploration of S improves the chances
of finding a feasible trajectory satisfying the LTL specification
φ. The low-level exploration is done by repeatedly selecting a
high-level state from the high-level plan ζ. The probability of
selecting a high-level state (z, d) is proportional to its feasi-
bility estimate ρ(z, d) (described as part of the synergy layer).
Let V(z, d) denote the set of tree vertices that belong to the
high-level state (z, d). A tree vertex v ∈ V is more likely to be
selected for exploration if it has been explored a fewer number
of times in the past. The search is done for a predetermined
exploration time texplore using highly successful sampling-
based algorithms that build an exploration tree in S while
keeping estimates for the coverage of S. The sampling-based
algorithm used in the current work is similar to the one used
in [27], but others, e.g., [52]–[54], [56], [57] can also be used.
It is also possible to incorporate control-theoretic techniques
(e.g., maneuver automaton for systems with symmetries [15])
into the low-level planning layer. The low-level search layer
passes the exploration information to the synergy layer. For
a given high-level state (z, d), the exploration information
comprises of the coverage estimate (REGION COVERAGE(d)),
past exploration history (PAST HISTORY(z, d)), and the total
volume of all system states that map to the high-level state
(z, d) (REGION VOLUME(d)). Computation of each of these
terms is discussed in detail as part of the synergy layer. The
low-level layer also uses the automaton Aφ as a specification
monitor to identify when a feasible trajectory has been found

during the sampling-based exploration using the acceptance
condition of the automaton and the sampling-based search tree.
For further details, the reader is referred to [28], [29].

d) Synergy layer: The synergy layer is responsible for
aggregating the information provided by the low-level search
layer to information that can be used by the high-level search
layer. A synergistic interaction between the different search
layers is facilitated by using the feasibility estimate ρ(z, d)
associated with each high-level state (z, d) ∈ Aφ ×M . The
feasibility estimates capture the constraints arising due to dy-
namics of the system and the LTL specification, through com-
bination of the coverage estimate (REGION COVERAGE(d)),
past exploration history (PAST HISTORY(z, d)), total volume
of all system states that map to the high-level state (z, d)
(REGION VOLUME(d)), and the shortest distance of z from
an accepting state of the automaton Aφ in terms of number of
transitions (AUTOMATON COST(z)). Given a high-level state
(z, d), the feasibility estimate ρ(z, d) is a real-valued function
of the following form:

ρ(z, d) ∝ REGION COVERAGE(d) · REGION VOLUME(d)

AUTOMATON COST(z) · PAST HISTORY(z, d)
.

The functional form of the feasibility estimate is based on
our investigations and previous experience of using such
estimates. However, this is not the only possible instantiation.
Further improvements could be made to the synergy layer,
e.g., by accounting for the dynamics and the actuation limits
of the system in the estimate. A variety of techniques to
estimate coverage have been proposed in sampling-based
motion planning literature, e.g., by overlaying a uniform grid
over state-space [58] or using notions of dispersion [67],
discrepancy [67]–[69], star discrepancy [57], and mutual dis-
tance [70]. In our work, we estimate coverage by imposing
a grid on the workspace of the robot. The past-exploration
history PAST HISTORY(z, d) is estimated by evaluating the
number of times the high-level state (z, d) has been previously
selected for exploration by the low-level search layer. The
volume of a set of continuous states corresponding to the
abstract state d is computed either exactly or approximately.
As discussed earlier, an edge connecting a pair of high-level
states ((zi, di), (zj , dj)) in Aφ × M is assigned the weight

5

(ρ(zi, di) · ρ(zj , dj))
−1.

If a solution is found, the search stops and the solution
is returned, else the low-level layer continues the exploration
with a new high-level guide suggested by the high-level
layer, based on updates to feasibility estimates from the last
iteration. The overall search is conducted for a predetermined
exploration time tmax.

