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Abstract

Background: Hydrogen/deuterium exchange detected by mass spectrometry (HDX-MS) is an experimental
technique that provides valuable information about a protein’s structure and dynamics. Data produced by
HDX-MS experiments is often interpreted using a crystal structure of the protein. However, it has been
suggested that more accurate interpretations can be derived from conformational ensembles produced by
molecular dynamics simulations than from crystal structures. This assumes that the experimental data can be
first computationally replicated from such conformation(s), using a prediction model to derive HDX-MS data
from a protein’s structure.

Results: In this paper, we analyze the complement protein C3d through HDX-MS data, and we evaluate
several methodologies to interpret this data, using an existing HDX-MS prediction model. Although crystal
structures of C3d are available, little is known about the variability of its native state. To bridge this gap, since
HDX-MS data is known to reflect a protein’s inherent flexibility, we perform an HDX-MS experiment on C3d.
To interpret and refine the obtained HDX-MS data, we then need to find a conformation (or a conformational
ensemble) of C3d that allows computationally replicating this data. First, we confirm that a crystal structure
may not be a good choice for that. Second, we suggest that, even though they are indeed a better choice,
conformational ensembles produced by molecular dynamics simulations might not always allow replicating
experimental data. Third, we show that coarse-grained conformational sampling of C3d can produce a
conformation from which C3d’s HDX-MS data can be computationally replicated and refined from the peptide
to the residue level.

Conclusions: In the case of the model protein C3d, the similarity between the conformation generated by
coarse-grained conformational sampling and available crystal structures establishes that C3d’s native state
presents little conformational variability. Yet the ability to obtain a structural model of C3d in solution that
provides a good correspondence to experimental HDX-MS data and allows refining this data may prove highly
valuable. This could impact many HDX-based applications, from structural analyses to ligand-interaction
studies.
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1 Background
Hydrogen/deuterium exchange detected by mass spec-
trometry (HDX-MS) is an extremely valuable tech-
nique for analyzing various aspects of proteins [1]. It
has been used to study protein structure and confor-
mational changes, as well as protein folding and in-
teractions [2]. The hydrogen/deuterium exchange un-
dergone by a protein is influenced by its structure.
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Although HDX-MS cannot produce a precise three-
dimensional model of a protein, it can provide useful
structural information [3]. Additionally, since HDX-
MS experiments involve monitoring proteins in solu-
tion over time, they can generate insights on protein
dynamics [4]. HDX-MS also has the advantage of not
suffering from the same restrictions as other structural
biology techniques: it requires only small quantities of
protein sample, and it is not limited by protein size [5].
As such, HDX-MS has proven infinitely valuable to
study systems as challenging as, for example, mem-
brane proteins [6].



Devaurs et al. Page 2 of 15

HDX-MS has greatly impacted the study of plasma
proteins that undergo dynamic structural transitions
to exert their functional spectrum, such as members
of the complement cascade and other innate immune
pathways [7]. Indeed, this technology has been suc-
cessfully used to investigate the maturation of the cy-
tokine interleukin-1β [8], and to define the binding in-
terface between pattern recognition receptors of the
ficolin family and immunoglobulins [9]. In the comple-
ment system, HDX-MS has proven particularly valu-
able to examine the various conformational changes of
the central component C3. C3 is the point of conver-
gence for all complement activation routes, the driving
force of complement response amplification, and a ma-
jor source of immune effectors. Over the years, HDX-
MS studies have helped elucidate the mechanisms that
define the perpetual solution activation of C3 via hy-
drolysis [10], and the major conformational transition
of C3 to the potent opsonin C3b upon activation by
convertases [11]. HDX-MS has also helped character-
ize the structural effects of point mutations in patients
with a form of functional C3 deficiency [12], and of
a bacterial immune evasion protein that allosterically
inhibits C3b activity [13]. HDX-MS was among the
few structural methods that could be applied to these
large plasma proteins, which typically exceed 150 kDa;
it has provided important insight that was not readily
available from X-ray crystallography.

Despite the usefulness of HDX-MS experiments, it
has sometimes proven challenging to interpret the data
they produce, namely deuterium-uptake kinetic curves
for various peptides extracted from a protein (see Sec-
tion 4.1.1). Such a kinetic curve is often reduced to
a single number: the peptide’s average protection fac-
tor [5], which quantifies the extent to which this part
of the protein is protected from exchange (which is, in
turn, thought to be influenced by the protein’s struc-
ture). Typically, these average protection factors are
visualized on a protein heat map [3] built using a
structural model reported in the Protein Data Bank
(PDB). However, it has been argued that the corre-
spondence between experimental HDX-MS data and
such structural models is often not satisfactory, espe-
cially for models resulting from X-ray crystallography
studies [14]. The reason is that, contrary to crystal
structures, HDX-MS data reflects the inherent vari-
ability of a protein’s native state, which emanates from
the protein’s equilibrium fluctuations. Therefore, it
was suggested that experimental HDX-MS data could
be better interpreted using a conformational ensem-
ble produced by a molecular dynamics (MD) simu-
lation [15]. This technique has been used to validate
experimental HDX-MS data and refine it from the pep-
tide to the residue level [14].

In this work, we analyze the native state of the
complement protein C3d through HDX-MS, using the
aforementioned methodology and similar ones. A frag-
ment of the central complement component C3, the
opsonin C3d has recently gained attention as im-
mune effector, biomarker, drug targeting structure,
and potential therapeutic target itself. Upon comple-
ment activation by various triggers, C3 gets cleaved
by convertases; the resulting C3b fragment may be-
come covalently deposited on the target surface [16].
There, C3b can form additional convertases and am-
plify opsonization. On many surfaces, and in partic-
ular healthy host cells, this process is carefully con-
trolled: a set of complement regulators mediates the
degradation of C3b (175 kDa) to iC3b (173 kDa),
C3dg (40 kDa) and/or C3d (35 kDa). These late-
stage opsonins do not participate in convertase for-
mation but still exert important biological functions.
Whereas C3d has long been known to help induce
adaptive immune responses by binding to CD21 on
B cells [17], newer studies have identified C3d as lig-
and for the integrin receptor CD11b/CD18 [18], and
have indicated its role in the phagocytic uptake of op-
sonized particles [19]. Owing to the fact that C3d is
the final opsonin stage and remains covalently bound
to cells that experienced complement attack, it has
evolved into an important surface biomarker in the
diagnosis of complement-mediated clinical conditions,
such as antibody-mediated rejection during transplan-
tation [20]. Furthermore, its newly discovered roles
in innate and adaptive immune effector functions put
C3d into the spotlight as potential therapeutic tar-
get. C3d-binding entities based on antibodies or small
molecules are therefore being developed and investi-
gated [21, 22]. Though important as an individual op-
sonin, C3d also corresponds to the thioester-containing
domain (TED) in C3, C3b and iC3b. This domain ful-
fills important functions during the activation of C3
and serves as binding site for natural ligands and im-
mune evasion proteins alike [13,23,24]. Therefore, gain-
ing additional structural information about this im-
portant opsonin and immune mediator, expanding on
early crystal structures of C3d [25], is highly impor-
tant. At the same time, its comparatively small size
within the family of C3 opsonins facilitates the estab-
lishment of experimental and computational analyses
for the purpose of this study.

