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Abstract

Background: Structural variations caused by a wide range of physico-chemical and biological sources directly
influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic
binding site residues can be loosely defined as a substructure of the protein. Comparative analysis of
drug-receptor substructures across and within species has been used for lead evaluation. Substructure-level
similarity between the binding sites of functionally similar proteins has also been used to identify instances of
convergent evolution among proteins. In functionally homologous protein families, shared chemistry and
geometry at catalytic sites provide a common, local point of comparison among proteins that may differ
significantly at the sequence, fold, or domain topology levels.
Results: This paper describes two key results that can be used separately or in combination for protein
function analysis. The Family-wise Analysis of SubStructural Templates (FASST) method uses all-against-all
substructure comparison to determine Substructural Clusters (SCs). SCs characterize the binding site
substructural variation within a protein family. In this paper we focus on examples of automatically determined
SCs that can be linked to phylogenetic distance between family members, segregation by conformation, and
organization by homology among convergent protein lineages. The Motif Ensemble Statistical Hypothesis
(MESH) framework constructs a representative motif for each protein cluster among the SCs determined
by FASST to build motif ensembles that are shown through a series of function prediction experiments to
improve the function prediction power of existing motifs.
Conclusions: FASST contributes a critical feedback and assessment step to existing binding site substruc-
ture identification methods and can be used for the thorough investigation of structure-function relationships.
The application of MESH allows for an automated, statistically rigorous procedure for incorporating structural
variation data into protein function prediction pipelines. Our work provides an unbiased, automated assess-
ment of the structural variability of identified binding site substructures among protein structure families and
a technique for exploring the relation of substructural variation to protein function. As available proteomic
data continues to expand, the techniques proposed will be indispensable for the large-scale analysis and
interpretation of structural data.
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Background
Understanding the link between protein structure and pro-
tein function is a fundamental problem that underlies
diverse application areas including drug target identifi-
cation, protein function prediction, and structure-based
evolutionary analysis. The specific few amino acids that
mediate the drug-binding affinity of targeted binding sites
are an example of a substructure within a protein. The cat-
alytic substructures of enzymatic proteins are intrinsically
linked to enzyme function [1–4], and establishing a mech-
anistic understanding of how specific structural features
affect protein function is a central problem in structural
genomics [5]. The analysis of the physico-chemical prop-
erties of the few amino acids constituting these substruc-
tures, common to families of functionally related proteins,
can provide direct insight to the structural features that
dictate a particular enzymatic function [2]. For example,
the family of serine proteases is a well-established case of
a common functional substructure, the HIS-ASP-SER cat-
alytic triad, dictating a common function in the absence
of sequence or fold similarity between chymotrypsins,
subtilisins, and lipases [6, 7]. Conversely, in the case
of TIM barrel proteins which share fold similarity, dif-
fering functional substructures within the catalytic site
confer differing functions [8]. Therefore, because these
functional substructures are essential determinants of pro-
tein function, computational approaches to analyze and
compare substructures among proteins can provide funda-
mental insight to the molecular mechanisms that mediate
protein function [1, 9].

Protein substructures can be represented as motifs
(templates) that abstract the functionally import residues
of binding sites. Comparing conserved binding site
substructures among all proteins within an enzymatic
family can reveal high-level structural trends that may
not be apparent if only considering pairs of proteins.
The Family-wise Analysis of SubStructural Templates
(FASST) method introduced in this work identifies Sub-
structural Clusters (SCs) by comparing the binding site
substructures among all proteins within a family. The
SCs identified by FASST are demonstrated to reveal sub-
structural patterns that can be associated with phylogeny,
conformation change, and homology. Motif Ensemble
Statistical Hypothesis testing (MESH), the second method
introduced here, exploits the SCs output by FASST to con-
struct multi-structure ensembles of motifs that are shown
to have increased function prediction power compared
to single-structure motifs. Together, FASST-MESH pro-
vides an automated approach for identifying patterns of
substructure variation among large numbers of proteins
and a method for enriching existing substructure motifs.

Substructure analysis is of practical importance for
identifying proteomic drug targets, finding potential drug
side-effects, predicting protein function, and evolutionary
analysis. Binding site substructures have been considered
“receptor-based pharmacophores” [10], allowing a spe-
cific few amino acids to indicate likely interaction with a
specific ligand-based pharmacophore. Substructural simi-
larity at ligand-binding sites among proteins is indicative
of similarity in ligand- and drug-binding properties [3, 4].
Exploitation of this property has been applied recently to
identify new targets for existing drugs [11] and to com-
putationally analyze potential drug side-effects [10, 12].
Specifically, cross-species substructure analysis of bind-
ing sites among families of functionally homologous pro-
teins can play an important role in lead evaluation [10,13],
and therefore computational approaches to analyze family-
wise substructural variation are particularly relevant for
modern drug development.

Furthermore, substructure comparison of catalytic
sites among proteins has been shown to be a powerful
technique for predicting the function of protein struc-
tures [7, 14, 15] and is an important component of struc-
tural genomics initiatives that seek to map and function-
ally annotate the space of protein structures [5, 16]. Fi-
nally, enzymes evolve under selective pressure to maintain
biologically necessary functions [17], and functional sub-
structure conservation in the absence of sequence of fold
conservation has been established [18,19]; substructure
comparison may be the only way to establish homology
between proteins that have significantly diverged in both
sequence and fold [20]. This work contributes two new
computational methods for family-wise substructure anal-
ysis that contribute novel approaches to examining protein
substructures. Given the biological relevance of substruc-
ture analysis and the proliferation of available structures
in the Protein Data Bank (PDB) [21], computational ap-
proaches to substructure analysis can make meaningful
contributions to our understanding of proteomics.

Computational methods for finding functionally sig-
nificant substructures and methods for comparing sub-
structures to identify biologically relevant proteins with
matching substructures are two complementary compo-
nents of substructure analysis. As far as approaches capa-
ble of finding substructures are concerned, earlier work in-
cludes ligand-binding cavity identification (CavBase [22],
CASTp [23]), structural pattern recognition (GASPS [9],
FEATURE [24], FLORA [25]), computational scanning
mutagenesis (SNAP [26]), evolutionary analysis (ET [27],
ConSurf [28]), expert knowledge (CSA [29]), and au-
tomatically curated databases (LigBase [30], SFLD [2],
LigASite [31]). Substructures identified by these meth-
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ods can be computationally represented, either in full
or in part, by motifs that model both the geometric and
physico-chemical properties of a given substructure. Com-
putationally identifying substructure matches in other pro-
teins with statistically significant similarity to a motif can
indicate that a matched protein may share functional char-
acteristics with the motif [7]. Diverse approaches to motif
search and/or comparison have been developed and in-
clude: SPASM [32], ASSAM [33], PINTS [34], Jess [15],
SiteEngine [35], Query3D [36], ProFunc [37, 38], Pro-
Know [39], SitesBase [40], GIRAF [41], MASH [42],
LabelHash [43], SOIPPA [20], FEATURE [24], and
pevoSOAR [44] to name a few. In general, designing
high-quality motifs that accurately capture the functional
essence of a substructure is critical and the (success-
ful) performance of motif-driven substructure comparison
methods depends directly on the biological relevance of
input motifs. The described work complements both the
identification and comparison of motifs in novel ways.

This paper departs both from finding functionally sig-
nificant substructures and from comparing substructures
to identify biologically relevant matching proteins. The
approach presented here combines substructure compari-
son, unsupervised learning, dimensionality reduction and
non-parametric statistical analysis to partition function-
ally homologous protein families into SCs based upon
substructural similarity. This work demonstrates an auto-
mated approach that could be used to augment existing
substructure motifs already available in repositories such
as the Catalytic Site Atlas [29] by geometrically enriching
motifs for families that exhibit high structural variability.
As both the number and diversity of available structures
for a given protein family continue to increase, the en-
hancement of substructure-based functional annotation
methods to accommodate large families is necessary. The
automated enrichment of available motifs strengthens the
function prediction power of these motifs and facilitates
the use of substructure-based analysis methods for large-
scale, automated annotation of novel structures.

The biological relevance of the functional substruc-
tures modeled by motifs can be exploited for ex-
ploratory investigations of the role and structural con-
servation/variation of a substructure within a large protein
family; we demonstrate the utility of this approach using
FASST by comparing the SCs output by FASST to biolog-
ical ontologies such as phylogeny. Furthermore, selecting
a single-structure motif as a consensus model of a family-
wide functional substructure can prove difficult [1] when
functionally conserved protein families become large and
species-diverse. The MESH framework transforms single-
structure motifs into motif ensembles to account for in-

creasing family-wide substructural diversity and provides
a robust procedure for identifying statistically significant
matches to the motif ensemble as a whole. FASST and
MESH directly contribute to substructure-based analysis
by providing a motif assessment and refinement proce-
dure. FASST provides an additional avenue of exploratory
investigation for selected substructures within a family of
interest.

FASST proceeds as follows. For a given enzyme fam-
ily, a substructure motif of the catalytic site is first defined
from a literature reference or other source of substruc-
ture motifs [9, 22, 23, 26, 29–31, 40]. Instances of the
motif are then identified in each family member struc-
ture by a substructure search algorithm—LabelHash in
this paper [43]. Next, all-against-all pairwise Least Root
Mean Square Deviation (LRMSD) distance comparisons
are computed between family members. The LRMSD
of the catalytic site substructure from a given protein to
the remainder of the family then encodes the family-wise
relationship of the family members to one another as vec-
tors of geometric features. Each geometric feature vector
can then be interpreted as a point in a high-dimensional
geometric feature space, where nearby points in this space
indicate similar family-wise relationships for the corre-
sponding substructures. FASST then uses a Gaussian
Mixture Model (GMM) clustering approach for unsuper-
vised learning of the SCs. The SCs can then be compared
to a biological ontology by mapping meta-data to each
substructure for exploratory data analysis.