B. Construction and Exploration of Discrete Abstraction

The construction and exploration of the discrete abstraction
are critical issues that affect the overall performance of the
approach. One of the main reasons for using a discrete abstract
model for solving the problem is to make a quick guess of
a possible solution using the discrete abstraction and then
explore its feasibility for the robot model in the low-level
search layer. In previous work [27], the discrete abstraction
was treated as a user-supplied input. The benchmark problems
considered did not involve geometric constraints, and the
problem was set up such that the abstraction was easy to
construct.

As part of ongoing work [28], [29], these issues have been
investigated in detail. A geometry-based approach has been
proposed for the construction of the discrete abstraction that is
based on decomposition of the workspace of the robot. While
there are many ways to decompose a given workspace, the
effectiveness of the abstraction is directly related to the kind
of properties it preserves from the exact robot model. A well-
defined decomposition should ensure that the propositions
are well defined for the abstraction (called as proposition-
preserving decomposition, [25]). The simplest proposition-
preserving decomposition is the one that is induced by the set
of propositions and ignores the geometry of the specifications.
Such a decomposition is called as geometry ignoring. Every
element of 2Π is represented by at most one element of
the geometry-ignoring decomposition. The elements of the
decomposition correspond to the states of the abstraction. The
transition relations between abstract states are determined by
checking intersection of propositional sets. While such an
abstraction is relatively easy to construct, experimental results
indicate that there is a significant computational advantage in
using decompositions that take into account the geometry of
the specifications.

The proposed approach for constructing the discrete ab-
straction uses the geometry of the specifications and the
workspace2. The geometry of the workspace is used by
triangulating it. We call such an abstraction geometry using.
The workspace is given as a Planar Straight Line Graph
(PSLG) to a mesh generation package (we use the Triangle
package [71]). A PSLG is made of vertices and segments.
Segments are edges whose endpoints are vertices in the PSLG,
and whose presence in any mesh generated from the PSLG
is enforced. Holes correspond to the regions that cannot be
triangulated. To ensure that the resulting decomposition is
proposition-preserving, the sets describing propositions are
given as segments. The obstacles are given as holes. Based on

2The geometry of specifications and the workspace is described by the sets
describing the propositions and the obstacles.

Regions of interest Obstacles

(a) Workspace

Decomposition using triangulation

(b) Decomposition

Fig. 5: (a) Workspace with seven propositions. The sets shown in
blue are labeled with propositions. (b) Triangulation-based decompo-
sition of the workspace. The triangulation-based decomposition was
done using conforming Delaunay triangulation and resulted in 618
elements in the decomposition. See also Section II-B and [28].

previous experience in solving conventional motion planning
problems [59], the workspace is triangulated using conform-
ing Delaunay triangulation. One such decomposition for the
example is shown in Figure 5.

The dual graph of the triangulation is used to construct
transition relations between abstract states. It must be re-
marked here that the idea of using a triangulation-based
decomposition of the workspace has been used before (cf. [25],
[45]). However, the abstractions used in [25], [45] need to
satisfy the bisimilarity property [72], while in our work, this
is not required.

The use of geometry for constructing the discrete abstrac-
tions results in abstractions that are larger in size. As an exam-
ple, for the problem instance shown in Figure 5, the geometry-
ignoring abstraction has 8 states while the triangulation-based
decomposition shown in Figure 5 results in an abstraction with
618 states. To effectively utilize such abstractions in the high-
level layer, it is also important to conduct the high-level search
efficiently. The high-level search technique proposed in [27]
(referred to as reinitialized-search technique) always starts the
search from initial states of the automaton (say z0) and the
abstraction (say d0). This can be expensive for the cases when
the size of search space (Aφ ×M) is big. To reduce the time
spent on high-level search, a lazy-search technique has been
proposed in [29] that starts the search from (z0, d0) only
when other candidate high-level states that have been used
previously do not look promising. Instead of reinitializing the
search from (z0, d0) every time a new high-level plan is being
constructed, the lazy-search initializes search from previously
explored high-level states. This effectively means that portions
of previously explored plans are reused.