In this paper, we report on an HDX-MS experiment
we have performed to gather data about C3d’s native
state (see Section 2.1). To interpret this experimen-
tal HDX-MS data in relation to C3d’s structure, we
needed to find a conformation (or a conformational en-
semble) of C3d from which this data could be first com-
putationally replicated. For that, we had to choose an
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HDX prediction model (i.e., a theoretical model defin-
ing how to derive HDX data from a protein’s structure)
among those available in the literature. We selected a
theoretical model built on a phenomenological approx-
imation of the protection factors of a protein’s residues
(see Section 4.1.2) [15, 26]. Using this model, we com-
pare various strategies to obtain a conformation (or a
conformational ensemble) of C3d from which its exper-
imental HDX-MS data can be computationally repli-
cated (see Sections 2.2 to 2.5).
• First, we point out that computationally deriv-

ing HDX-MS data from C3d’s crystal structure
does not produce good estimates of its experimen-
tal HDX-MS data. This confirms that, as noted
in [14], using only a crystal structure may be lim-
iting when interpreting HDX-MS data in certain
applications.
• Second, we show that better estimates of C3d’s ex-

perimental HDX-MS data are obtained when com-
putationally deriving HDX-MS data from con-
formations or conformational ensembles produced
by MD simulations. However, as we observe only
small improvements and a clear lack of consis-
tency, we argue that using MD conformations
might not always be an accurate way to inter-
pret HDX-MS data either. We also explain why
increasing the temperature in an MD simulation
to broaden conformational sampling does not im-
prove results.
• Third, we suggest that using coarse-grained con-

formational sampling might be a better strategy
to obtain conformations that allow computation-
ally replicating experimental HDX-MS data. By
exploring C3d’s native state with such a method,
we obtain a conformation, referred to as the
“HDX conformation”, yielding the best estimates
of C3d’s experimental HDX-MS data.

Finally, we analyze the HDX conformation of C3d, and
we elaborate on what it reveals about C3d’s native
state (see Section 2.6). We also use this HDX con-
formation to refine C3d’s experimental HDX-MS data
from the peptide level to the residue level, and we dis-
cuss the usefulness of this data (see Section 2.7).

2 Results and Discussion
The three-dimensional structure of C3d was resolved
by X-ray crystallography almost two decades ago [25].
In our work, we use a similar description of C3d’s
structure produced by a more recent X-ray crystallog-
raphy study of C3d in complex with the extracellular
fibrinogen-binding protein (Efb) [23]; it can be found
in the PDB under ID 2GOX. In this crystal structure,
C3d contains 297 residues, where residue 1 corresponds
to residue 991 of the full complement protein C3.

C3d can be described as a single-domain α-protein
containing twelve α-helices and five 310-helices. We
refer to these helices using the notations introduced
in [25]. Overall, the helices of C3d are organized into
an α-α barrel: an inner barrel of helices enclosed within
an outer barrel of helices. Most consecutive helices al-
ternate between the inner barrel and the outer bar-
rel; the remaining helices are not located on the side
but at the ends of the barrel. The inner barrel is com-
posed of six parallel α-helices: α1 (Glu22 to Thr41), α3

(Thr86 to Leu102), α5 (Lys149 to Ala164), α8 (Ser196
to Met209), α10 (Gln236 to Leu253), and α12 (Ser278
to Asp295). The outer barrel contains six parallel he-
lices running anti-parallel to those of the inner bar-
rel; they comprise one 310-helix, T1 (Ala7 to Leu13),
and five α-helices: α2 (Leu49 to Arg70), α4 (Ser107
to Lys121), α7 (Ser174 to Asn189), α9 (Pro215 to
Thr223), and α11 (Phe256 to Gln269). The remaining
helices are rather short; they include one α-helix, α6

(Asp166 to Gln171), and four 310-helices: T2 (Gln43 to
Phe47), T3 (Gln137 to Ile140), T4 (Gly142 to Arg144),
and T5 (Tyr190 to Asn192).

The ends of the barrel differ significantly: one is a
convex surface containing the thioster region involved
in cell-surface attachment; the other is a concave sur-
face containing a large acidic pocket [25]. It has been
observed that Efb binds to C3d on one side of this
acidic pocket [23,24]. Various ligands of C3d are known
to bind in the same region, while complement recep-
tor 2 (CR2) binds over the whole acidic pocket [22].
Finally, note that C3d also features a disulfide bridge
between Cys111 and Cys168.

2.1 HDX-MS Experiment on C3d

As part of this work, following the methodology pre-
sented in Section 4.2.1, we performed an HDX-MS ex-
periment on C3d, alone in solution. Therefore, the data
produced by this experiment is expected to charac-
terize C3d’s native state. This HDX-MS experiment
produced deuterium-uptake curves for 86 peptides ex-
tracted from C3d (see Table 1). Only six amino acids of
C3d are not included in any peptide: Phe156, Glu187–
Tyr190 and Leu248. Therefore, the HDX-MS experi-
ment achieved a coverage of 98% of the protein. The
redundancy of the data, through the presence of over-
lapping peptides is also good: 87% of amino acids are
included in more than one peptide, 62% in more than
two peptides, and 41% in more than three.

Traditionally, this data would be interpreted by (i)
converting the deuterium-uptake curves into average
protection factors of peptides, and (ii) visualizing these
average protection factors as a heat map using a crys-
tal structure (if available). The first drawback of this
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Table 1 HDX-MS data experimentally-obtained for C3d. Results are reported as fraction of deuterium uptake over time for each
peptide: since the maximum number of deuterium atoms that can be incorporated by a peptide is known, one can compute the
ratio of effective deuterium uptake over maximal deuterium uptake. The fraction of deuterium uptake is given at seven time points
for the 86 peptides extracted from C3d. The first two and last three peptides are not used in the attempts to computationally
reproduce this data.

time points (sec) time points (sec)
10 30 100 300 1000 3000 10000 10 30 100 300 1000 3000 10000