We demonstrate with FASST that SCs can suggest
biological sources of structural variation within a pro-
tein family. For the heme-dependent peroxidase family
(EC 1.11.1.7) and the xylose isomerases (EC 5.3.1.5),
we show that the observed SCs can be explained by the
phylogenetic distance between members of the family.
Structures of the thermolysin family of bacterial proteases
are observed to have catalytic sites with both discrete
and continuous modes of flexibility, and structures are
known to transition between discrete structural confor-
mation states upon ligation. Analysis of the family-wise
structural variety of the serine protease catalytic triad, in-
corporating over 700 structures from 52 different species
and 7 EC classes, demonstrates the ability of FASST to
detect substructure variation among convergently related
families where the motif substructure resides in many
configurations, including some spanning peptide chains.
The substructural variation present within each family is
automatically identified from the SCs output by FASST.

The FASST method presented here directly comple-
ments the k-partite [45], bipartite [46, 47] and product-
graph-max-clique [48] approaches to all-against-all com-
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mon substructure identification, because these methods
can successfully identify common substructures between
two [46–48] or more [45] binding sites. The common
substructural elements identified by these approaches can
serve as a source of new motifs for further substructure
analysis. Several of these all-against-all methods have
been used to construct “similarity networks” of known
ligand binding sites by using pairwise similarity between
binding sites in combination with linkage-based [46–48]
clustering to build graphs of related sites. However, edges
in these “similarity networks” correspond to maximal
matches between any given pair of binding sites, caus-
ing both the specific subset and number of amino acids
compared between a given site and all other sites to vary
due to differing levels of maximal matches between each
binding site pair. Our approach uses a single substructure
as a consistent point of comparison in every pairwise com-
parison made within a protein family; hence, the resulting
SCs output by FASST can be further utilized, by MESH,
to construct a per-cluster representative consensus motif
that is guaranteed to be found in every cluster member.
The substructure-based all-against-all comparison imple-
mented by FASST is most analogous to the seminal work
of Holm and Sander [49] on mapping protein fold space
via all-against-all Dali comparisons [50].

MESH utilizes the SCs identified by FASST to con-
struct refined substructure motifs that have improved sen-
sitivity, and we demonstrate this procedure in a series
of protein function prediction experiments. MESH con-
structs a representative motif for each identified cluster.
The collection of representative motifs, for the family,
constitutes a single motif ensemble. To provide a statis-
tically rigorous framework for calculating the statistical
significance of substructure matches identified by mo-
tif ensembles, we introduce a non-parametric model of
substructural similarity for multi-structure motifs. When
compared to single structure motifs, we demonstrate that
the FASST-MESH framework can significantly improve
functional annotation sensitivity for structurally diverse
families of proteins, while maintaining annotation speci-
ficity, for the 15 protein families included in the study.

Results
The families of proteins included in our study were ana-
lyzed with FASST to construct SCs that model the sub-
structural diversity of each family. The underlying source
of substructural variation could be clearly attributed to
phylogenetic distance, conformation, or protein homol-
ogy in many cases. The families of proteins we highlight

here have a source of substructural variation that can be
concretely linked to a single biological factor, in order to
better demonstrate the role of each variation source inde-
pendently. Each structure family was defined by Enzyme
Commission (EC) numbers and preference for inclusion
into the data set was given to families with a large number
of structures. A catalytic site motif was defined for each
family from a literature reference (see Table 1) using Cα
positions. FASST then takes as input the family and motif
and outputs SCs for the family in order to identify the
substructural variation within a family. We analyze the
SCs of highlighted families in detail below.

Phylogenetic-based clusters (FASST)
Heme-dependent peroxidases
Heme-dependent peroxidases (EC 1.11.1.7) are ubiq-
uitous enzymes responsible for moderating reactions
with reactive oxygen species. The lactoperoxidases and
myeloperoxidases found in animal leukocytes produce
potent antibacterial agents and have been shown to play
a role in inflammatory responses [51]. The non-animal
class II peroxidases, found in fungi, and class III perox-
idases, found in plants, are both secreted enzymes that
are thought to play multiple roles including organism
development and pathogen defense [52].

The catalytic site region of the Arthromyces ramosus
class II peroxidase enzyme [PDB:1ARU] includes the
proximal (His-184) and distal (His-56) histidines coor-
dinated to the heme group as well as the distal catalytic
residues (Arg-52 and Asn-93) and the hydrogen-bonded
Asp-57 [53]. Superposition of all of the heme-dependent
peroxidase catalytic site structures, identified through mo-
tif propagation as outlined in Methods, is shown in Fig-
ure 1(a). Although the catalytic site motif can be identified
within both animal and non-animal peroxidases, geomet-
ric variability of the catalytic residues is evident from the
alignment.

The peroxidase SCs constructed by FASST (see Fig-
ure 1(c)) reveal that the peroxidase structures segregate
into four main clusters that can be explained well by the
phylogenetic ontology of the structures as shown in the
corresponding Figure 1(d) plot. The lactoperoxidase struc-
tures from Capra hircus (goat), Bos taurus (cow), Ovis
aries (sheep), and Bubalus bubalis (water buffalo) form
a single cluster in the SCs nearby the distinct myeloper-
oxidase cluster from Homo sapiens. The class III plant
peroxidases from the Brassicaceaa Family form a tight
cluster along with the class III plant peroxidases of the
Fabaceae Family which are near the perimeter, but outside
the main cluster. Finally, the class II fungal peroxidases
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form a fourth distinct cluster most distant from the other
three clusters.

The locations of the peroxidase catalytic site sub-
structures in the SCs appear to be highly correlated with
the evolutionary history of the enzyme. The animal and
non-animal peroxidases are theorized to have originated
from two separate endosymbiotic events predating mod-
ern plant and animal cells [52]. The sequence identity be-
tween the human [PDB:1CXP] and fungal [PDB:1ARU]
versions of the enzyme is 9% making a sequence-based
approach to analyzing this family as a whole impossible.
Pairwise sequence identity between the labeled positions
in Figure 1(c) is consistently very low as seen in Table 2.
As shown in Figure 1(b), the overall fold topology of
the animal and non-animal peroxidases differ greatly and
belong to separate fold classes within the CATH struc-
tural ontology [54]. However, the catalytic substructure
represented by the motif provides a common point of com-
parison between these peroxidases and allows FASST to
identify the significant family-wise catalytic site variation
and underlying clusters within the larger protein family.
By mapping the SCs to the Family-level phylogenetic
ontology, FASST is able to propose a hypothetical expla-
nation for the pattern of substructural conservation and
variation within the family of peroxidases.

Xylose isomerases
Metabolic engineering approaches to creating organisms
capable of producing biofuels, such as ethanol, from pre-
viously unrecoverable plant biomass are being actively
studied in the search for renewable energy sources [55].
Xylose isomerase is a key enzyme in many engineered
biosynthetic pathways because of its ability to intercon-
vert sugar isomers, allowing novel carbohydrate sources,
such as plant biomass, to be utilized over more traditional
sugar substrates such as glucose [56]. While members of
the peroxidase family demonstrate topological diversity,
the family of xylose isomerases (EC 5.3.1.5) are more
topologically homogenous, and provide another clear ex-
ample of SCs that can be linked to the corresponding
phylogenetic ontology of the structures.

Applying FASST to the catalytic sites of 71 structures
of xylose isomerase from 12 different species, including
thermophilic archaea and several species of mesophilic
bacteria, reveals that variation in catalytic site geometry
within the family can be well-explained by the Family-
level phylogenetic ontology of the family. As shown in
Figure 2, the closely-packed, but well-defined clusters
of structures clearly map to the phylogenetic labeling at
the Family-level of taxonomic classification. While the

xylose isomerase family exhibits high structural conserva-
tion, understanding the substructural relationship between
related members of enzymatic families, capable of cat-
alyzing the same reaction under different environmental
conditions, is an important step towards rational design
of biosynthetic pathways.

Conformation-based clusters (FASST)
Many proteins are known to undergo structural re-
arrangements and hinge-bending motions upon binding
ligands or other proteins. Induced fit via amino acid re-
arrangements are a common feature of many catalytic
sites, and the state of the catalytic site at a given time
can often be partitioned into two states: apo, an open
confirmation with no ligand, and holo, a closed confirma-
tion with bound ligand. The thermolysins (EC 3.4.24.27)
are a family of bacterial heat-stable metalloproteases that
cleave peptide bonds at hydrophobic residue positions and
have been shown to change confirmations upon ligand-
binding [57].

The family of available thermolysins contains 59 struc-
tures of the protein from Bacillus thermoproteolyticus and
a single structure from both Staphylococcus aureus and
Bacillus cereus, all of which are gram-positive bacteria
species (Bacillales). Because there are roughly equal
numbers of apo (non-ligated) and holo (ligated) structures
within the family, and all but two of the structures are
repetitions of the same protein from the same species, the
effect of ligation state on the substructural variation of the
catalytic site can be analyzed in isolation from other pos-
sible contributing factors such as phylogenetic distance.
Applying FASST to the thermolysins results in the SCs
shown in Figure 3(b).