C. Experiments

The proposed ideas have been tested for solving motion
planning problems involving nonlinear robot models, complex
environments with obstacles, and a variety of LTL specifica-
tions.

Second-order models of a car, a unicycle, and a differential
drive, have been used as robot models in the experiments.
These models are rich enough to capture the key aspects of the
dynamics and have been extensively used for benchmarking

6

planning algorithms for mobile robots. The readers are referred
to [28], [29] for more details.

To evaluate the effect of specifications on performance,
three different types of LTL formulas have been considered in
the experiments. The first type of formulas are the coverage
formulas φ

nop
cov . nop ∈ [1, 7] is the number of temporal

operators in the formula. The coverage formulas deal with
visiting a given set of regions in the workspace without
imposing any constraints on the order of visits. The formula
φ = Fp1 ∧ Fp2 is a coverage formula with two temporal
operators. A second set of formulas we have considered are
the sequencing formulas φnop

seq . The sequencing formulas deal
with visiting a given set of regions in the workspace in a given
order. The formula φ = F (p1∧F (p2)) is a sequencing formula
with two temporal operators. A third class of formulas we have
considered are the strict sequencing formulas φnop

st seq. The strict
sequencing formulas deal with visiting a given set of regions in
the workspace in a given order that is to be respected strictly.
The formula φ = F (p1∧((p0∨p1)Up2)) is a strict sequencing
formula with two temporal operators. Note that U denotes
the strict until operator in the strict sequencing formula. For
constructing the automaton, we have used the tool scheck [73].
The coverage formulas typically result in the largest automaton
and the sequencing formulas in the smallest automaton. As an
example, φ7

cov results in an automaton with 128 states and
2186 transitions, φ7

seq results in an automaton with 8 states
and 35 transitions and φ7

st seq results in an automaton with 29
states and 569 transitions.

A comparison of performance obtained by using and ignor-
ing geometry in the construction of the abstraction is shown
in Figure 6. The results indicate that the performance of the
approach is affected by not only the length of the formula but
also the type of temporal operators in the formula. Problems
involving coverage formulas (φnop

cov) with about 6-7 temporal
operators take the longest to solve.

Even though the discrete abstraction can be constructed
by ignoring the geometry of the specifications, there is a
significant improvement in performance if the abstraction is
constructed using the geometry of the specifications. For the
case of sequencing (φnop

seq) and strict sequencing formulas
(φnop

st seq), geometry-based abstractions result in speedup of up
to 3-4 times. For the challenging case of coverage specifi-
cations (φnop

cov) with many temporal operators, the speedup
obtained is about 50%. The results indicate that geometry-
based abstractions certainly result in significant improvement
in computational efficiency. The relatively modest improve-
ment in performance for coverage formulas also motivates
the need for an efficient high-level search. Although the lazy
high-level search is not used in the experimental results shown
in Figure 6, further experiments involving robot models with
hybrid dynamics indicate that for best overall performance,
geometry-using abstractions should be used together with
lazy high-level search [29]. A brief discussion of related
work is provided in Section II-D. We wish to remark here
that the standard deviation in all our experimental results
is high (similar magnitude as the means). We are currently
investigating the underlying cause for the high variance in
performance, and plan to address it as part of ongoing research.

1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

Number of temporal operators

M
e
a
n
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

Baseline approach

Geometry−using abstraction

Lazy high−level search

Geometry−using abstraction AND Lazy high−level search

Fig. 7: A combination of geometry-using abstractions and lazy high-
level search can result in speedups of close to 10 times when
compared to the baseline approach. The baseline approach is the one
that uses geometry-ignoring abstraction and reinitialized high-level
search. See also Section II-D and [29].

