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Abstract

The recognition of peptides bound to class I Major Histocompability Complexes

(MHC-I) receptors by T-cell Receptors (TCRs) is a determinant of triggering the

adaptive immune response. While the exact molecular features that drive the TCR

recognition are still unknown, studies have suggested that the geometry of the joint

peptide-MHC (pMHC) structure plays an important role. As such, there is a definite

need in methods and tools that accurately predict the structure of the peptide bound to

the MHC-I receptor. In the last few years, many pMHC structural modeling tools have

emerged that provide high-quality modeled structures in the general case. However,

there are numerous instances of non-canonical cases in the immunopeptidome that the
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majority of pMHC modeling tools do not attend to, most notably, peptides that exhibit

non-standard amino acids and Post- Translational Modifications (PTMs), or peptides

that assume non-canonical geometries in the MHC binding cleft. Such chemical and

structural properties have been shown to be present in neoantigens, therefore, accurate

structural modeling of these instances can be vital for cancer immunotherapy. To this

end, we have developed APE Gen2.0, a tool that improves upon its predecessor and

other pMHC modeling tools, both in terms of modeling accuracy and the available

modeling range of non-canonical peptide cases. Some of the improvements include:

(i) the ability to model peptides that have different types of PTMs such as phospho-

rylation, nitration and citrullination; (ii) a new and improved anchor identification

routine in order to identify and model peptides that exhibit a non-canonical anchor

conformation; (iii) a web server that provides a platform for easy and accessible pMHC

modeling. We further show that structures predicted by APE-Gen2.0 can be used

to assess the effects that PTMs have in binding affinity in a more accurate manner

than just using solely the sequence of the peptide. APE-Gen2.0 is freely available at

https://apegen.kavrakilab.org.

Introduction

The adaptive immune response is a vital component of the immune system of any organism,

seeking to destroy pathogens, viruses or cancer cells.1 The process in which cytotoxic CD8+

T cells recognize and kill infected cells involves a series of steps; as part of the cells’ internal

processes, intracellular proteins undergo proteasomal cleavage, resulting in smaller amino

acid chain fragments, referred to as peptides. Peptides that are 8-15 amino acids long

bind to class I Major Histocompability Complex (MHC-I) proteins, forming a peptide-MHC

(pMHC) complex. The pMHC complex is then transported to the surface of the cell, where

the receptor of the T cell scans the pMHC complex to assess if the peptide is self or foreign,

the latter case resulting in T cell activation.2 Determining which peptides bind to MHC-I

2

https://apegen.kavrakilab.org


proteins, and which pMHC complexes will elicit an immune response are both longstanding

problems in computational biology and immunoinformatics.3 Accurate identification of good

peptide targets has an immediate effect on the efficacy of therapeutics such as peptide

vaccination4 or T cell-based therapies.5

Most of the methods that predict the binding affinity of the peptide to the MHC-I,

the crucial first step in eliciting an immune response, have long been based on analyzing

peptide sequences,6,7 due to the large amounts of binding affinity and mass-spec data that

are publicly available.8 Methods that determine the immunogenicity of a peptide solely

based on its amino acid sequence have also started emerging rapidly.9,10 In contrast to the

availability of sequence data and sequence-based methods, the number of available pMHC

crystal structures in public databases is order of magnitudes lower.11,12 However, there is

extensive evidence that structural features stemming from the bound peptide are predictive

of properties such as binding affinity,13 stability14 and peptide immunogenicity.15,16 Certain

chemical modifications, such as single point mutations15,17 or post-translational modifications

(PTMs) such as phosphorylation18 can cause severe structural alterations, thus, noticeable

effects in T cell recognition, with minimum effect on the peptide sequence.17 Moreover, there

have been studies which employed modeled pMHC structures and subsequently extracted

structural features that have shown to be predictive of the aforementioned properties, even

exhibiting competitive performance in comparison to peptide sequence-based tools.13,19,20

It follows that devising algorithms and methodologies that provide accurate geometries of

pMHC models is crucial in immune response-related tasks.