Mapping ligation-state data to the SCs reveals that
the clusters determined can largely be explained by the
presence/absence of a bound ligand. Outliers revealed
by FASST were further investigated to understand why
they deviate from the remainder of structures sharing a
ligation state. A closer examination of the seemingly mis-
classified structures reveals that not all ligands binding
thermolysin induce conformational change in the bind-
ing site substructure (e.g., [PDB:1FJT] and [PDB:1FJW]
labeled in Figure 3(b)).

Closer examination of the five holo outlier structures
residing within the apo region reveals that either lysine
or phenol is bound to the structurally rigid side-chain
recognition pocket of these structures in all five cases.
In Figure 3(c), the catalytic site of one of the five holo
outliers [PDB:1FJT], where a valine-lysine dipeptide is
bound near, but not within the catalytic site, is compared
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to a holo structure with a ligand bound for catalysis in Fig-
ure 3(e,f,g). The ligand in Figure 3(e,f,g) can be clearly
seen to interact with the catalytic residues as well as
the coordinated catalytic metal (Zn2+) but the ligand of
[PDB:1FJT] is bound just outside of the catalytic site.
Binding of the valine-lysine/phenol ligands to the side-
chain recognition pocket of thermolysin in the five holo
outliers does not induce the catalytic site to alter its geom-
etry, explaining the presence of these holo outliers in the
apo region of the plot in Figure 3(b).

Further investigation into the two apo outlier struc-
tures, shown to reside in the holo region of Figure 3(b),
reveals that these two proteins were artificially modified
to coordinate Co2+ and Fe3+ metals within their catalytic
sites, instead of the normal Zn2+ metal found in nature.
The substitution of Co2+ and Fe3+ for Zn2+ alters the
geometry of the catalytic site, effectively converting ther-
molysin into the “closed,” ligand-bound holo state [58].
This fact explains why these two artificially substituted
apo outliers have higher substructural similarity to the
holo structures and are co-located with the holo structures
in the SCs shown in Figure 3(b). Therefore, the con-
formational state of the binding site is a more complete
explanation for the SCs determined by FASST, which is
highly correlated with, but not completely determined by,
the presence/absence of a ligand.

While the presence/absence of a bound ligand is eas-
ily determined by examining a protein structure, FASST
incorporates only knowledge of the binding site geome-
try in order to automatically identify each conformation
state. As demonstrated by examination of the holo out-
liers, not all ligands were capable of inducing conforma-
tional change in the binding site of thermolysin. The
effect of ligation-state within phylogenetic-based clusters
was also analyzed for the heme-dependent peroxidases
and xylose isomerases to ensure that ligation-state was
not influencing the result; open/closed plot characters are
used to denote apo/holo structures, respectively, in Fig-
ures 1, 2, 3 and 4. When multiple conformations exist
within a family of structures, FASST is able to automat-
ically identify the separate conformations as SCs. The
conformation-based SCs can then be used as input to
MESH to construct a multi-conformation motif ensemble
for comparison to non-family structures.

Homology-based clusters (FASST)
Some protein substructures have proven themselves,
throughout the course of evolution, to be so well-suited
at catalyzing particular reactions, that they have arisen
independently in different kingdoms of life. One such

example of convergent evolution in protein substructures
is the HIS-ASP-SER catalytic triad which catalyzes the
hydrolysis of peptide bonds in many serine proteases [6].
The HIS-ASP-SER catalytic triad is a common substruc-
ture among many families of proteases and the geometry
of the triad residues across protease families has been
shown to be highly conserved [7]. To demonstrate the
ability of FASST to detect substructure variation among
non-divergently related families where the triad substruc-
ture resides in many configurations, including spanning
peptide chains, we have considered all of the non-mutant
protein structures from the families listed in Table 3 in an
analysis of the serine protease catalytic triad. The mutant-
filtered family of serine protease structures included 730
protein structures spanning 7 EC classifications and 52
species; the total number of structures in the table is 989
of which 259 are mutant structures. The input motif con-
sisted of the Cα coordinates of the triad residues and was
geometrically based upon the [PDB:1ACB] chymotrypsin
structure; this motif was able to accurately identify triad
residues in all serine protease families, including cases
where the triad residues span peptide chains. Correct iden-
tification of triad residues for all propagated motifs was
subsequently confirmed prior to applying FASST.

The chymotrypsin, trypsin, elastase, thrombin, and
α-lytic protease families are all divergently evolved pro-
teases of the “chymotrypsin clan” (clan SA) [6] and share
a common fold that differs from the convergently evolved
subtilisin family of proteases. The triacylglycerol lipases
have also convergently evolved the serine-based triad and
form a third distinct evolutionary group [59]. Application
of FASST to the families of serine proteases, as shown in
Figure 4, reveals that proteins of the chymotrypsin clan
overwhelmingly cluster together with high degrees of
overlap in the SCs; the subtilisin structures form a distinct
cluster outside of the chymotrypsin clan cluster. Within
the chymotrypsin clan, the different families of serine
proteases show only subtle variations in triad geometry
and are nearly inseparable from one another. It is evident
from analysis of the SCs shown in Figure 4 that the lipases
exhibit much more catalytic triad geometric variability,
overall, than either the subtilisins or chymotrypsins, as
they can be seen in many different regions of the space.

Outlier structures within the SCs output by FASST,
labeled in Figure 4, were further investigated. One of the
most extreme outliers in Figure 4 corresponds to a pan-
creatic elastase structure [PDB:2D26] complexed with
α-1 antitrypsin, and this complex was documented to
introduce extensive distortion to the catalytic site [60],
well-explaining the distant position of this structure from
other proteins in the SCs. Similarly, two trypsin outlier
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structures ([PDB:2TLD] and [PDB:1EZX]) denoted in
Figure 4 are complexed with a protein inhibitor that was
documented to cause distortion of the catalytic site. Two
trypsin structures ([PDB:1PQA] and [PDB:1PPZ]), crys-
tallized with sub-atomic resolution, are also distant from
the main chymotrypsin cluster in the SCs [61]. Apo and
holo structures are denoted in Figure 4 using open and
closed plot characters, respectively, and both apo and
holo structures can be found in each cluster identified.
The single non-mutant Tk-subtilisin structure, from the
archaeon Pyrococcus kodakaraensis, is found to be dis-
tant from both the chymotrypsin clan cluster and main
subtilisin cluster, which suggests a mode of geometric
variation different from that of prokaryotic subtilisins and
chymotrypsin-like triads. Application of FASST to the
serine proteases clearly demonstrates the extremely high
degree of both chemical and structural conservation of
the catalytic triad across very diverse species and proteins
with diverse ligand specificities. Surprisingly, modeling
only the triad Cα positions, as was done here, is sufficient
to recover the super-family organization of the serine pro-
teases.

Protein function prediction (FASST-MESH)
FASST provides a method to expose the underlying SCs
of a protein family and the MESH framework utilizes
the SCs to enhance the function prediction power of sub-
structure motifs. Instead of representing an entire protein
family with a single motif, FASST-MESH uses an ensem-
ble of motifs, where each motif within the ensemble is
used to represent a cluster within the SCs. MESH automat-
ically constructs a representative consensus motif for each
cluster of geometrically related family members output by
FASST (see Methods). Collectively, the set of consensus
motifs for all clusters composes a motif ensemble. Ear-
lier work investigated the performance of averaging all
substructures within a family to identify a single family
consensus motif [62]. However, it was found that for
large geometrically diverse families, a single representa-
tive motif, based on any family member substructure or a
substructure average of all members, could not sufficiently
represent the entire family, just as building a single profile
HMM for a large number of distantly related sequences
can be difficult. Transitioning to the multiple-model motif
ensemble, however, requires that the statistics employed
by MESH to distinguish statistically significant matches
take into account the presence of multiple tests for signifi-
cance, one test for each consensus motif in the ensemble
(see Methods).

FASST-MESH was used to construct motif ensembles

for 15 families of enzymes (see Table 1), as defined by En-
zyme Commission (EC) number, and the performance of
these motif ensembles was compared to single-structure
motifs in a set of function prediction experiments (see
Table 4). Function prediction performance can be quan-
tified by sensitivity, the percent of True Positives (TP)
correctly identified (# TP / (# TP + # FN)), and specificity,
the percent of True Negatives (TN) correctly identified
(# TN / (# TN + # FP)). Because the process of construct-
ing a motif ensemble can be considered unsupervised
learning of the family substructure space, 5-fold cross-
validation was implemented, where the motif ensemble
was built from 4/5 of the data and then the last 1/5 was
used for performance assessment. The robustness of the
SCs identified during cross-fold validation (as shown in
Figure 5) can be seen by the stability of the clusters dur-
ing each of the 5 cross-fold validation steps. Two EC
families included in the function prediction experiments
are discussed below, and each demonstrates a different
extreme of sensitivity/specificity improvement after ap-
plying FASST-MESH.

The diverse family of β -lactamases (EC 3.5.2.6) in-
cludes structures from 26 different bacterial species. Us-
ing the 13 clusters identified from the SCs output by
FASST as shown in Figure 6, MESH constructs a con-
sensus motif for each cluster, resulting in an ensemble of
13 consensus motifs. The β -lactamase motif ensemble,
constructed by FASST-MESH, identified 81.2% of func-
tionally homologous proteins (as defined by the EC class)
with statistically significant substructure matches. The
corresponding single-structure β -lactamase motif only
identified 35.0% of functional homologs, and therefore
FASST-MESH improved the functional annotation sen-
sitivity of the single-structure motif by 2.3-fold while
maintaining the high specificity of the single-structure
motif.