D. Other Instantiations of the Multi-layered Framework

Although the discussion so far has focused on motion
planning problems with continuous robot dynamics and high-
level goals described using LTL, this is by no means the
only instantiation of the proposed multi-layered synergistic
framework.

An instantiation of the framework for the case when the
robot dynamics are hybrid has been proposed in [29], and
the performance improvements obtained by using different
combinations of geometry-using abstractions and lazy high-
level search have been investigated. Computational results are
shown in Figure 7 for coverage formulas. The hybrid robotic
benchmark used in the experiments is as follows. The robot
model has four discrete modes and three guard sets in each
discrete mode. For each mode, the robot is modeled as either
a second-order car, a unicycle or a differential drive with finite
geometry. The workspace in each discrete mode has obstacles
and the robot geometry is finite. The guards, invariants,
obstacles, and the propositional sets are all polygons in the
workspace. All the computation times are reported in seconds
as average over 40 test runs. The maximum time allocated for
each simulation tmax was set to 1200 seconds. For the test runs
when no solution was found, we have used the upper bound
on simulation time tmax. The geometry-ignoring abstraction
has 35 states while the geometry-using abstraction has 706
states. As in the case of continuous robot models, the standard
deviation in our experimental results is high.

The baseline approach is the one that uses geometry-
ignoring abstraction and reinitialized high-level search (see
also Section II-B). The experimental results of Figure 7 and
more generally [29] indicate that the best performance is
obtained when geometry-using abstractions are used in com-
bination with lazy high-level search. In fact, for the coverage
formula with 7 temporal operators, the resulting speedup is
close to 10 times. For further details the readers are referred
to [29].

7

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

Number of temporal operators

M
e
a
n
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

Geometry−ignoring abstraction

Geometry−using abstraction

(a) Coverage

1 2 3 4 5 6 7
0

50

100

150

200

Number of temporal operators

M
e
a
n
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

Geometry−ignoring abstraction

Geometry−using abstraction

(b) Sequencing

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

Number of temporal operators

M
e
a
n
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
e
c
)

Geometry−ignoring abstraction

Geometry−using abstraction

(c) Strict Sequencing

Fig. 6: Performance comparison of the benefits of using geometry to construct the discrete abstraction. The workspace used in the experiments
is shown in Figure 5. The geometry-ignoring abstraction had 8 states while the geometry-using abstraction had 618 states. All the computation
times are reported in seconds as average over 40 test runs. The maximum time allocated for each simulation tmax was set to 900 seconds.
For the test runs when no solution was found, we have used the upper bound on simulation time tmax. See also Section II-C and [28].

The proposed ideas can also be used directly for safety anal-
ysis of hybrid and robotic system involving LTL specifications.
In fact, the first instantiation of the framework in [27] has
been used for safety falsification of hybrid systems with LTL
specifications. Falsification studies the following problem:
“Can a feasible trajectory for the system be constructed such
that the trajectory violates a given safety condition?” Such
a trajectory is called a counterexample trajectory. The safety
conditions assert that nothing bad happens to the system.
Falsification is often the focus of model checking in industrial
applications [74]. Experience with industrial formal verifi-
cation has shown that the ability to exhibit counterexample
trajectories is often the most useful part of formal verification,
since it provides designers with scenarios that they did not
consider possible [75].

An instantiation of the multi-layered synergistic framework
has been used for reachability-based falsification problems
involving hybrid systems with a large number of discrete
modes (up to a million) and nonlinear dynamics in each
discrete mode in [58]. The approach significantly outperforms
single-layered approaches (by orders of magnitude) .

The work on reachability-based falsification for hybrid
systems in [58] has inspired an instantiation of the multi-
layered synergistic planning paradigm for solving traditional
motion planning problems in [59]. The approach treats the
motion planning problem as a search problem in a hybrid
space (consisting of both continuous and discrete components)
instead of a purely continuous space. The continuous search
is conducted in the state-space of the system. The discrete
search is conducted over an abstraction that is constructed by
decomposing the workspace of the robot using the geometry
of the environment. The approach is shown to outperform
existing single-layered sampling-based planners by up to two
orders of magnitude.