There are quite a few examples of pMHC structural modeling tools in the literature that

employ a diverse set of algorithms and methodologies to achieve good modeling accuracy.19

These tools have shown in practice to be successful in providing high-quality structural

conformations when compared to ground truth crystal structures. The pDOCK protocol21

involves two input preparatory steps related to the MHC receptor, as well as the calculation

of a docking grid, followed by a single docking (Monte Carlo sampling and scoring) and
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refinement step (using a Monte Carlo procedure). The refinement protocol of Rosetta Flex-

PepDock,22 has been tested on modeling peptide conformations in the MHC binding cleft,

reporting near-native predictions (≤ 2Å). A crucial step in the Rosetta FlexPepDock is the

choice of a proper pMHC template from a database of structures, which is used to produce

the new model.23 Moreover, the ab-initio protocol of Rosetta FlexPepDock24 has also been

recently tested on pMHC modeling.25 Docktope26 provides a web-based platform for pMHC

docking, employing a combination of molecular docking and an energy minimization protocol

that achieves, on average, high quality pMHC structures (≤ 1Å). It is limited, however, to

only four MHC alleles in total. GradDock27 uses the highly conserved anchor positions of

the peptide, and constructs an ensemble of peptide conformations from half-peptides bound

to the anchor positions in the MHC cleft. APE-Gen28 employs a similar approach, by uti-

lizing an anchor alignment process to define the location of the termini positions. It then

constructs an ensemble of peptide conformations using a loop modeling algorithm,29 without

using prior knowledge about the middle portion of the peptide, resembling in this way an

ab-initio modeling approach. PANDORA30 uses homology modeling and a loop optimiza-

tion approach to provide an ensemble of conformations. Incremental docking methods like

DINC2.031 have been successfully applied to pMHC modeling, due to the large molecular

size of the peptides that bind to MHC-I proteins.32 Lastly, pMHC modeling using a fine-

tuned version AlphaFold33 has been applied in predicting peptide-binding specificity using

structure34 with comparable results to NetMHCpan4.1, a sequence-based method.7 While,

as previously mentioned, all the pMHC modeling tools in the literature are using a diverse

set of methodologies to provide accurate bound peptide conformations, all the approaches

(with very few exceptions) can in theory be grouped into two categories: approaches that are

using information from a known peptide template, and approaches that follow an ab-initio

modeling paradigm and sample peptide backbones.

Another common factor to the pMHC modeling methods and tools mentioned above is

that they, with a few exceptions, can only model peptides that exhibit canonical geometries,
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and to peptides that are comprised of the 20 canonical amino-acids. However, there have

been numerous known instances of peptides that do not follow canonical geometries, and/or

are composed of one or more chemical modifications. Focusing on peptide geometries, in

the canonical case, it is the amino acid in the second position of a peptide sequence that

assumes the anchor position in the B pocket of the MHC-I, and the last amino acid in same

peptide sequence that assumes the anchor position in the F pocket of the MHC-I. However,

many non-canonical cases that do not follow this paradigm have been observed in the lit-

erature.35 For instance, numerous pMHC crystal structures have been observed that show

N-terminal extension patterns36–38 or C-terminal extension patterns.39,40 The majority of

pMHC modeling tools do not identify such cases, and the predicted structures that they

provide do not match the non-canonical geometries. For example, while Docktope26 reports

near-native results for the majority of the modeled structures, the authors specifically re-

port that they fail on one case: a peptide variant from the MART-1/Melan-A protein37

(sequence: LAGIGILTV, PDB code: 2GTW). This peptide adopts a non-canonical, bulged

conformation, caused by the leucine in the first position assuming the anchor position in

the B pocket. As Docktope lacks the ability to identify such non-canonical cases, it mod-

els the peptide as a canonical case, with the Alanine in the second position assuming the

anchor position, deviating a lot from the ground-truth as a result. Recently, PANDORA30

applied NetMHCpan4.17 as a proxy, in order to identify such non-canonical cases. The au-

thors show that they provide better structural models for the cases where NetMHCpan4.1

correctly identifies a non-canonical case.