[1–16 ] 0.67 0.76 0.86 0.95 0.97 0.99 1.00 [120–139] 0.31 0.35 0.42 0.53 0.64 0.72 0.80
[1–25 ] 0.64 0.70 0.80 0.90 0.97 1.00 1.00 [129–137] 0.32 0.38 0.47 0.60 0.73 0.80 0.82
[26–40] 0.06 0.06 0.07 0.10 0.16 0.28 0.46 [129–139] 0.37 0.43 0.54 0.71 0.83 0.90 0.92
[26–43] 0.08 0.11 0.16 0.22 0.30 0.40 0.55 [140–150] 0.65 0.67 0.75 0.82 0.90 0.95 0.97
[28–43] 0.12 0.15 0.20 0.26 0.33 0.41 0.51 [140–153] 0.53 0.55 0.60 0.69 0.83 0.95 0.98
[33–40] 0.09 0.09 0.09 0.10 0.13 0.19 0.34 [140–155] 0.47 0.48 0.53 0.62 0.75 0.86 0.89
[33–43] 0.14 0.20 0.29 0.40 0.50 0.55 0.64 [157–166] 0.17 0.18 0.20 0.25 0.39 0.54 0.70
[34–43] 0.15 0.23 0.34 0.46 0.57 0.64 0.73 [157–169] 0.26 0.32 0.40 0.47 0.58 0.70 0.81
[35–43] 0.15 0.24 0.35 0.48 0.60 0.66 0.74 [159–166] 0.19 0.20 0.23 0.30 0.45 0.62 0.79
[36–43] 0.18 0.27 0.42 0.58 0.72 0.78 0.85 [159–169] 0.33 0.40 0.49 0.56 0.67 0.79 0.88
[41–58] 0.68 0.69 0.71 0.74 0.79 0.84 0.90 [159–170] 0.34 0.40 0.49 0.58 0.67 0.79 0.88
[44–56] 0.78 0.79 0.81 0.82 0.85 0.90 0.94 [159–185] 0.44 0.51 0.59 0.65 0.73 0.80 0.85
[44–57] 0.73 0.74 0.75 0.77 0.83 0.90 0.96 [170–184] 0.45 0.53 0.64 0.72 0.79 0.82 0.85
[44–58] 0.65 0.66 0.67 0.69 0.74 0.83 0.90 [170–185] 0.43 0.50 0.60 0.66 0.73 0.76 0.80
[50–57] 0.35 0.36 0.40 0.44 0.51 0.58 0.71 [170–186] 0.41 0.48 0.56 0.65 0.70 0.73 0.77
[50–58] 0.43 0.45 0.46 0.49 0.57 0.68 0.79 [171–184] 0.45 0.51 0.61 0.71 0.75 0.79 0.83
[57–68] 0.06 0.07 0.10 0.15 0.21 0.29 0.51 [191–200] 0.69 0.75 0.81 0.86 0.91 0.94 0.96
[58–66] 0.07 0.07 0.07 0.08 0.12 0.16 0.50 [194–203] 0.41 0.51 0.56 0.69 0.77 0.81 0.83
[58–67] 0.04 0.05 0.05 0.06 0.08 0.13 0.48 [201–217] 0.39 0.44 0.56 0.69 0.78 0.87 0.94
[58–68] 0.06 0.08 0.11 0.17 0.22 0.31 0.56 [201–220] 0.33 0.38 0.51 0.63 0.73 0.81 0.86
[59–66] 0.06 0.06 0.07 0.08 0.10 0.24 0.48 [202–220] 0.33 0.39 0.54 0.66 0.75 0.83 0.88
[59–67] 0.05 0.05 0.05 0.06 0.09 0.14 0.48 [204–217] 0.41 0.46 0.58 0.70 0.79 0.88 0.94
[59–68] 0.06 0.08 0.11 0.17 0.23 0.31 0.56 [204–220] 0.34 0.40 0.54 0.66 0.76 0.85 0.89
[67–75] 0.25 0.26 0.30 0.41 0.60 0.85 0.99 [207–217] 0.48 0.53 0.68 0.82 0.87 0.92 0.94
[67–76] 0.20 0.21 0.25 0.35 0.56 0.78 0.97 [207–220] 0.38 0.45 0.61 0.73 0.81 0.86 0.88
[67–78] 0.14 0.17 0.22 0.35 0.52 0.71 0.92 [210–220] 0.36 0.43 0.62 0.73 0.79 0.83 0.84
[68–75] 0.28 0.29 0.34 0.44 0.67 0.85 0.98 [221–241] 0.63 0.76 0.90 0.97 0.98 0.99 0.99
[68–76] 0.24 0.25 0.29 0.40 0.61 0.82 0.96 [221–242] 0.60 0.72 0.86 0.92 0.94 0.96 0.98
[69–75] 0.32 0.34 0.38 0.50 0.73 0.89 0.99 [242–247] 0.03 0.04 0.04 0.04 0.04 0.05 0.05
[69–76] 0.26 0.28 0.31 0.42 0.65 0.84 0.99 [249–268] 0.18 0.21 0.26 0.30 0.34 0.41 0.54
[78–89] 0.39 0.45 0.51 0.53 0.55 0.61 0.70 [251–265] 0.28 0.33 0.37 0.39 0.44 0.52 0.67
[79–88] 0.46 0.54 0.61 0.62 0.65 0.72 0.83 [252–268] 0.20 0.24 0.28 0.33 0.40 0.47 0.61
[79–91] 0.34 0.40 0.45 0.46 0.50 0.54 0.63 [256–265] 0.08 0.13 0.16 0.20 0.29 0.41 0.62
[80–91] 0.28 0.34 0.39 0.41 0.44 0.50 0.59 [256–268] 0.06 0.09 0.14 0.20 0.28 0.37 0.54
[91–98] 0.03 0.03 0.03 0.04 0.04 0.04 0.05 [256–280] 0.47 0.52 0.56 0.61 0.65 0.70 0.78
[91–99] 0.01 0.01 0.02 0.02 0.02 0.02 0.05 [257–268] 0.04 0.05 0.08 0.15 0.24 0.32 0.50
[92–98] 0.03 0.03 0.04 0.04 0.04 0.04 0.04 [258–268] 0.03 0.04 0.08 0.14 0.19 0.25 0.44
[92–102] 0.19 0.23 0.30 0.34 0.35 0.39 0.47 [260–268] 0.03 0.04 0.07 0.13 0.18 0.24 0.43
[103–110] 0.69 0.76 0.86 0.93 0.96 0.98 0.98 [269–280] 0.93 0.96 0.97 0.97 0.97 0.97 0.98
[103–113] 0.52 0.59 0.72 0.79 0.84 0.89 0.95 [269–283] 0.71 0.74 0.77 0.81 0.83 0.86 0.93
[113–119] 0.03 0.03 0.03 0.03 0.04 0.04 0.04 [284–297 ] 0.23 0.29 0.33 0.35 0.38 0.42 0.48
[117–128] 0.09 0.10 0.11 0.14 0.24 0.39 0.63 [287–297 ] 0.35 0.46 0.51 0.52 0.55 0.61 0.68
[120–128] 0.15 0.15 0.17 0.18 0.22 0.32 0.56 [290–297 ] 0.55 0.73 0.81 0.83 0.87 0.94 0.99

approach is the loss of information it causes (from a ki-
netic curve to a single number). Second, it can be diffi-
cult to deal with overlapping peptides whose data may
not be consistent. Finally, as suggested in [14], there
exist more meaningful ways to analyze experimentally-
observed HDX-MS data, such as refining this data
from the peptide to the residue level. However, this
requires using a protein conformation or a conforma-
tional ensemble from which the experimental HDX-MS
data can be first computationally replicated. This also
necessitates an HDX prediction model that allows de-
riving HDX-MS data from protein structure, such as
the one presented in Section 4.1.2.