III. DISCUSSION

In this paper, an approach for solving motion planning prob-
lems involving mobile robots with nonlinear hybrid dynamics
and finite geometry, obstacles in the workspace, and high-
level temporal goals has been described. The approach uses an

instantiation of the multi-layered synergistic framework pro-
posed in [27] while addressing two key issues: the construction
of the discrete abstraction and its efficient exploration in the
high-level search layer. Based on experimental results, the use
of geometry for the construction of the discrete abstraction
is advocated [28], [29]. For best performance, it is also
recommended to explore such abstractions using efficient high-
level search techniques.

As we discussed in Section II-C, an important area of con-
cern in our current work is the high variance in performance
results. As part of ongoing research, we are investigating this
issue. There are several possible directions for future research.
First, the specifications in [28], [29] are described over the
workspace of the robot. Extensions of the proposed ideas to
problem instances involving specifications in the state-space of
the robotic system should be investigated. Second, as part of
our current work we have advocated the use of geometry-based
abstractions. Further significant improvements in performance
could be obtained by taking into account the dynamics of the
system. It may be possible to improve the performance of
the approach even further by using pre-designed controllers in
the low-level search layer. A third direction of research is on
extending the framework to motion planning with optimal cost
trajectories. Extension of the framework to a broader class of
hybrid and robotic systems with a larger number of discrete
modes remains an area for future research as well.

IV. ACKNOWLEDGMENTS

We would like to thank Y. Lustig and E. Plaku for many
useful comments and suggestions. The research leading to this
work was supported in part by NSF CCF 1018798, NSF IIS
0713623, NSF DUE 0920721, U.S. ARL W911NF-09-1-0383,
NSF EIA-0216467, and a partnership between Rice University,
Sun Microsystems, and Sigma Solutions.

REFERENCES

[1] H. Choset, K. M Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms,
and Implementations. 2005.

8

[2] S. M. LaValle. Planning Algorithms. Cambridge University Press, 1st
edition, 2006.

[3] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Artificial Intelligence,
2(3-4):189 – 208, 1971.

[4] Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic
Transactions on AI, 3, 1998.

[5] M. Ghallab, C. K. Isi, S. Penberthy, D. E. Smith, Y. Sun, and D. Weld.
PDDL - the planning domain definition language, 1997.

[6] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and
Practice. Morgan Kaufmann Publishers, 2004.

[7] K. Hauser and J.-C. Latombe. Integrating task and PRM motion
plannning. In International Conference on Automated Planning and
Scheduling, 2009. Workshop on Bridging the Gap between Task and
Motion Planning.

[8] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion
planning in the now. In IEEE International Conference on Robotics and
Automation, 2010. Workshop on Mobile Manipulation.

[9] E. Plaku and G. D. Hager. Sampling-based motion and symbolic
action planning with geometric and differential constraints. In IEEE
International Conference on Robotics and Automation, pages 5002–
5008, Anchorage, AK, 2010.

[10] J. Wolfe, B. Marthi, and S. J. Russell. Combined task and motion
planning for mobile manipulation. In R. I. Brafman, H. Geffner,
J. Hoffmann, and H. A. Kautz, editors, International Conference on
Automated Planning and Scheduling, pages 254–258. AAAI, 2010.

[11] I. A. Şucan and L. E. Kavraki. Mobile manipulation: Encoding motion
planning options using task motion multigraphs. In IEEE International
Conference on Robotics and Automation, 2011.

[12] R.W. Brockett. On the computer control of movement. In IEEE
International Conference on Robotics and Automation, volume 1, pages
534 –540, April 1988.