In the family of peroxidases (EC 1.11.1.7) analyzed
in Figure 1, a single-structure motif was capable of iden-
tifying a statistically significant match for 91.6% of the
EC family, and therefore already showed high sensitiv-
ity. After applying FASST-MESH to the single-structure
peroxidase motif, annotation sensitivity improved only
slightly (∼1% improvement) but the absolute number
of false positive matches identified decreased from 131
to 78±8. The decrease in false positive matches, result-
ing from use of a motif ensemble, occurred because true
positive matches tended to match multiple consensus mo-
tifs within the ensemble with low LRMSD, while many
false positive matches have only marginally significant
LRMSD to a single consensus motif, and applying multi-
ple testing correction to the final set of matches for a given
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false positive often caused a single marginally significant
match to move outside of the significance threshold.

As both the number and diversity of available struc-
tures for a given protein family continue to increase, the
enhancement of substructure-based function prediction
methods to accommodate large families is necessary. This
work demonstrates an automated approach (outlined in
Methods) that could be used to augment existing substruc-
ture motifs already available in repositories such as the
Catalytic Site Atlas (CSA) [29] by geometrically enrich-
ing motifs for families that exhibit high structural vari-
ability. The automated enrichment of available motifs by
FASST-MESH strengthens the function prediction power
of these motifs and facilitates the use of substructure-
based analysis methods for large-scale, automated anno-
tation of novel structures.

Comparison with sequence and whole structure
approaches
Similarity among proteins belonging to an enzymatic fam-
ily can be difficult to detect using sequence and whole
structure approaches when such families are sequentially
and topologically diverse. The heme-dependent peroxi-
dase and xylose isomerase families differ greatly in the
amount of family-wide fold and sequence similarity. To
assess the ability of sequence and whole structure (fold)
analysis to identify the structures in each family as in-
terrelated, each family was combined with a set of 50
functionally unrelated structures randomly selected from
the nrPDB95. Additionally, each family was combined
with all structures sharing the same SCOP [63] super-
family classification in a separate experiment from the
random nrPDB95 structures. The heme-dependent peroxi-
dases were combined with all structures within the heme-
dependent peroxidase superfamily (SCOP:48113) which
includes structures from EC:1.11.1.5 (cytochrome-c per-
oxidases), EC:1.11.1.6 (catalases), EC:1.11.1.7 (heme-
dependent peroxidases), and EC:1.11.1.11 (L-ascorbate
peroxidases). The xylose isomerases were combined with
all structures from the xylose isomerase-like superfamily
(SCOP:51658) which includes structures from EC:5.3.1.5
(xylose isomerases) and EC:5.3.1.14 (L-rhamnose iso-
merases). Comparing the inter-cluster distance of clus-
ters belonging to a family relative to the distances to
functionally unrelated structures illustrates the amount
of intra-family similarity that is evident when using each
approach.

The sequence and structure comparisons were imple-
mented by using CLUSTALW [64] and Combinatorial
Extension (CE) [65], respectively, to compute the pair-

wise distances between proteins instead of LabelHash (see
Methods (Step 2)); all remaining steps of FASST were
carried out identically for each approach (Methods (Steps
3-4)). The non-substructure methods will be referred to as
FASSTCLUSTALW and FASSTCE hereafter, while FASST
will refer only to the substructure-based approach.

The results of FASST applied to the heme-dependent
peroxidase and xylose isomerase families, each in com-
bination with the functionally unrelated structures, are
shown in Additional files 1 and 2, respectively. In both
cases, the substructure-level analysis implemented by
FASST identifies the within-family structures to be highly
similar to one another (high intra-family similarity) rela-
tive to the functionally unrelated structures. These results
demonstrate that functionally unrelated structures can be
clearly identified as outliers from the remainder of struc-
tures in a family analyzed by FASST.

Applying FASSTCLUSTALW and FASSTCE to the
heme-dependent peroxidases (see Additional file 3) re-
sults in multiple clusters of peroxidases and a single, more
scattered cluster consisting of unrelated structures. In
contrast to the FASST result (Additional file 1), the indi-
vidual peroxidase clusters identified by FASSTCLUSTALW
and FASSTCE are as distant from one another as to the
functionally unrelated cluster. Using FASSTCLUSTALW
and FASSTCE to analyze the xylose isomerases (see Addi-
tional file 4) results in the within-family structures group-
ing into multiple clusters well-separated from the func-
tionally unrelated structures; the thermophile xylose iso-
merase structures are roughly equidistant to the function-
ally unrelated structures and the remainder of the family.

The average running times of FASST were 4.5 min
(FASST), 3.2 min (FASSTCLUSTALW), and 185.6 min
(FASSTCE); times reported are the wall-clock times for
running with a single core on the following system: 2.4
GHz Intel Core 2 Duo, 4GB DDR3 memory, MacBook
Pro.

The comparison of FASST with FASSTCLUSTALW and
FASSTCE demonstrates that intra-family similarity may
be more difficult to detect by sequence and fold compari-
son in some cases. The substructure-level analysis used
by FASST can further distinguish functionally related
and unrelated structures when conserved substructures
can be identified. Therefore, FASST provides a comple-
mentary approach that can be used in combination with
sequence and fold analysis for analyzing the diversity of
functionally related enzymes.
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Discussion
Understanding the significant geometric variability among
enzyme catalytic sites is an important component of struc-
tural analysis. As the number of solved protein structures
grows, methods capable of summarizing and analyzing
large amounts of structural data will become increas-
ingly necessary. While whole structure alignment and
protein fold analysis can be a valuable tool for assess-
ing protein homology, in the absence of sequence sim-
ilarity, extremely distantly related enzymes or enzymes
which are examples of convergent evolution may be ill-
suited to whole structure comparison techniques. How-
ever, when no detectable domain or fold homology exists,
enzymes are still capable of exhibiting functional equiva-
lence through chemically and geometrically synonymous
functional substructures. Techniques capable of assessing
the family-wise similarity of these conserved substruc-
tures can reveal new insights into the relationships among
families of structures. FASST has the ability to recog-
nize modes of family-wise geometric variation among
substructures and knowledge of the substructural diversity
of a family can guide hypotheses about the role of the
substructure in different proteins.

Biological significance of SCs
In several families of proteins, we have identified possible
sources of geometric variation and linked these sources of
variation to the substructural clusters automatically iden-
tified by FASST. In the peroxidase family, the geometric
distance between catalytic sites appears to be correlated
with phylogenetic distance. Organisms that are more
closely related, such as the plant and fungal species, were
shown to have more geometrically similar catalytic sites
to one another than to more distantly related phyla, such as
vertebrates. With the family of thermolysin structures, we
demonstrated how FASST automatically captures modes
of catalytic site flexibility, correctly segregating structures
into clusters based upon ligation state. Using the families
of serine proteases, we demonstrated how FASST ex-
tends naturally to very large numbers of structures and is
still capable of identifying the major modes of geometric
variation across vast numbers of species and triad config-
urations that include chain spanning and non-spanning
instances. Finally, FASST is able to identify structural
outliers within families, and these outliers were shown
to have biochemical causes for substructural deviation
from the remainder of the family, thereby guiding further
inquiry to these anomalous structures.

FASST partitions a protein family into self-similar
clusters of structures and in doing so, constructs SCs that

can then be linked with biological metadata to possibly ex-
plain the family-wise diversity. Here we have highlighted
particular protein families whose substructural diversity
can be clearly linked to a single biological ontology, such
as phylogeny, conformation, or homology. In several
families included in the function prediction experiments,
the sub-groups identified by FASST cannot be clearly at-
tributed to a single biological factor. The β -lactamases
are an example where some clusters clearly correspond to
a single phylogenetic branch of bacteria, but other species
of bacteria form multiple, distinct clusters as shown in
Figure 6. In the typical case, there are likely multiple bio-
logical factors working in concert to produce substructural
variability. It is intriguing to combine large-scale meta-
data analysis with FASST to automatically correlate likely
biological factors, such as phylogeny, ligation state, and
crystallization conditions, with FASST-identified clusters
to unravel more complex relationships among functional
substructures.