In the context of our work, to refine and interpret
C3d’s experimental HDX-MS data, we first have to
reproduce the deuterium-uptake data reported in Ta-
ble 1. For that, we need to find a conformation (or a
conformational ensemble) from which this data can be
accurately derived. Note that, as the N-terminus and
C-terminus are known to undergo significant levels of
back-exchange, our confidence in the HDX-MS data
gathered for the corresponding peptides is rather low.
Therefore, the first two and last three peptides (itali-
cized in Table 1) are not considered in the attempt to
reproduce C3d’s HDX-MS data, which leaves us with
81 peptides to perform this analysis.
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Differences between experimentally-observed and structurally-derived deuterium-uptake curves of peptides

PDB conformation         (average difference: 1.23)

Minimized conformation (average difference: 1.06)

Peptides

Figure 1 Deriving HDX-MS data from two conformations of C3d. Histograms of differences (for the 81 peptides extracted from
C3d) obtained when assessing the goodness-of-fit between the experimental HDX-MS data obtained for C3d and the HDX-MS data
derived from the PDB conformation of C3d, or from a minimized version of this conformation.

2.2 HDX-MS Data Derived from the Crystal Structure
of C3d

We started by trying to reproduce C3d’s experimen-
tal HDX-MS data, using its crystal structure, the HDX
prediction model described in Section 4.1.2, and the
methodology presented in Section 4.2.2. Although it
was suggested that using a crystal structure to repro-
duce HDX-MS data may not be the most accurate way
of doing so [14], our objective was to obtain a baseline
against which other strategies could be compared. We
subsequently refer to the crystal structure of C3d re-
ported in the PDB (under ID 2GOX) as its “PDB
conformation.”

Our results show that the HDX-MS data which is
computationally derived from the PDB conformation
of C3d does not fit well the experimentally-observed
data (see Figure 1). The average difference between
the structurally-derived and experimentally-observed
HDX-MS data across all peptides is 1.23 (see Sec-
tion 4.2.2). Discrepancies are especially significant on
the right-hand side of the chart, which corresponds
to peptides of C3d comprising the region between
residues Met191 and Ala242. This region includes he-
lices T5, α8 and α9, the beginning of helix α10, as well
as the loops between them. It is located on the side
of the α-α barrel and does not cover areas of C3d
with known major biological activity. Therefore, the
discrepancies observed in this region cannot be linked,
a priori, to any biologically-relevant conformational
change in C3d.

The fact that a PDB conformation does not typ-
ically provide good estimates of experimental HDX-
MS data is due to the very nature of HDX-MS ex-
periments, which monitor proteins in solution, con-
trary to X-ray crystallography. Since HDX-MS data
reflects the inherent flexibility of a protein, a single
conformation was not expected to provide good esti-
mates [26]. Therefore, it was suggested that HDX-MS
data could be accurately reproduced only as an av-
erage over an ensemble of conformations representing
the native state of a protein, such as an ensemble ex-
tracted from an MD simulation [15].

2.3 HDX-MS Data Derived from MD Simulations of
C3d

Following the methodology described in Section 4.2.3,
we performed three MD simulations of C3d (which
were 100 ns long) to try and obtain better estimates
of its experimental HDX-MS data. The premise of this
experiment is that an MD simulation can produce a
richer representation of a protein’s native state than
a crystal structure, by sampling the protein’s equilib-
rium fluctuations.

Our results confirm that using a conformational en-
semble extracted from an MD simulation allows de-
riving HDX-MS data that fits the experimental data
better than when using the PDB conformation. Aggre-
gating the histogram of differences obtained for each
MD ensemble (see Figure 2) yields an average differ-
ence of about 1.05 (as compared to 1.23 with the PDB
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MD ensemble 1 (average difference: 1.03)

MD ensemble 2 (average difference: 1.07)

MD ensemble 3 (average difference: 1.04)
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Figure 2 Deriving HDX-MS data from MD simulations of C3d. Histograms of differences (for the 81 peptides extracted from C3d)
obtained when assessing the goodness-of-fit between the experimentally-observed HDX-MS data and the HDX-MS data derived from
ensembles of conformations extracted from three MD simulations of C3d.

conformation). However, Figure 2 shows that there are
significant discrepancies between the HDX-MS data
sets derived from the three MD ensembles: for nu-
merous peptides, the deuterium-uptake curves derived
from these ensembles are not consistent. This is due to
the fact that the sampling performed by MD signifi-
cantly differs across simulations. Therefore, this raises
questions about using MD to characterize the variabil-
ity of a protein’s native state, as captured through an
HDX-MS experiment. Previous studies, such as [14],
have usually based their analysis on a single MD sim-
ulation. Our experiment shows that results obtained
this way might not always be reproducible.

Another important fact that raises questions about
using MD conformational ensembles to replicate ex-
perimental HDX-MS data is that a single conforma-
tion might provide better estimates than the whole
ensemble. For example, the conformation obtained at
the end of the energy minimization step of MD (see
Section 4.2.3) provides reasonable estimates. Indeed,
aggregating the histogram of differences obtained with
this “minimized conformation” (see Figure 1) yields an
average difference of 1.06, which is similar to the aver-
ages obtained with the MD ensembles (1.03, 1.07 and
1.04, respectively).

This prompted us to determine which conformations
within the three MD ensembles would provide the best
estimates of C3d’s experimental HDX-MS data. For
that, we applied the HDX prediction model to each

conformation in these ensembles, instead of comput-
ing averages. In each MD ensemble, we selected the
conformation providing the best estimates. These MD
conformations produce even better estimates than the
minimized conformation of C3d. Aggregating the his-
tograms of differences obtained with these MD confor-
mations (see Figure 3) yields average differences be-
tween 0.88 and 0.92. Despite such consistency in terms
of average difference, Figure 3 shows that the HDX-MS
data sets derived from the three MD conformations
are far from being consistent. Indeed, discrepancies be-
tween histograms are even worse than when using the
full MD ensembles.

Although we observe a slight improvement in HDX
prediction, as compared to what C3d’s crystal struc-
ture produced, it is still not good enough to consider
that the experimental HDX-MS data has been repli-
cated. Errors in HDX prediction are especially high on
the right-hand side of the chart, which corresponds to
region [Met191–Ala242] of C3d. To investigate whether
these errors were due to this region being more flexi-
ble than other parts of C3d, we examined the B fac-
tors reported in the PDB. No correlation was found
between B factors and errors in HDX prediction. We
also performed a normal mode analysis of C3d, using
ProDy [27]. No correlation was found between normal
modes and errors in HDX prediction.

The extent of discrepancies between experimentally-
observed and structurally-derived HDX-MS data ini-
tially prompted us to think that they might have
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Figure 3 Deriving HDX-MS data from MD conformations of C3d. Histograms of differences (for the 81 peptides of C3d) obtained
when assessing the goodness-of-fit between the experimentally-observed HDX-MS data and the HDX-MS data derived from single
conformations extracted from three MD simulations of C3d.

captured significant conformational differences corre-
sponding to distinct states of C3d. This would have
been surprising, as C3d is not known to be very flex-
ible [24]. In fact, we show in what follows that these
discrepancies do not correspond to structural differ-
ences. We believe that the failure to replicate C3d’s
experimental HDX-MS data using MD conformations
(or conformational ensembles) is a consequence of MD
not sampling C3d’s native state thoroughly enough.
Note that this issue remained, even after extending
one of the MD simulations from 100 ns to 300 ns.