[13] V. Manikonda, P. S. Krishnaprasad, and J. Hendler. A motion de-
scription language and a hybrid architecture for motion planning with
nonholonomic robots. In IEEE International Conference on Robotics
and Automation, volume 2, pages 2021 –2028, May 1995.

[14] M. Egerstedt, T. Murphey, and J. Ludwig. Motion programs for puppet
choreography and control. In A. Bemporad, A. Bicchi, and G. C.
Buttazzo, editors, Hybrid Systems: Computation and Control, volume
4416 of LNCS, pages 190–202. Springer-Verlag, Berlin, Heidelberg,
2007.

[15] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion
planning for nonlinear systems with symmetries. IEEE Transactions
on Robotics, 21(6):1077–1091, 2005.

[16] Giuseppe De Giacomo and Moshe Y. Vardi. Automata-theoretic ap-
proach to planning for temporally extended goals. In Susanne Biundo
and Maria Fox, editors, European Conference on Planning, volume 1809
of LNCS, pages 226–238. Springer, 1999.

[17] M. Antoniotti and B. Mishra. Discrete event models + temporal logic
= supervisory controller:automatic synthesis of locomotion controllers.
IEEE International Conference on Robotics and Automation, 2:1441 –
1446, 1995.

[18] S. G. Loizou and K. J. Kyriakopoulos. Automatic synthesis of multi-
agent motion tasks based on LTL specifications. In IEEE Conference
on Decision and Control, volume 1, pages 153–158 Vol.1, 2004.

[19] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas. Symbolic planning and control of robot motion: State of the
art and grand challenges. IEEE Robotics and Automation Magazine,
14(1):61–70, March 2007.

[20] D. C. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G. J. Pappas.
Valet parking without a valet. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 572–577, San Diego, CA, October
2007. IEEE.

[21] Hadas Kress-Gazit, David C. Conner, Howie Choset, Alfred A. Rizzi,
and George J. Pappas. Courteous cars: Decentralized multi-agent traffic
coordination. Robotics and Automation Magazine, 15(1):30–38, 2008.

[22] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transactions
on Automatic Control, 53(1):287–297, 2008.

[23] S. Karaman and E. Frazzoli. Complex mission optimization for multiple-
UAVs using linear temporal logic. In American Control Conference,
pages 2003–2009, 2008.

[24] S. Karaman and E. Frazzoli. Sampling-based motion planning with
deterministic µ-calculus specifications. In IEEE Conference on Decision
and Control, pages 2222–2229, 2009.

[25] G. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal
logic motion planning for dynamic robots. Automatica, 45:343–352,
2009.

[26] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon
temporal logic planning for dynamical systems. In IEEE Conference on
Decision and Control, pages 5997–6004, 2009.

[27] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Falsification of LTL safety
properties in hybrid systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 5505
of LNCS, pages 368–382. Springer-Verlag, 2009.

[28] A. Bhatia, L. E. Kavraki, and M. Y. Vardi. Sampling-based motion
planning with temporal goals. In IEEE International Conference on
Robotics and Automation, pages 2689–2696, 2010.

[29] A. Bhatia, L. E. Kavraki, and M. Y. Vardi. Motion planning with hybrid
dynamics and temporal goals. In IEEE Conference on Decision and
Control, pages 1108–1115, 2010.

[30] M. Kloetzer and C. Belta. Temporal logic planning and control of robotic
swarms by hierarchical abstractions. IEEE Transactions on Robotics,
23:320–330, 2007.

[31] M. Y. Vardi. An automata-theoretic approach to linear temporal logic.
In the VIII Banff Higher order workshop conference on Logics for
concurrency : structure versus automata, pages 238–266. Springer-
Verlag New York, Inc., 1996.

[32] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. 2000.
[33] A. Pnueli. The temporal logic of programs. In SFCS ’77, pages 46–57.

IEEE Computer Society, 1977.
[34] E. A. Emerson and E. M. Clarke. Using branching time temporal

logic to synthesize synchronization skeletons. Science of Computer
Programming, 2(3):241–266, 1982.