Differentiating sequential and structural redundancy

Using FASST to analyze a catalytic site substructure of
thermolysin among 61 sequence-similar proteins demon-
strates how latent biological trends can be identified even
within a sequentially-homogenous collection of struc-
tures. The thermolysin family examined here contained
59 different structures of the exact same enzyme from
B. thermoproteolyticus and yet FASST was able to auto-
matically uncover a structural trend where the catalytic
substructure modified its position only upon binding lig-
ands that interact directly with the coordinated zinc ion.
If only sequentially non-redundant structures were used
by FASST, this trend could not have been identified be-
cause of the miniscule number of sequentially-distinct
crystallographic structures for thermolysin. This result
demonstrates the additional information that can be gar-
nered by researchers when all available structures are
incorporated into a structural analysis. Similarly, the Mul-
tiple Solvent Crystal Structures (MSCS) technique utilizes
repeated crystallizations of the same enzyme under dif-
ferent solvent conditions in order to probe for functional
sites [66, 67]. Several of the available thermolysin struc-
tures incorporated in our study were produced as part
of MSCS experiments [68, 69]. Our work demonstrates
that FASST can detect subtle trends among sequentially-
similar structure collections and is an important tool for
analyzing and understanding structure-function relation-
ships across large numbers of protein structures.
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FASST-MESH improves single-structure motifs
After identifying both the existence and membership of
structurally defined clusters within a protein family via the
automated FASST-MESH framework, this substructural
information can be used to enhance existing substructural
motifs in order to more accurately represent large families
with diverse catalytic site geometry. Our function predic-
tion experiments show that by representing a structurally
diverse family with a motif ensemble, we can better cap-
ture the variety of substructures present within a given
family and increase function prediction sensitivity while
maintaining specificity. In cases where family-wide geo-
metric diversity was found to be low, single structure mo-
tifs alone can have high sensitivity. However, even when
geometric variability is low, motif ensembles created by
FASST-MESH always maintain the function prediction
performance of single structure motifs and demonstrate
vast improvement in several cases among the families in-
cluded in our study (see Tables 1 and 4). While LabelHash
was used here as the underlying substructure comparison
tool, we are not attempting to compare the performance of
LabelHash to other comparison tools. Rather, the purpose
of the function prediction experiments presented here is
to illustrate cases where a single-structure motif insuffi-
ciently models a large class of functionally homologous,
but structurally diverse proteins, and to demonstrate a
method to improve the function prediction sensitivity of
motifs in general by using motif ensembles.

Automated motif definition
In this paper, the substructure motifs given as input to
FASST (see Table 1) were constructed only from residues
that have been experimentally confirmed to play a role
in enzyme function in order to separate the subproblem
of motif definition from motif analysis. While the input
single-structure motifs used here were manually defined, a
multitude of automated approaches to motif definition are
possible. Our previous work successfully used evolution-
arily conserved residues, as determined by Evolutionary
Trace [27], for automated motif definition [42].

Because motifs are an input parameter to FASST, dif-
ferent methods of identifying the residues constituting
functional substructures can be used in conjunction with
FASST, and by doing so, FASST provides an automated
approach to further analyze and understand the role of
these substructures. In future work, several substruc-
ture selection methods and databases, such as CASTp,
ET [27], ConSurf [28], CSA [29], SNAP [26], and Lig-
Base [30], will be used as sources for large numbers
of motifs. This work used only residues deemed to be

functionally important by experimentalists, as defined by
literature references, in order to isolate the performance of
FASST-MESH from methods that automate substructure
selection.

Conclusions
FASST has been shown to be a powerful technique for
assessing family-wise structural variability among analo-
gous protein substructures. We have demonstrated exam-
ples of substructural clusters that can be linked to phyloge-
netic distance, ligation state, and protein homology. The
complementary MESH framework provides a systematic
approach to create concise motif ensembles that represent
the structural variability within a protein family. Such
ensembles can be used to improve function prediction for
families with significant structural variability.

Many proteins are known to have structurally con-
served, but non-catalytic substructures, such as steric
recognition sites, metal/ligand sequestering sites, phos-
phorylation sites, cofactor binding sites, or immunologi-
cally important substructural epitopes. Using the FASST-
MESH approach for these non-catalytic substructures
can be done without modification to the method because
FASST-MESH makes no assumptions about the types of
substructures modeled by motifs nor underlying sources
of structural variation. Our future, application-specific
work will focus on understanding particular structure-
function relationships among both catalytic and non-
catalytic substructures. As the available number of protein
structures continues to rapidly grow, methods for auto-
mated, large-scale analysis of structures such as FASST-
MESH will be critical for identifying high-level structural
trends among proteins and placing newly solved structures
in the larger context of existing structural data.

Methods
The family-wise substructure analysis method developed
here (FASST) takes as input a user-defined substructure
motif and a family of protein structures, as defined by
EC classification here, and outputs Substructural Clus-
ters (SCs) that identify sub-groups of proteins within
the larger family. Subsequent application of MESH to
the sub-groups identified by FASST constructs a set of
consensus motifs, collectively referred to as a motif en-
semble, that can be used to represent the structural va-
riety of the family for function prediction experiments.
The combined FASST-MESH procedure is as follows:
(FASST: Step 1) using LabelHash [43] (available online
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at http://labelhash.kavrakilab.org), or another substruc-
ture search method (FASST is not tied to a particular
search method), compute matches of the user-defined mo-
tif to identify analogous substructures in all family mem-
bers, thereby creating one propagated motif per mem-
ber; (FASST: Step 2) compute an all-against-all LRMSD
alignment of each propagated motif, yielding a vector of
substructure distances for each family member which we
call a geometric feature vector; (FASST: Step 3) perform
dimensionality reduction on the set of geometric feature
vectors via principal components analysis (PCA) [70]
and project each geometric feature vector onto the num-
ber of PCs necessary to preserve 90% of the original
variance; (FASST: Step 4) cluster the dimensionality-
reduced geometric feature vectors using a Gaussian Mix-
ture Model (GMM) [71] to create the Substructural Clus-
ters that identify sub-groups within the family; (MESH:
Step 5) build a set of consensus motifs to represent the
clusters of the family by selecting an exemplar structure
from each cluster or averaging substructures within a
group; (MESH: Step 6) for function prediction, match
the consensus motifs against a background reference set
of unrelated structures (e.g., nrPDB) to search for pro-
teins with substructural similarity to the original structure
family. Then, identify statistically significant matches
using a non-parametric hypothesis testing framework for
substructural similarity [42, 72], which is adapted and
extended here to accommodate motif ensembles. Each of
the steps is outlined in detail below.

Step 1: motif definition and propagation
To quantify the geometric similarity between a pair of
catalytic substructures, the LRMSD distance metric is
commonly used, but to model the geometric similarity
between a given catalytic site and a family of catalytic
site substructures we introduce a simple extension to pair-
wise LRMSD that will be referred to as geometric feature
vectors.

The procedure for building geometric feature vectors
begins with a single, user-defined motif, S∗, that repre-
sents the geometry and chemistry of a shared substruc-
tural element within the family. The S∗ for each of the
families included in this study were constructed from doc-
umented residues in the literature reference associated
with each PDB structure listed in Table 1. For exam-
ple, S∗ for the heme-dependent peroxidases includes the
Cα atom from each of the following residue numbers
with the alternate amino acid labels shown in superscript:
52RQ,56H ,57D,93NR,184H ; the 3-dimensional coordinates
of each Cα ∈ S∗ were taken from [PDB:1ARU] as noted

in Table 1 and the residue numbers listed are according
to [PDB:1ARU]. Care should be taken to define S∗ with
appropriate amino acid alternate labels; the set of amino
acid alternate labels for each motif residue defines the
allowed mutations per motif residue used when identify-
ing possible matching substructures. ConSurf [28], was
used in this work to identify alternate amino acid labels
per motif residue for several motifs in Table 1; the alter-
nate amino acid labels are identified from the per-residue
conservation and mutation data output by ConSurf. How-
ever, when available, an expert-curated multiple sequence
alignment allows for the highest confidence in amino acid
alternate selection.

First, the user-defined motif, S∗, is matched against
a family of n protein structures, F = { f1, ..., fn}, as de-
fined by Gene Ontology (GO) terms or Enzyme Classifi-
cation (EC) levels, for example, to yield a set of matches
MS∗→F = {MS∗→ f1 , ...,MS∗→ fn}. In this work, Label-
Hash [43], was used to identify substructure matches by
searching each protein in F for similar substructures to the
motif, S∗. Every match, MS∗→ fi ∈MS∗→F is a bijection
between S∗ and a substructure of fi, and defines a unique
substructural element within fi that will be referred to
as a propagated motif, S fi . A caveat of the propagation
step is that there are limits on LRMSD at which a pair
of motifs can be confidently recognized as functionally
related. The LRMSD threshold for confident propagation
can differ significantly depending on both the size and
number of alternate amino acid labels (allowed substitu-
tions) contained within the motif. For a detailed analysis
of the variance of LRMSD thresholds for different motifs,
see [42]. For complete algorithmic details of how Label-
Hash identifies substructure matches to motifs see [43].

Step 2: encoding geometric features
The pairwise LRMSD between two propagated motifs
will be denoted by d(S fi ,S f j) and the geometric feature
vector, gi, for a given fi is defined as a vector of LRMSD
values: gi = {d(S f1 ,S fi), ...,d(S fn ,S fi)}. The set of geo-
metric feature vectors representing all structures in the
family, F , will be denoted as G = {g1, ...,gn}, and G con-
stitutes an all-against-all alignment of the substructures
that correspond to each respective protein in F . Each
gi ∈ G defines a point in geometric feature space that
represents the corresponding fi ∈ F and it is important
to note that structures with similar family-wise distances
will be nearby in the geometric feature space. By con-
structing the geometric feature space of a family, the
structural variation present within an all-against-all sub-
structure alignment (as shown in Figure 1(a)) is preserved,
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but distilled into a much simpler representation that is
more amenable to common machine learning techniques
such as clustering.