2.4 HDX-MS Data Derived from High-Temperature
MD Simulations of C3d

The computational cost of MD makes it often im-
practical to run a simulation for long enough to pro-
duce a thorough exploration of a protein’s native state.
Various methods have been proposed to improve per-
formance, such as temperature-accelerated replica ex-
change, umbrella sampling, metadynamics, or acceler-
ated MD [28, 29]. As our objective was not to evalu-
ate these methods, we decided to try and broaden the
scope of MD’s conformational exploration by simply
increasing the temperature.

We performed four additional MD simulations of
C3d, following our previous methodology (see Sec-
tion 4.2.3), except for the temperature of the produc-
tion stage. In this experiment, we used four different
temperatures: 350 K, 400 K, 450 K, and 500 K (in-
stead of 300 K, as in the previous experiment). From

each produced trajectory, which was 200 ns long, we
extracted a set of 1000 conformations at regular time
steps. We then determined, in each set, which confor-
mation provided the best estimates of C3d’s experi-
mental HDX-MS data.

Increasing the temperature to 350 K did not produce
anything different from the previous MD simulations.
Therefore, we report only the results achieved by the
three other MD simulations (see Figure 4). From these
results, it appears that increasing the temperature is
not beneficial: the average differences obtained with
the MD simulations at 400 K, 450 K and 500 K are
0.92, 0.99 and 1.11 respectively. An interesting out-
come of this experiment is that the histograms of dif-
ferences are significantly different from those of previ-
ous MD simulations (compare Figures 3 and 4). This
shows that increasing temperature had the intended
effect of broadening the sampling of C3d’s conforma-
tional space. This is confirmed by data on the radius
of gyration, Rg, of various conformations of C3d: for
the PDB conformation, Rg = 18 Å; the largest radius
observed in regular MD simulations is Rg = 18.7 Å;
the largest radius observed in high-temperature MD
simulations is Rg = 19 Å at 400 K, Rg = 19.6 Å at
450 K, and Rg = 22.2 Å at 500 K.

To sum up, increasing the temperature in MD can
broaden the sampling of a protein’s conformational
space. However, in this case, it did not yield a con-
formation from which good estimates of C3d’s experi-
mental HDX-MS data could be derived. One reason is
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Figure 4 Deriving HDX-MS data from high-temperature MD simulations of C3d. Histograms of differences obtained when assessing
the goodness-of-fit between the experimentally-observed HDX-MS data and the HDX-MS data derived from single conformations
extracted from MD simulations of C3d at 400 K, 450 K and 500 K respectively.

that, when temperature is too high, the protein starts
unfolding and conformations are generated outside the
native state. We recognize that increasing tempera-
ture is not the most efficient way to improve MD’s
performance, and that more sophisticated variants of
MD [28, 29] could be successful in producing a good
HDX predictor for C3d. However, in this study, we
chose to follow a different approach because we be-
lieve that coarse-grained conformational sampling can
be a valuable alternative to all-atom simulations, such
as classical (molecular mechanics) MD.

2.5 HDX-MS Data Derived from Coarse-Grained
Conformational Sampling of C3d

We argue, here, that using “coarse-grained” conforma-
tional sampling can help broaden the exploration of
C3d’s conformational space in a beneficial way. Note
that we use the term “coarse-grained” in its most gen-
eral sense. In this context, numerous coarse-grained
computational tools can be considered: MD-like meth-
ods using coarse-grained force fields [30], Monte-Carlo-
based simulations [31, 32], methods using elastic net-
work models [33], or robotics-inspired conformational
sampling methods [34–37], among others. Here, we use
a computational tool called SIMS [38], which combines
a robotics-inspired conformational sampling method
with the Rosetta modeling software [39] (see Sec-
tion 4.2.4).

We refer to the conformation produced by this exper-
iment (cf. Section 4.2.4) as the “HDX conformation” of

C3d. Indeed, this conformation provides very good es-
timates of C3d’s experimental HDX-MS data (see Fig-
ure 5). The average difference between experimentally-
observed and structurally-derived deuterium-uptake
curves across all peptides is only 0.6. Therefore, we
can consider that deriving HDX-MS data from this
conformation allows replicating C3d’s experimentally-
observed HDX-MS data. This is the first step toward
interpreting and refining this experimental data.

2.6 Examination of the HDX Conformation of C3d
The HDX conformation of C3d, which allows repli-
cating its experimental HDX-MS data, is very similar
to the PDB conformation (see Figure 6). All the he-
lices forming the α-α barrel are conserved in the HDX
conformation, although some are slightly different: α1

is extended from [Glu22–Thr41] to [Gly21–Thr41],
α5 is shortened from [Lys149–Ala164] to [Asp150–
Ala164], α7 is shortened from [Ser174–Asn189] to
[Leu175–Asn189], α10 is shortened from [Gln236–
Leu253] to [Tyr238–Leu253], α12 is shortened from
[Ser278–Asp295] to [Thr279–Asp295], and T1 is short-
ened from [Ala7–Leu13] to [Ala7–Lys11]. The disul-
fide bridge between Cys111 and Cys168 is also con-
served. On the other hand, two small helices have dis-
appeared (T4 and T5), and α6 has been shortened from
[Asp166–Gln171] to [Asp166–Glu169]. Another differ-
ence is that the α-α barrel of the HDX conformation
(Rg = 19 Å) is slightly wider than the α-α barrel of
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Figure 5 Deriving HDX-MS data from coarse-grained conformational sampling of C3d. Histograms of differences obtained when
assessing the goodness-of-fit between the experimentally-observed HDX-MS data of C3d and the HDX-MS data derived from its
PDB conformation or its HDX conformation (i.e., the conformation produced by coarse-grained conformational sampling).

the PDB conformation (Rg = 18 Å). However, we do
not consider these to be significant differences.

The HDX conformation is also similar to other crys-
tal structures obtained for C3d itself [18, 25, 40, 41] or
for other molecules that contain C3d as their TED
(see Section 1), such as C3 [42]. This confirms that
this C3d state is rather stable, in the sense that it
displays little conformational variability. Indeed, com-
paratively to other areas of C3, and particularly its
a-chain, the C3d/TED domain has typically been con-
sidered stable. The strong similarity between the HDX
conformation of C3d and its crystal structures demon-
strates that they all are reasonably good representa-
tions of the three-dimensional structure of C3d in so-
lution. Therefore, these conformations may be suitable
to interpret experimental data, such as results of lig-
and interaction analyses, which may benefit functional
studies and drug development efforts.