[35] D. Kozen. Results on the propositional µ-calculus. In Proceedings of
the 9th Colloquium on Automata, Languages and Programming, pages
348–359, London, UK, 1982. Springer-Verlag.

[36] J. Davoren, V. Coulthard, N. Markey, and T. Moor. Non-deterministic
temporal logics for general flow systems. In R. Alur and G. J. Pappas,
editors, Hybrid Systems: Computation and Control, volume 2993 of
LNCS, pages 280–295. Springer, 2004.

[37] J. M. Davoren and P. Tabuada. On simulations and bisimulations of
general flow systems. In A. Bemporad, A. Bicchi, and G. C. Buttazzo,
editors, Hybrid Systems: Computation and Control, volume 4416 of
LNCS, pages 529–542. Springer, 2007.

[38] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126:183–235, April 1994.

[39] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems. In R. Grossman, A. Nerode, A. Ravn, and H. Rischel, editors,
Hybrid Systems, volume 736 of LNCS, pages 209–229. Springer Berlin
/ Heidelberg, 1993.

[40] G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems.
Mathematics of Control, Signals, and Systems, 13:1–21, 2000.

[41] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88(7):971
–984, July 2000.

[42] P. Tabuada and G. J. Pappas. Hybrid abstractions that preserve timed
languages. In M. D. Benedetto and A. L. Sangiovanni-Vincentelli,
editors, Hybrid Systems: Computation and Control, volume 2034 of
LNCS, pages 501–514. Springer, 2001.

[43] E. Haghverdi, P. Tabuada, and G. J. Pappas. Bisimulation relations for
dynamical and control systems. Electr. Notes Theor. Comput. Sci., 69,
2002.

[44] E. Haghverdi, P. Tabuada, and G. J. Pappas. Bisimulation relations for
dynamical, control, and hybrid systems. Theor. Comput. Sci., 342(2-
3):229–261, 2005.

[45] C. Belta, V. Isler, and G. J. Pappas. Discrete abstractions for robot mo-
tion planning and control in polygonal environments. IEEE Transactions
on Robotics, 21, 2005.

[46] P. Tabuada. Approximate simulation relations and finite abstractions
of quantized control systems. In A. Bemporad, A. Bicchi, and G. C.
Buttazzo, editors, Hybrid Systems: Computation and Control, volume
4416 of LNCS, pages 529–542. Springer, 2007.

[47] A. Girard and G. J. Pappas. Approximation metrics for discrete
and continuous systems. Automatic Control, IEEE Transactions on,
52(5):782–798, May 2007.

[48] A. Girard. Approximately bisimilar finite abstractions of stable linear
systems. In A. Bemporad, A. Bicchi, and G. C. Buttazzo, editors, Hybrid
Systems: Computation and Control, volume 4416 of LNCS, pages 231–
244. Springer, 2007.

9

[49] A. Girard, A. Agung Julius, and G. J. Pappas. Approximate simula-
tion relations for hybrid systems. Discrete Event Dynamic Systems,
18(2):163–179, 2008.

[50] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(10):2508–2516,
2008.

[51] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic
models for incrementally stable switched systems. In M. Egerstedt and
B. Mishra, editors, Hybrid Systems: Computation and Control, volume
4981 of LNCS, pages 201–214. Springer, 2008.

[52] A. Bhatia and E. Frazzoli. Incremental search methods for reachability
analysis of continuous and hybrid systems. In R. Alur and G. J. Pappas,
editors, Hybrid Systems: Computation and Control, volume 2993 of
LNCS, pages 142–156. Springer, 2004.

[53] J. Kim, J. M. Esposito, and V. Kumar. An RRT-based algorithm for
testing and validating multi-robot controllers. In RSS’05, 2005.

[54] M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan. Sampling-
based planning, control and verification of hybrid systems. Control
Theory and Applications, IEEE Proceedings -, 153(5):575–590, 2006.