Step 3: dimensionality reduction
Understanding the family-wise structural information en-
coded by G will lead to the motivation for the following
step–dimensionality reduction. Let, for example, n = 100
and consider that the geometric feature vectors, gi ∈ G,
will be 100-dimensional, making analysis of the feature
space difficult. It is often the case that many structures in a
homologous family, as defined by EC or GO for example,
will contain several crystallizations of the same protein,
from the same species, causing some of the propagated
motifs to be nearly identical in geometry. Because of
these similar structures, a given gi will have some very
highly correlated features that increase the dimensional-
ity of the feature vector representation, but do not each
provide orthogonal information about the family-wise re-
lationship of fi to F . Removing similar structures via
sequence-identity thresholds requires that a representa-
tive structure from the sequence-similar set to be selected.
However, sequence-identity removal techniques do not
consider the geometric diversity of available structures
when selecting a representative structure. The method
presented here allows all available structures for a fam-
ily to be included without filtering for sequence identity
specifically because of the dimensionality reduction step.
By including all available structures in the analysis, the
method presented here does not make a priori assump-
tions about the sequential or structural diversity of a fam-
ily of proteins.

While reducing the dimensionality of G, it is impor-
tant to preserve the distances between substructures in
feature space, since the purpose of geometric feature
encoding is to find sub-groups of related substructures
within F . We begin by finding the Principle Components
(PCs) of G and then project G into a subspace of the PCs
that captures at least 90% of the original variance in G;
we denote the lower-dimensional projection of G as G′.
The choice of a variance threshold directly impacts the
dimensionality of G′, but it is interesting to note that the
conservative choice of 90% typically results in G′ being
1- to 5-dimensional, even for large families of more than
1000 structures. PCA [70] was selected for simplicity, but
many other dimensionality reduction methods, both lin-
ear and non-linear (for example SciMAP [73, 74]), could
be substituted and would possibly further improve the
dimensionality reduction step. Figure 1(c) shows the geo-
metric feature vector encoded proteins for the 83-structure

heme-dependent peroxidase family as points in the first
and second principal components of G′ which capture
94% of the original variance in G; the total number of
principal components to reach the minimum 90% vari-
ance threshold was 2-components for the peroxidases, so
G′ was 2-dimensional in this case. Thus, PCA is able
to drastically reduce the dimensionality of the geometric
feature space, which is vital to the performance of most
clustering algorithms.

Step 4: identifying substructural clusters (SCs)
One approach to investigating the membership, types, and
numbers of structurally related sub-groups within a larger
family of proteins is to find clusters of geometrically re-
lated structures. Geometric feature vector encoding allows
us to represent each protein in a family of structures as a
point in feature space, and the process of finding groups or
clusters of similar points in feature space can be delegated
to an assortment of standard clustering methods.

To choose a clustering method, several key features
were deemed important: the method should be able to
identify the number of clusters, k, automatically; to avoid
bias, no meta-data, such as species information, should be
taken into account during clustering–unsupervised learn-
ing; the method should be able to identify instances where
only a single cluster is sufficient to explain variation; the
method should be robust to the presence of outliers; the
method should be able to accommodate the presence of
both very large, dense sub-groups and small, diffuse sub-
groups. Methods that rely on a user-defined number of
clusters, such as k-means, are difficult to apply to the prob-
lem of identifying significant clusters within F , because
the number of clusters, k, is not known a priori.

To provide an automated, unbiased selection method
for k, a Gaussian Mixture Model (GMM) approach using
the MCLUST [71] package for the statistical language R
was selected for use in this work. MCLUST incremen-
tally adds multivariate Gaussians to the mixture model,
fitting them through an iterative Expectation Maximiza-
tion procedure, and assesses the Bayesian Information
Criteria (BIC), while regularizing for model complexity
to select a set of Gaussians that maximally explain the
data, given the model complexity constraint. The GMM
defines, for each data point, the probability that it belongs
to the ith Gaussian mixture component and then a hard
classification is performed to partition the data points into
the mixture components from which the points were most
likely to have been generated. The colors of the data
points in Figure 1(c) demonstrate the hard classification,
into 4 clusters, made by the GMM for the peroxidase
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family of proteins (EC 1.11.1.7). The final organization
of clusters based upon substructural similarity shown in
Figure 1(c) is the SCs output by FASST.

Step 5: constructing consensus motifs
As a family of protein structures grows both in numbers
and structural diversity, building substructural motifs for
the family, as a whole becomes increasingly difficult, just
as constructing HMM profiles [75] for a large set of di-
verse sequences is difficult. By representing each cluster
identified by GMM clustering with a distinct consensus
motif, the entire family can then be represented as a collec-
tion of consensus motifs which we call a motif ensemble.
To build a consensus motif for a given cluster, the prop-
agated motifs belonging to proteins within that cluster
were geometrically averaged to construct an artificial con-
sensus structure by the method used in [76]. However,
if a non-artificial consensus structure is desired, picking
the structure nearest the cluster centroid would also be
an effective strategy for finding a representative motif for
the cluster. The consensus motif construction process is
repeated for each of the k clusters identified during Step
4, resulting in a motif ensemble that contains k consensus
motifs. For example, four clusters were identified within
the family of peroxidases (as shown in Figure 1(c)), and
therefore the motif ensemble for the family consisted of
four consensus motifs, one for each cluster.

Step 6: estimating statistical significance
Comparing a motif to target protein structures results
in a set of substructure matches of varying quality. To
distinguish erroneous matches that are likely to have oc-
curred by chance alone and therefore not functionally
related to the motif from those matches which have sig-
nificant similarity to the motif requires a statistical model
of substructure similarity. The non-parametric statistical
framework for matching single-substructure motifs used
in previous work [42, 43, 72] is extended in this work to
address multiple-structure motif ensembles. A detailed
discussion of the single-structure statistical model can
be found in [42, 72] but is outlined briefly here to moti-
vate the extension to motif ensemble statistical hypothesis
testing.

Single-structure motif hypothesis testing
The structural uniqueness of a match of motif S to a target
structure T , MS→T can only be evaluated with respect
to a background structure reference set. A reference set

should be selected such that is structurally diverse and
contains protein structures functionally unrelated to the
motif; a detailed analysis of the choice of reference sets
can be found in [42] but in this work the 95% sequence
identity non-redundant PDB (nrPDB95) was used as a
structural reference set. Given a background reference set,
we can quantify whether the similarity between MS→T
and S is low, relative to the background, and could have
occurred by chance, or that it is high, with respect to the
background, and is statistically significant.

The question of whether or not a match of motif S to a
target structure T , MS→T is significantly similar to S can
be formulated as a hypothesis test: the null hypothesis
(H0) states that S and T are structurally dissimilar and
that MS→T occurred by chance; the alternative hypothesis
(HA) states that S and T are structurally similar and MS→T
defines a sub-structural element in T that is analogous to S.
Given our definition of a background structural reference
set, the p-value of MS→T , pS→T , is a measure of the struc-
turally uniqueness of MS→T with respect to the defined
background reference set. By selecting a p-value thresh-
old for statistical significance, α , we can reject H0 for
all pS→T ≤ α and instead accept HA and declare MS→T
to be statistically significant. Matching S versus all of
the structures defined by the background reference set
will yield a distribution of matches with varying levels of
structural similarity to S, given by the LRMSD of each
match to S. By smoothing the LRMSD distribution using
the Sheather-Jones optimal bandwidth [77] we obtain a
probability density function pdf(r) over LRMSD, r, for a
given motif S; we denote this pdf as pdf(r;S).

Given pdf(r;S), the p-value measure of statistical
significance of MS→T can be found by calculating the
probability of observing a match with LRMSD, r, lower
than the LRMSD of MS→T , rM , which can be written as
P(r ≤ rM;S) and defined to be:

∫ rM
0 pdf(r;S)dr. In sum-

mary, the p-value of a given match of a motif to a target
protein structure is calculated by comparing the match
LRMSD to the population of match LRMSDs that are
expected to occur by chance alone. Using this technique,
matches with statistically unusual amounts of geomet-
ric similarity to a motif can be readily identified without
making assumptions about the structure of the match dis-
tribution.

Motif ensemble statistical hypothesis testing
The hypothesis testing framework used for quantitat-
ing the statistical significance of matches to a standard,
single-structure motif, can be extended naturally to ac-
commodate the notion of matching an ensemble of mo-
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tifs. Given a motif ensemble with k consensus motifs
S = {S1,S2, ...,Sk} we would like to know if the motif
ensemble, S, has statistically significant similarity to T .
For each motif, Si ∈ S, we can calculate the p-value of
matching Si to T , pSi→T , by matching Si versus the back-
ground structure reference set and obtaining the probabil-
ity density function over match LRMSD, r, for motif Si:
pdf(r;Si). This procedure produces a p-value for match-
ing each Si to T , pS→T = {pS1→T , pS2→T , ..., pSk→T} and,
as for normal single structure motifs, an associated hypoth-
esis test for each motif: the null hypothesis (H0,i) states
that Si and T are structurally dissimilar and the match
of Si to T occurred by chance; the alternative hypothesis
(HA,i) states that Si and T are structurally similar and the
match of Si to T defines a sub-structural element in T that
is analogous to Si. The overall null hypothesis for a match
to the motif ensemble can now be stated in terms of the
individual hypothesis corresponding to each consensus
motif within the motif ensemble: H0 = {H0,1, ...,H0,k}.