Despite the similarity between the HDX conforma-
tion of C3d and its crystal structures, small differences
exist, mostly in terms of width of the α-α barrel. We
wish to stress that the HDX conformation should only
be regarded as an averaged representation of C3d’s
flexibility, as captured in its experimental HDX-MS
data. In other words, we do not consider this con-
formation to be a better representation of C3d’s na-
tive state than its crystal structures. Indeed, the HDX
conformation does not appear to be energetically sta-
ble. First, after performing an energy minimization of

the HDX conformation, we obtained a conformation
whose energy is higher than the minimized version of
the PDB conformation. Second, after running an MD
simulation starting from the HDX conformation, we
observed that, except at the very beginning, all gen-
erated conformations were more similar to the PDB
conformation than to the HDX conformation, in terms
of width of the α-α barrel.

Since the experimental HDX-MS data reflects the in-
herent variability of a protein’s native state, a confor-
mational ensemble describing this state would provide
a better HDX prediction than a single conformation.
We still believe this to be true, but only if the ensem-
ble is a good representation of this state. Our results
show that this could not be achieved for C3d by simply
using MD. On the other hand, coarse-grained confor-
mational sampling provided us with a conformation
yielding good HDX predictions. Predictions could be
even better if this method was used to generate con-
formational ensembles, but evaluating these ensembles
would be too computationally-expensive. In practice,
it is reasonable enough to use a single conformation for
HDX prediction, instead of a conformational ensemble.
The only caveat is that this conformation should not
be regarded as a better representation of a protein’s
native state than a conformational ensemble. It should
only be considered as a mean to interpret and refine
experimental HDX-MS data.
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PDB conformation

HDX conformation

Figure 6 PDB and HDX conformations of C3d. Both
conformations are depicted using the ribbon model.

2.7 Refinement of C3d’s HDX-MS Experimental Data
A clear benefit of using the HDX prediction model we
chose and a protein conformation to replicate exper-
imental HDX-MS data is that it allows refining this
data from the peptide level to the residue level. In-
deed, in this HDX prediction model, the HDX-MS
data is first derived from the protein’s structure at
the residue level, and then aggregated at the pep-
tide level (see Section 4.1.2). Therefore, this method
provides residue-level HDX-MS information at no ex-
perimental or computational cost. Another technique
was proposed to obtain residue-level information, but
it requires collecting experimental HDX-MS data with
high levels of redundancy, in terms of overlapping pep-
tides [43]. On the other hand, the method we use can
be applied to any experimental dataset, irrespective of
the level of redundancy.

Using the HDX prediction model and the HDX con-
formation of C3d, we refined the peptide-level HDX-
MS data reported in Table 1 into a list of protection
factors for C3d’s residues. These protection factors are
visualized on the HDX conformation of C3d as a heat
map (see Figure 7). This is a clear improvement over
the classical methodology producing such heat maps at
the peptide level [3]. Some observations derived from
Figure 7 were expected: for example, helices generally
benefit from higher protection factors than loop re-
gions. On the other hand, local packing density induces
an unexpected result: the highest protection factors

17

0

ln P

proline

Figure 7 Heat-map visualization of the protection factors of
C3d’s residues. Protection factors are derived from, and
depicted on, the HDX conformation of C3d. Prolines are
colored in green. Other residues are colored using a spectrum
corresponding to the range of protection values.

are observed within two loop regions (Ala75, Phe76
and Ser85).

Obtaining residue-level HDX-MS data is considered
highly valuable for most HDX-based applications, in-
cluding ligand interaction studies. If an HDX-MS ex-
periment is performed on a complex involving C3d and
one of its ligands, refining the experimentally-observed
data at the residue level and comparing it to the data
obtained for C3d alone can help characterize the inter-
action interface or even locate key residues maintaining
the complex. Moreover, comparing residue-level HDX-
MS data obtained for complexes involving distinct lig-
ands can help explain potential differences in binding
affinity and engineer more potent binders during ratio-
nal drug design. This may be particularly important
to alleviate the possible absence of suitable co-crystal
structures, or to increase the throughput in screening
and hit validation.

3 Conclusions
In this paper, we have analyzed the native state of
the complement protein C3d. Although several crys-
tal structures of C3d are available [23, 25], little is
known about its inherent variability in solution. To
gather data that could help bridge this gap, we per-
formed an HDX-MS experiment on C3d. As a result,
we obtained deuterium-uptake curves for 86 peptides
extracted from C3d. To interpret this experimental
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data in relation to C3d’s structure, it is imperative
to have a conformation (or a conformational ensem-
ble) of C3d from which this data can be replicated.
As a crystal structure might not be the most accurate
predictor for experimental HDX-MS data [14], we used
various conformational sampling techniques to gener-
ate alternative conformations of C3d.

Although using a conformational ensemble produced
by an MD simulation was thought to be an appropri-
ate way to reproduce experimentally-obtained HDX-
MS data [14], our study shows that this might not al-
ways be true. First, we observe that a single conforma-
tion of such ensemble can be a better HDX predictor
than the whole ensemble. Second, at least in the case
of C3d, there seems to be a lack of consistency between
the HDX predictions obtained with different MD sim-
ulations. Third, using MD conformations yields HDX
predictions that are only slightly better than when
using C3d’s crystal structure. All this indicates that
MD might not produce a representation of a protein’s
native state that can capture its inherent variability
in the same way as HDX-MS data does. This is par-
ticularly surprising for C3d because, comparatively to
other regions of C3, the C3d/TED has typically been
considered very stable.

As an alternative to MD simulations, we suggest
using coarse-grained conformational sampling to ob-
tain good HDX predictors. At least for the model pro-
tein C3d, such sampling could generate a conformation
from which the best estimates of C3d’s experimental
HDX-MS data could be derived. As a result, this HDX
conformation can be used to interpret the experimen-
tal data and refine it from the peptide to the residue
level. Although not necessarily a better representation
of C3d’s native state than crystal structures or MD-
derived conformational ensembles, the HDX conforma-
tion can be regarded as an average representation of
the variability of C3d’s native state that is captured in
its experimental HDX-MS data. Therefore, this confor-
mation contains valuable information that may guide
structural studies or help identifying hitherto unrecog-
nized areas of structural dynamics.

The similarity between the HDX conformation we
have obtained for C3d and its crystal structures con-
firms the stability of its native state: it seems to display
little conformational variability. Therefore, in prac-
tice, C3d’s crystal structures can be regarded as good-
enough representations of its three-dimensional struc-
ture in solution. Combining this structure with the
residue-level HDX-MS data we have obtained for C3d
could prove extremely valuable for ligand interaction
studies, with potential implications for rational drug
design.

As part of our future work, we plan to investigate
whether the results reported in this paper can be

generalized to yield a comprehensive HDX prediction
and refinement methodology. More specifically, we will
examine whether coarse-grained conformational sam-
pling is generally better than MD at producing confor-
mations that are good HDX predictors. We will evalu-
ate our methodology on several proteins. We envision
several applications for an accurate HDX prediction
method. First, it would allow evaluating the consis-
tency between crystallographic and HDX-MS data, in
cases where it is not certain whether both datasets
correspond to the same protein state. Second, if a
protein’s native state is described in the PDB, and
if only HDX-MS data is available for another (non-
native) protein state, it would be possible to obtain a
structural model of this non-native state. Finally, the
possibility to refine HDX-MS data from the peptide to
the residue level will benefit all the applications of the
HDX-MS technique itself [2].