[55] A. Bhatia and E. Frazzoli. Sampling-based resolution-complete algo-
rithms for safety falsification of linear systems. In M. Egerstedt and
B. Mishra, editors, Hybrid Systems: Computation and Control, volume
4981 of LNCS, pages 606–609. Springer, 2008.

[56] T. Dang, A. Donze, O. Maler, and N. Shalev. Sensitive state-space
exploration. In IEEE CDC’08, pages 4049–4054. IEEE, Dec. 2008.

[57] T. Dang and T. Nahhal. Coverage-guided test generation for continuous
and hybrid systems. Formal Methods in System Design, 34(2):183–213,
2009.

[58] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Hybrid systems: from
verification to falsification by combining motion planning and discrete
search. Formal Methods in System Design, 34(2):157–182, 2009.

[59] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Motion planning with
dynamics by a synergistic combination of layers of planning. IEEE
Transactions on Robotics, 26(3):469–482, 2010.

[60] P. Cheng and V. Kumar. Sampling-based falsification and verification of
controllers for continuous dynamic systems. In Algorithmic Foundations
of Robotics VII, 2006.

[61] R. Alami, J. P. Laumond, and T. Siméon. Two manipulation planning
algorithms. In Algorithmic Foundations of Robotics, pages 109–125,
1995.

[62] C. L. Nielsen and L. E. Kavraki. A two level fuzzy PRM for manip-
ulation planning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 3, pages 1716–1721, 2000.

[63] P. Tabuada and G. J. Pappas. Linear time logic control of discrete-time
linear systems. IEEE Transactions on Automatic Control, 51(12):1862–
1877, 2006.

[64] O. Kupferman and M. Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19:291 – 314, 2001.

[65] E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of temporal
property classes. In Proceedings of the 19th International Colloquium
on Automata, Languages and Programming, ICALP ’92, pages 474–486,
London, UK, 1992. Springer-Verlag.

[66] R. Armoni, S. Egorov, R. Fraer, D. Korchemny, and M. Y. Vardi. Effi-
cient LTL compilation for SAT-based model checking. In Proceedings
of the IEEE/ACM International Conference on Computer-aided design,
pages 877–884, Washington, DC, USA, 2005. IEEE Computer Society.

[67] S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relationship
between classical grid search and probabilistic roadmaps. International
Journal of Robotics Research (to appear), 23:673–692, 2004.

[68] J. Matousek. Geometric Discrepancy. Springer-Verlag, Berlin, 1999.
[69] S. Tezuka. Quasi-Monte Carlo: The discrepancy between theory and

practice. In K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors,
Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 124–140.
Springer-Verlag, Berlin, 2002.

[70] S. R. Lindemann, A. Yershova, and S. M. LaValle. Incremental grid
sampling strategies in robotics. In M. Erdmann, D. Hsu, M. Overmars,
and A. F. van der Stappen, editors, Algorithmic Foundations of Robotics,
VI. Springer-Verlag, Berlin, 2005.

[71] J. Shewchuk. Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator. In Applied Computational Geometry Towards
Geometric Engineering, volume 1148 of LNCS, chapter 23, pages 203
– 222. Springer-Verlag, 1996.

[72] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88:971 – 984,
2000.

[73] T. Latvala. Efficient model checking of safety properties. In Model
Checking Software, volume 2648 of LNCS, pages 74–88. Springer, 2003.

[74] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
Moshe Y. Vardi. Benefits of bounded model checking at an industrial
setting. In CAV ’01: Proceedings of the 13th International Conference
on Computer Aided Verification, pages 436–453, London, UK, 2001.
Springer-Verlag.

[75] E. M. Clarke and H. Veith. Counterexamples revisited: Principles,
algorithms, applications. In Verification: Theory and Practice, volume
2772 of LNCS, pages 208–224. Springer, 2003.