Because the overall null hypothesis, H0, incorporates
multiple hypothesis tests (H0,1, ...,H0,k), each of which
can introduce new false positive matches, it is crucial to
use a multiple testing correction procedure to account for
the presence of multiple tests and control the family-wise
error rate. The Hochberg p-value correction method [78]
was selected to account for the presence of multiple tests
for significance; Hochberg correction is applicable when
the hypothesis tests are either independent or positively
correlated [79]. After Hochberg multiple testing correc-
tion has been performed on the match p-value, pSi→T , cor-
responding to each hypothesis test, H0,i, each null hypoth-
esis can then be independently evaluated: pcorrected

Si→T < α .
If any null hypothesis, H0,i, is rejected, we then reject
the overall null hypothesis, H, and consider the match
between S and T to be statistically significant (a positive
match).
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Figures

Figure 1 - Substructural Clusters (SCs) for the heme-dependent peroxidases
(a) Superposition of the propagated motifs for the animal and non-animal heme-dependent peroxidases of EC 1.11.1.7
demonstrates geometric diversity. The color of each aligned substructure corresponds to its cluster assignment in (c),
and it can be seen that closely aligned substructures in (a) correspond to co-located points in the SCs shown in (c).
(b) When the backbones of a class II fungal peroxidase [PDB:1ARU] and human myeloperoxidase [PDB:1CXP] are
compared, substructural similarity within the heme-binding catalytic site region is evident, but the remainder of the
enzyme structures can be seen to have significant topological differences and are assigned to separate topological classes
within the CATH structural ontology [54]. (c) Applying FASST to the family of peroxidases yields a family-wise
geometric feature vector for each catalytic substructure in the family, reducing each substructure shown in (a) to a point
in the SCs. Gaussian mixture model (GMM) clustering of geometric feature vectors, projected onto a space of reduced
dimension, identifies four clusters denoted by color. The gray isocontours show the smoothed density of substructures
in each part of the SCs. (d) Substructure positions in the SCs colored by Family-level taxanomic classification reveal
that phylogenetic distance between proteins is the main source of substructural diversity among the heme-dependent
peroxidase binding sites. The open/closed plot characters correspond to apo/holo structures, respectively.

Figure 2 - SCs for the xylose isomerases
Xylose isomerase structures from 12 different species of bacteria and thermophilic archaea form clusters that can be
mapped to the Family-level of taxonomic classification. Light gray ellipses denote automatically identified clusters.
The open/closed plot characters correspond to apo/holo structures, respectively.

Figure 3 - Ligation-state conformational changes in thermolysin
(a) Backbone of thermolysin structure [PDB:1FJT] with coordinated valine-lysine dipeptide in red and motif residues
shown in blue. Side-chains of the motif residues are shown for reference, but only Cα coordinates are used by LabelHash
in this paper. The yellow, semi-transparent volume corresponds to the superimposed benzylsuccinic acid ligand of
[PDB:1HYT]. The coordinated Zn2+ ion is depicted as a small green sphere in the center of the motif residues. The
binding positions of the two ligands are superimposed to illustrate where the occupied regions of the thermolysin
binding site differ between the two ligands. (b) Applying FASST to the family of thermolysin structures reveals that
apo and holo structures segregate into different regions of the SCs. The segregation of structures seen indicates that the
motif residues undergo conformational change upon binding a ligand. The location of particular structures in the SCs
are labeled for reference. Light gray ellipses denote automatically identified clusters. The open/closed plot characters
correspond to apo/holo structures, respectively. (c),(d) Holo outlier structures [PDB:1FJT] and [PDB:1FJW] with bound
valine-lysine dipeptide and phenol ligands, respectively; the ligand of both structures sits in the side-chain recognition
pocket but does not induce conformation change of the motif residues. (e),(f),(g) Ligated inhibitors from [PDB:5TLN],
[PDB:1PE5], and [PDB:1HYT], respectively, in semi-transparent yellow superimposed with the [PDB:1FJT] binding
site. These 3 inhibitors interact directly with the coordinated Zn2+ ion and induce conformational change in the binding
site.

Figure 4 - SCs illustrate catalytic triad diversity among serine proteases
Comparing the geometry of the ubiquitous HIS-ASP-SER catalytic triad across 730 structures, 52 species, and 7
EC families demonstrates the scalability of FASST to large numbers of structures and the ability of FASST to
detect substructure variation among non-divergently related families. All of the divergently-related families of the
chymotrypsin clan cluster into a dense sub-group while the convergently-related subtilisin family forms a separate
cluster within the SCs. The highly diverse family of lipases form several smaller clusters distinct from both the
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chymotrypsin-like and subtilisin-like structures. Several trypsin outlier structures are labeled and the references
corresponding to each PDB entry document sources of catalytic site deviation. Light gray ellipses denote automatically
identified clusters. The open/closed plot characters correspond to apo/holo structures, respectively.

Figure 5 - Cross-fold validation
Robustness of clusters to data removal during 5-fold cross-validation. During each step of cross-validation, FASST-
MESH is used to identify SCs and construct a motif ensemble for the family of peroxidases seen here.

Figure 6 - SCs identified by FASST within the β -lactamases
Applying FASST to expose the substructural diversity of a catalytic substructure among the β -lactamases reveals many
distinct clusters within the family. The GMM clustering step of FASST identifies 13 sub-groups within the family and
the colors/shapes of points in the SCs correspond to cluster assignment. MESH then constructs one consensus motif for
each cluster identified, resulting in an ensemble of 13 motifs. Function prediction sensitivity improves from 35.0%
(single-structure motif) to 81.2% when using the motif ensemble constructed by FASST-MESH. For the highly diverse
family of β -lactamases, the SCs output by FASST shows that many distinct sub-groups exist within the family. MESH
takes advantage of this information to more completely model the geometric diversity present, thereby improving
functional annotation coverage of the family. Mapping Family- and Phylum-level phylogenetic data to each of the
substructures as shown in the corresponding plots on the right reveals that some, but not all, of the clusters identified
are due to evolutionary distance between proteins. For example, the Bacillaceae proteins can be seen to form a single
sub-group while Enterobacteriaceae proteins are distributed throughout the SCs in several clusters, indicating that
another biological factor is working in concert with phylogenetic distance among the family of β -lactamases to produce
the structural diversity uncovered by FASST.
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Tables

Table 1 - Full protein family dataset used for function prediction experiments
For each EC class family, a single PDB structure was used to define an input motif. The list of amino acid numbers are
documented functional residues found within the primary PDB (www.pdb.org) reference corresponding to each PDB
structure. The superscript labels above each amino acid number are the possible amino acid types that can match at
each motif point; further details of alternate amino acid label use can be found here [43]. Where multiple amino acid
labels per motif point appear, they were determined using ConSurf [28].

EC class PDB ID (Chain) Amino acid numberLabels EC class size
1.1.1.1 1HET (A) 46C, 48S, 67H , 174C 82
1.1.1.21 1US0 (A) 43D, 48Y , 76S, 77K , 110H 89
1.11.1.7 1ARU (A) 52RQ, 56H , 57D, 93NR, 184H 83
1.14.13.39 1DWW (A) 194C, 346V , 363F , 366W , 367Y 126
2.5.1.18 2A2R (A) 7Y , 13FLR, 47ACFLM , 108CFLY 190
2.6.1.1 2QA3 (A) 32G, 34G, 183N , 374R 105
2.7.4.6 1NHK (R) 51Y , 117H , 119S, 128K 60
3.1.1.7 1H23 (A) 84W , 117G, 130Y , 279W , 330F 110
3.1.3.1 1ANI (A) 51D, 101D, 102S, 331H , 412H , 44
3.1.3.48 2CM2 (A) 181DE , 182FHMY , 216S, 221R, 266Q 248
3.2.1.1 1HT6 (A) 52G, 178R, 180D, 205E , 291D 133
3.5.2.6 1YLJ (A) 70S, 73K , 130S, 132N 254
4.2.1.1 1HCB (A) 94H , 96H , 106E , 119H , 199T 282
5.3.1.1 1YPI (A) 12K , 95H , 96S, 165A 95
5.3.1.5 1DID (A) 53H , 56D, 93F , 136W , 182K 71
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Table 2 - Pairwise sequence identity between the labeled positions in Figure 1(c) is consistently very
low.

1ARU 1BGP 1H58
1CXP 9% 7% 6%
1ARU - 14% 7%
1BGP - - 40%
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Table 3 - Families of serine proteases, containing the catalytic triad, that were analyzed by FASST.
Family EC Class # Structures
Chymotrypsin 3.4.21.1 57
Trypsin 3.4.21.4 355
Thrombin 3.4.21.5 247
α-lytic protease 3.4.21.12 39
Elastase 3.4.21.36 90
Triacylglycerol lipase 3.1.1.3 107
Subtilisin 3.4.21.62 94
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Table 4 - Function prediction performance of motif ensembles versus single-structure motifs at
significance threshold of α = 0.01
For each single-structure motif, a motif ensemble was constructed using FASST-MESH. Next to each % sensitivity
value is the total number of true positive (TP) matches; next to each % specificity value is the total number of false
positive (FP) matches. The performance of motif ensembles was assessed using 5-fold cross-validation and the
sensitivity/specificity values correspond to mean ± standard deviation across the 5 folds. The x-fold improvement is
calculated as: mean motif ensemble performance divided by single-structure performance.

EC class
Single structure motif Motif ensemble (CV) Improvement

(x-fold)
%Sens. (#TP) %Spec. (#FP) %Sens. (#TP) %Spec. (#FP) Sens. Spec.