4 Methods
In the Methodological Background, we outline gen-
eral concepts underpinning the HDX-MS experimen-
tal technique, and we introduce the HDX prediction
model chosen for this study. Then, in the Experimen-
tal Methods, we present the specific details of our ex-
perimental and computational methodology.

4.1 Methodological Background
4.1.1 Hydrogen/Deuterium Exchange Detected by

Mass Spectrometry (HDX-MS)

Hydrogen/Deuterium exchange (HDX) is a chemical
phenomenon in which hydrogen atoms of proteins are
exchanged with deuterium atoms in the surrounding
solvent [1]. As the mass of deuterium is about twice
the mass of hydrogen, HDX can be monitored by Mass
Spectrometry (MS): the amount of deuterium incor-
porated in a protein, which is referred to as deuterium
uptake, corresponds to an increase in mass. In HDX-
MS experiments, only the exchange of amide hydro-
gens (i.e., hydrogens attached to backbone nitrogens)
is monitored [1]. Therefore, HDX-MS experiments are
interpreted on the basis of a single measurement per
amino acid, for all amino acids of a protein, except for
proline residues and for the N-terminus because they
do not possess an amide N−H group.

The HDX rates of amino acids can vary up to sev-
eral orders of magnitude, depending on pH and tem-
perature [44]. The HDX rate of an amino acid in an
unstructured peptide is only affected by its neighbors;
this “intrinsic” HDX rate, denoted by kint, can be pre-
dicted [45, 46]. The HDX rate of an amino acid in a
protein is influenced by additional factors, such as sol-
vent accessibility and protein structure; this HDX rate,
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denoted by kobs, is the one that is observed experi-
mentally [4]. The extent to which amide hydrogens of
a protein are protected from being exchanged can be
quantified by defining the protection factor of every
amino acid i as Pi = kinti / kobsi .

At the beginning of an HDX-MS experiment, the
protein is equilibrated in H2O at room temperature
under physiological conditions (pH close to 7). To start
the HDX reaction, the protein is then diluted with
excess D2O. At several time points, the reaction is
quenched in a solution sample by bringing the pH
down to 2.5, and the temperature down to 0 ◦C. Pro-
teins in the sample are digested using pepsin, which
is active at acidic pH and generates numerous pep-
tides typically 6–20 amino acids long. The sample is
then introduced into a chromatography system that
separates the peptides and sends them into a mass
spectrometer. The MS analysis identifies the peptides
and quantifies their deuterium uptake. As this anal-
ysis is repeated at several time points, an HDX-MS
experiment produces deuterium-uptake kinetic curves
for various peptides [3]. Additionally, as the maximum
number of deuterium atoms that can be incorporated
by a peptide is known, results are usually reported
as fraction of deuterium uptake, instead of “absolute”
deuterium uptake.

An important aspect of HDX-MS experiments is
that, because sample analysis is performed in H2O
solution, some deuterium atoms incorporated by the
peptides are exchanged back to hydrogens. This phe-
nomenon, known as back-exchange, can be detrimental
if deuterium in amide groups start reverting to hydro-
gen. This is why digestion and MS analysis have to be
performed rapidly. As back-exchange of amide groups
cannot be totally avoided, it has to be accounted for
in the analysis of deuterium-uptake curves: if the HDX
rate of a peptide is considered as the average rate of
its amino acids, the first two amino acids in the chain
have to be ignored because they systematically un-
dergo back-exchange [3, 6].

4.1.2 Hydrogen/Deuterium Exchange Derived from
Protein Structure

The levels of HDX undergone by different parts of a
protein are known to be influenced by the protein’s
three-dimensional structure. Several theoretical mod-
els have been proposed to define a relationship be-
tween a protein’s conformation and HDX data, but
none of them has been widely accepted by the scien-
tific community [47]. Among these models, we chose
to use the one that performed best in a recent com-
parative study [47]. This model relies on the definition
of a phenomenological expression approximating the
protection factors of the protein’s residues [26]. Since

its conception, this model has been applied in several
studies [14,15,48–50].

The theoretical model is based on the assumption
that protection from HDX arises from the involve-
ment of amide groups in hydrogen bonds and from the
packing density of atoms around amides. More specifi-
cally, given a conformation C, the protection factor of
residue i, Pi(C), can be derived from the phenomeno-
logical expression

lnPi(C) = βhNh
i (C) + βcN c

i (C) (1)

where Nh
i (C) is the number of hydrogen bonds involv-

ing the amide group of residue i, and N c
i (C) is the

number of atom contacts (quantifying packing density)
involving residue i. Parameters βh and βc have been
estimated by fitting experimentally-determined HDX
data of various proteins: βh = 2 and βc = 0.35 [15].
The number of hydrogen bonds, Nh

i (C), is defined as
the number of main-chain oxygens in any residue (ex-
cluding residues i − 2, . . . , i + 2) within a cutoff dis-
tance of 2.4 Å from the amide hydrogen of residue i.
The number of atom contacts, N c

i (C), is the number
of heavy atoms (i.e., non-hydrogens) in any residue
(excluding residues i − 2, . . . , i + 2) within a cutoff
distance of 6.5 Å from the amide hydrogen of residue
i. Note that, instead of being derived from a single
conformation, protection factors can be computed as
ensemble averages over a set of conformations, such
as a conformational ensemble produced by an MD or
Monte Carlo simulation [15,26].

Using the protection factors derived from (1), one
can generate deuterium-uptake curves of peptides that
can be compared to experimentally-obtained HDX-MS
data. For that, we first assume that a residue’s deu-
terium uptake follows pseudo-first-order kinetics [3, 6,
44]. Since Pi = kinti / kobsi , the fraction of deuterium
incorporated by residue i at time t is thus

di(t) = 1− exp(−kobsi t) = 1− exp(−(kinti /Pi) t) (2)

where kinti rates are known. Then, the deuterium up-
take of peptide j can be considered as an average over
the residues it contains [14]. Note that we systemat-
ically exclude from the average the first two amino
acids of the peptide because of back-exchange.

4.2 Experimental Methods
4.2.1 HDX-MS Experiment
Human purified C3d (0.25 mg/mL) was expressed
in E. coli, as described in other work [23]. Deu-
terium oxide (99.9 atom % D; 151882) was obtained
from Aldrich (St. Louis, MO). Tris(2-carboxyethyl)-
ohosphine hydrochloride (TCEP-HCl; 20491) and im-
mobilized pepsin (20343) were from Thermo Scientific
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(Rockford, IL). Guanidine hydrochloride (> 99.5%
purity; BP178-500), acetonitrile (99.9%; A998) and
formic acid (> 99.5% purity; A117) were purchased
from Fisher (Fair Lawn, NJ).

C3d’s peptides (2 pmol) were analyzed in data-
dependent acquisition (DDA) mode. Precursor ions
were acquired in the m/z 300–1500 Da range using a
top 3 method and MS/MS scans of the fragment ions
were acquired in them/z 100–1200 Da range. The total
cycle time was 3.8 sec and ions selected for fragmenta-
tion were excluded for 20 sec. UPLC parameters were
as described below. Peptide identification took place in
ProteinLynx Global ServerTM (version 3.0.2, Waters)
using 10 ppm peptide tolerance and 0.8 Da fragment
tolerance.