1.1.1.1 52.4% (43) 99.2% (83) 74.3±7.0% (61) 99.4±0.0% (62±4) 1.4 1.0
1.1.1.21 93.3% (83) 99.1% (146) 93.2±4.8% (83) 99.2±0.1% (136±5) 1.0 1.0
1.11.1.7 91.6% (76) 99.1% (131) 92.7±10.0% (77) 99.5±0.0% (78±8) 1.0 1.0
1.14.13.39 90.5% (114) 99.3% (87) 96.1±2.7% (121) 99.4±0.0% (73±7) 1.1 1.0
2.5.1.18 25.3% (48) 99.1% (171) 46.3±5.1% (88) 99.2±0.0% (140±5) 1.8 1.0
2.6.1.1 66.7% (70) 99.1% (153) 82.9±5.4% (87) 99.3±0.0% (121±5) 1.2 1.0
2.7.4.6 81.7% (49) 99.2% (137) 88.3±2.6% (52) 99.4±0.1% (113±5) 1.1 1.0
3.1.1.7 98.2% (108) 99.2% (82) 99.0±2.0% (108) 99.4±0.0% (60±2) 1.0 1.0
3.1.3.1 84.1% (37) 99.1% (122) 100.0±0.0% (44) 99.3±0.0% (97±6) 1.2 1.0
3.1.3.48 28.6% (71) 99.1% (155) 56.1±3.6% (139) 99.4±0.1% (109±11) 2.0 1.0
3.2.1.1 83.5% (111) 99.1% (149) 88.7±7.9% (117) 99.4±0.1% (102±17) 1.1 1.0
3.5.2.6 35.0% (89) 99.2% (144) 81.2±6.3% (208) 99.4±0.0% (107±9) 2.3 1.0
4.2.1.1 87.9% (248) 99.1% (112) 95.3±3.5% (269) 99.6±0.0% (49±4) 1.1 1.0
5.3.1.1 78.9% (75) 99.1% (143) 82.1±10.9% (78) 99.4±0.1% (100±11) 1.0 1.0
5.3.1.5 97.3% (71) 99.1% (118) 98.5±2.3% (71) 99.4±0.1% (92±11) 1.0 1.0
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Additional Files

Additional file 1 — Effect of many outliers on FASST for the heme-dependent peroxidases
(a) FASST applied to the 83 peroxidase structures plus 50 randomly selected, functionally unrelated structures from
the nrPDB95. Only 37 of the 50 unrelated structures contained a possible match to the motif (i.e., a substructure
with compatible alternate residue labels/mutations to the motif). The peroxidase clusters maintain almost identical
structure (relative to Figure 1) even though 30% of the “family” analyzed by FASST in this case consists of unrelated
proteins. Unlike the peroxidase structures, the unrelated structures form sparse, normally distributed scatter with no
well-defined clusters (orange points). The extreme peroxidase outlier structure [PDB:1BGP] falls at the left-most
extreme of the orange cluster. (b) FASST applied to the heme-dependent peroxidase SCOP superfamily, including 83
structures from EC:1.11.1.7 combined with an additional 110 structures from EC:1.11.1.5 (cytochrome-c peroxidases),
EC:1.11.1.6 (catalases), and EC:1.11.1.11 (L-ascorbate peroxidases). All EC:1.11.1.7 heme-dependent peroxidases
reside in cluster (i) with the exception of [PDB:1BGP] which falls into the scattered cluster (ii) region; a single
chloroplastic ascorbate peroxidase structure corresponding to [PDB:1IYN] also resides in cluster (i). The scattered
cluster (ii) region consists almost exclusively of catalases; clusters (iii) and (iv) correspond to cytochrome-c peroxidases;
cluster (v) corresponds to ascorbate peroxidases. Heme-dependent peroxidases from EC:1.11.1.7 are well-segregated
from the other structurally-similar peroxidase enzymes by FASST.

Additional file 2 — Effects of many outliers on FASST for the xylose isomerases
(a) FASST applied to xylose isomerase structures plus 50 randomly selected, functionally unrelated structures from
the nrPDB95; points are colored by automated cluster assignment. Only 30 of the 50 unrelated structures contained a
possible match. All of the xylose isomerase structures form a single, dense cluster on the left side of the figure (inside
the boxed region) while the 30 unrelated structures form a sparse scattered region on the right side of the figure; a
single outlier xylose isomerase structure was erroneously grouped with unrelated structures (red point within the boxed
region). (b) Magnified view of the boxed region from (a). Each point is colored identically to the phylogenetic labeling
shown in (c) for comparison. (c) FASST applied to only xylose isomerase structures. Each structure (point) is colored
according to the corresponding Family-level taxonomic classification. The data in (b) is simply a different projection
of the same data in (c). Although the points in (b) are compressed along the y-axis (PC 2) relative to (c), the relative
positions of the phylogenetic clusters is preserved. The cause of the distortion in (b) is that the optimal (maximal data
variance preserving) 2-dimensional projection for both the combined set of xylose and unrelated structures differs
from the optimal 2-dimensional projection for the xylose structures alone. (d) FASST applied to EC:5.3.1.5 (xylose
isomerase) structures plus 3 additional EC:5.3.1.14 (L-rhamnose isomerases) structures which all belong to the xylose
isomerase-like SCOP superfamily. Cluster (i) corresponds to all EC:5.3.1.5 structures while clusters (ii) and (iii)
correspond to apo and holo structures, respectively, from EC:5.3.1.14.

Additional file 3 — Sequence- and structure-based all-against-all analysis of the heme-dependent
peroxidases
The heme-dependent peroxidase family was combined with 50 functionally unrelated structures to illustrate the degree
of intra-family similarity evident using sequence and whole structure comparison approaches. The plant and fungal
enzymes both have a CCP-like fold (SCOP:48114) that differs from the mammalian enzymes. (a) All-against-all
sequence distances using CLUSTALW for pairwise sequence alignments. Clusters labeled (i) and (ii) correspond to
the plant Families Brassicaceae and Fabaceae/Poaceae, respectively; cluster (iii) corresponds to the unrelated nrPDB
structures; cluster (iv) corresponds to the fungal Families Psathyrellaceae/Tricholomataceae; clusters (v) and (vi)
correspond to the mammalian Families Hominidae and Bovidae, respectively. (b) All-against-all structure distances
using Combinatorial Extension (CE) for whole-structure alignment. Clusters (i) and (ii) correspond to the plant
and fungal structures, respectively; cluster (iii) consists of plant [PDB:1BGP] and fungal [PDB:1MNP] outliers in
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addition to four functionally unrelated structures; the several clusters in region (v) correspond to functionally unrelated
protein; clusters in region (iv) correspond to mammalian peroxidases. (c) All-against-all sequence distances using
CLUSTALW for pairwise alignment of all heme-dependent peroxidase SCOP superfamily structures. Cluster (i)
corresponds to lactoperoxidases (EC:1.11.1.7); cluster (ii) consists of both catalases (EC:1.11.1.6) and cytochrome-c
peroxidases (EC:1.11.1.5); clusters (iii) and (iv) contain plant heme-dependent peroxidases (EC:1.11.1.7); cluster
(v) contains both catalases (EC:1.11.1.6) and L-ascorbate peroxidases (EC:1.11.1.11); and cluster (vi) includes only
myeloperoxidases (EC:1.11.1.7). (d) All-against-all structure distances using CE for heme-dependent peroxidase
SCOP superfamily structures. Cluster (i) corresponds to plant heme-dependent peroxidases (EC:1.11.1.7); cluster (ii)
contains cytochrome-c peroxidases (EC:1.11.1.5); cluster (iii) contains L-ascorbate peroxidases (EC:1.11.1.11); cluster
(iv) contains fungal heme-dependent peroxidases (EC:1.11.1.7); clusters (v) and (vi) contain catalases (EC:1.11.1.6);
cluster (vii) includes catalases (EC:1.11.1.6) and cytochrome-c peroxidases (EC:1.11.1.5); and cluster (viii) consists of
mammalian heme-dependent peroxidases (EC:1.11.1.7) including lactoperoxidases and myeloperoxidases.

Additional file 4 — Sequence- and structure-based all-against-all analysis of the xylose isomerases
The xylose isomerase family was combined with 50 functionally unrelated structures to illustrate the degree of
intra-family similarity evident using sequence and whole structure comparison approaches. The xylose isomerase
structures all share a common TIM-barrel fold. (a) All-against-all sequence distances using CLUSTALW for pairwise
sequence alignments. Clusters (i), (ii), and (iii) correspond to mesophile structures from the Streptomycetaceae,
Micromonosporaceae, Micrococcaceae Families, respectively; cluster (iv) and the 3 left-most cluster (v) points
correspond to thermophile structures (Families: Thermaceae, Thermotogaceae, Thermoanaerobacterales, Bacillaceae);
the remainder of cluster (v) consists of functionally unrelated structures. (b) All-against-all structure distances using
Combinatorial Extension (CE) for whole-structure alignment. Cluster (i) is composed of the mesophile structures;
the boxed region contains the thermophile structures. the remainder of cluster (ii) consists of functionally unrelated
structures. (c) All-against-all sequence distances via CLUSTALW for xylose isomerase-like SCOP superfamily
structures including EC:5.3.1.14 (L-rhamnose isomerase) and EC:5.3.1.5 (xylose isomerase) structures. Cluster (vi)
corresponds to EC:5.3.1.14 structures while xylose isomerases make up the remaining clusters. (d) All-against-all
structure distances calculated with CE for xylose isomerase-like SCOP superfamily structures. Cluster (vii) corresponds
to EC:5.3.1.14 structures while xylose isomerases make up the remaining clusters.
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Figure 1:
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Figure 2:
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Figure 3:
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Figure 4:

Figure 5:
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Figure 6:

Figure 7: Additional file 1.
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Figure 8: Additional file 2.
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Figure 9: Additional file 3.
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Figure 10: Additional file 4.
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