For the labeling experiment, 4 µL of purified C3d
(0.2 µg/µL in PBS; 10 mM Na2HPO4, 1.8 mM
KH2PO4, 2.7 mM KCl and 137 mM NaCl, pH 7.5) was
mixed with 40 µL of deuterated PBS at 24±0.5 ◦C.
Samples were quenched at 10, 30, 100, 300, 1000, 3000
and 10000 sec using an equal volume (44 µL) of pre-
chilled guanidinium hydrochloride-TCEP (3.2 M and
0.8 M, respectively) at a final pH 2.4. Samples were
incubated on ice for 2 min prior to LC-MS analy-
sis. Non-deuterated samples were prepared similarly
in protiated PBS; fully-deuterated samples were pre-
pared by incubating the protein for 48 h at 37±0.5 ◦C.
Samples were prepared and analyzed in duplicate using
a Synapt G2S ESI-QToF (Waters) mass spectrometer
with MassLynxTM 4.1 (SCN 916, Waters). Spectra
were acquired in the positive ion mode. Leu-Enk was
co-infused as a lock spray standard. Chromatographic
separation took place on a nano-Acquity UPLC system
with HDX technology (Waters). Quenched samples
were injected on an Acquity UPLC R BEH C18 Van-
Guard Pre-column (130 Å, 1.7 µm, 2.1× 5 mm, Waters
P/N 186003975). Peptides were generated upon online
digestion (3 min at 300 µL/min using 0.23% v/v formic
acid) of C3d using immobilized pepsin. They were sep-
arated on an Acquity UPLC R BEH C18 analytical
column (130 Å, 1.7 µm, 1 × 100 mm; 186002346, Wa-
ters). Chromatographic parameters were: flow rate at
40 µL/min; solvents A (0.23% v/v formic acid) and
B (0.23% v/v formic acid in acetonitrile). Solvent B
was ramped from 3% to 10% in 0.2 min, to 38.5%
in 19.8 min, to 90% in 2 min, and then kept at 90%
for 2 min before re-equilibrating to initial conditions.
Data processing took place in DynamX (version 2.0,
Waters).

4.2.2 HDX-MS Data Derived from Crystal Structures
Using the model described in Section 4.1.2, we derived
HDX-MS data from the conformation of C3d reported
in the PDB (i.e., 2GOX). More precisely, we calculated

the fraction of deuterium uptake at all experimental
time points for the 81 peptides retained for analysis
(see Section 2.1). We then compared this data to the
experimentally-obtained data reported in Table 1. To
assess the goodness-of-fit between structurally-derived
and experimentally-observed HDX-MS data, we con-
structed a histogram of differences by computing, for
every peptide j, the error

∑
t∈T |Dder

j (t) − Dobs
j (t)|,

where T is the list of experimental time points, Dder
j (t)

is the structurally-derived deuterium uptake at time t,
and Dobs

j (t) is the experimentally-observed deuterium
uptake at time t. Note that this histogram can be ag-
gregated into an average difference over all peptides.

4.2.3 HDX-MS Data Derived from MD simulations
All MD simulations were performed with the GRO-
MACS v4.6.5 package [51] using the GROMOS96
(53a6) force field and the SPC water model. A cubic
box was defined with at least 9 Å of liquid layer around
C3d’s structure (for a total of 15052 water molecules),
with periodic boundary conditions. Sodium (Na+) and
chloride (Cl−) counter-ions were added to neutralize
the system, with a final concentration of 0.15 mol/L.
The algorithms v-rescale (with tau-t = 0.1 ps) and
parrinello-rhaman (with tau-p = 2 ps) were used for
temperature and pressure coupling, respectively. A
cutoff value of 1.2 nm was used for both the van der
Waals and Coulomb interactions, with Fast Particle-
Mesh Ewald electrostatics (PME).

The production stage of each MD simulation is pre-
ceded by (i) three steps of Energy Minimization (EM)
and (ii) eight steps of Equilibration (EQ). The first
EM step is conducted using the steepest-descent al-
gorithm and position restraints on C3d’s heavy atoms
(5000 kJ−1mol−1nm−1), allowing relaxation of the sol-
vent only. The second EM step involves the same al-
gorithm, but no restraint. The third EM step uses
the conjugate-gradient algorithm, without restraint,
to further relax the protein. The EQ phase starts
at a temperature of 310 K, which is maintained for
300 ps, applying position restraints on C3d’s heavy
atoms (5000 kJ−1mol−1nm−1). This step allows sol-
vation layers to form without affecting C3d’s folding.
Temperature is then reduced to 280 K, and position
restraints are gradually reduced. This process is fol-
lowed by a progressive temperature increase, up to
300 K. Together, these EQ steps constitute the first
500 ps of each MD simulation. During the production
stage, the system is not subjected to any restraint, and
temperature remains constant at 300 K.

All MD simulations were run on a single node of our
local High-Throughput Computing cluster. Such node
includes two octo-core Intel E5-2650v2 Ivy Bridge EP
processors (2.6 GHz), for a total of 32 threads, sharing
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32 GB of memory. The performance of an MD sim-
ulation of C3d on this architecture is approximately
29 ns/day. We initially ran three MD simulations of
C3d and obtained trajectories of 100 ns in length,
which is the length of the MD performed in [14]. Then,
we extended one of these simulations to 300 ns. Fi-
nally, we performed four additional MD simulations of
200 ns in length, using increasing temperatures for the
production stage: 350 K, 400 K, 450 K, and 500 K.
From each MD simulation, we extracted a set of 1000
conformations at regular time steps along the trajec-
tory. Using the HDX prediction model described in
Section 4.1.2, we derived HDX-MS data from each
MD conformational ensemble. First, protection factors
of residues were calculated as averages over the con-
formational ensembles. Then, within each ensemble,
we determined which conformation would provide the
best estimates of C3d’s experimental HDX-MS data.

4.2.4 HDX-MS Data Derived from Coarse-Grained
Conformational Sampling

In this work, we used a computational framework de-
veloped to explore a protein’s conformational space:
Structured Intuitive Move Selector (SIMS) [38]. This
framework integrates robotics-inspired sampling algo-
rithms with the Rosetta modeling software [39]. SIMS
follows a “coarse-grained” approach: the representa-
tion of a protein involves only backbone dihedral an-
gles; this representation is manipulated in a multi-
resolution fashion during sampling. Starting from the
PDB conformation of a protein, SIMS can iteratively
generate an ensemble of low-energy conformations by
perturbing previously-generated conformations. Typi-
cal perturbations include dihedral angle rotation, loop
closure and others. In this experiment, SIMS was run
for five days on four threads of a 3.6 GHz Intel i7-4790
quad-core CPU. Then, from the produced conforma-
tional ensemble, we determined which conformation
would provide the best estimates of C3d’s experimen-
tal HDX-MS data.
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