In addition, there is a significant number of peptides from the immunopeptidome that

exhibit one or more chemical modifications. Specifically, the topic of peptides presented by

MHCs exhibiting PTMs has been extensively discussed.41,42 In the last few years, a plethora

of studies are scanning cell lines in the immunopeptidome, emphasizing the importance that

peptides that undergo PTMs hold in the adaptive immune response.43,44 It is now known that

PTMs can have a substantial impact in TCR recognition, and could potentially have an im-
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pact in therapeutics, with works emphasizing the fact that many neoantigens exhibit PTMs,

absent in normal proteins.45,46 With the advent of mass-spectrometry and the subsequent

increase in pMHC data with PTMs included, sequence-based methods have made break-

throughs in binding affinity/MHC presentation prediction of peptides exhibiting PTMs.47,48

However, the prediction of the structural effects that these subtle modifications will cause,

and how those affect TCR recognition, is still a very challenging problem. Moreover, most of

the pMHC structural modeling approaches discussed above are not able to model peptides

with PTMs. Recently, the study in25 extended the Rosetta FlexPepDock ab-initio protocol,

in order to support structural modeling of post-translationally modified peptides, making

this the only pMHC structural modeling tool that models pMHC complexes including PTMs.

While the authors report results averaging below the 2Å threshold, the pMHC modeling run-

ning times are reported to be 8-16 hours long, making the method non-applicable in fast

pMHC modeling scenarios.

In this work, we present APE-Gen2.0, a fast and accurate pMHC structural modeling

tool. APE-Gen2.0 not only improves pMHC modeling performance, but also expands the

pMHC modeling repertoire to non-canonical cases, both in terms of peptide geometries and

chemical modifications. By employing already established tools and plugins for modeling

PTMs,49 APE-Gen2.0 is able to provide, within minutes, geometrical models for peptides

exhibiting PTMs common to the pMHC system, such as phosphorylation, citrullination,

nitration and acetylation, among others.41,42 To prove that APE-Gen2.0 structures are use-

ful in downstream tasks, we experimentally determined binding affinities for a small set

of phosphorylated peptides and their non- phosphorylated counterparts. In this dataset,

APE-Gen2.0 outperforms sequence-based approaches on the task of correctly identifying

positive/negative effects that PTMs cause in pMHC binding affinity. Moreover, by develop-

ing a dedicated peptide anchor identification module that correctly identifies non-canonical

anchor placements in the majority of the cases, APE-Gen2.0 provides correct structural pre-

dictions for non-canonical peptide geometries, as confirmed by the reproduction of crystal
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structures. Finally, in order to facilitate structural pMHC modeling, APE-Gen2.0 is provided

as a web-server and is freely available at https://apegen.kavrakilab.org.

Results and discussion

APE-Gen2.0 accurately reproduces pMHC structures through a

combination of backbone sampling and threading

APE-Gen2.0 is an evolution of the previous version,28 with modifications and improvements

present in multiple parts of the previously established pMHC modeling workflow (Figure 1A).

Specifically, the ab-initio modeling process of the previous APE-Gen version is now used in

tandem with a peptide backbone threading process, which utilizes geometrical information

from the middle portion of the bound peptide. This is depicted in the two branches of

Figure 1A. As input, APE-Gen2.0 receives a peptide amino acid sequence, as well as an

MHC allotype from any organism. As output, APE-Gen2.0 provides an ensemble of plausible

peptide conformations bound to the MHC binding cleft (Figure 1B), as well as a ranking of

these conformations, based on protein-ligand scoring functions.50–52
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Figure 1: APE-Gen2.0 produces high-quality (≤ 1Å) pMHC models. (A) Overall
workflow of APE-Gen2.0. (B) Example of the conformational ensemble output of APE-
Gen2.0 (depicted in red), given an input peptide sequence and an MHC allotype (example
here is PDB code: 1DUZ, sequence: LLFGYPVYV, MHC: HLA-A*02:01, structure is de-
picted in blue). (C) APE-Gen2.0 performance on the leave-one-PDB-out cross-validation
scenario. Results are shown for both the best scored conformation from the ensemble, and
also the conformation with the lowest L-RMSD. (D) Around 30% of the best L-RMSD
conformations produced by APE-Gen2.0 are a product of the loop sampling and scoring
process, and around 70% are a product of peptide threading. (E) Comparison of the two
backbone reconstruction approaches used by APE-Gen2.0 in regards to the sequence similar-
ity of peptides that are found in pMHC structures in the APE-Gen2.0 database. The Loop
Generation box contains the sequence similarity values for the 30% of peptides where Loop
Generation performs best in regards to best L-RMSD. The other 70% is contained in the
Threading box. The loop sampling and scoring process tends to perform better when the
peptide template/templates that are chosen exhibit low sequence similarity to the peptide
that is to be modeled.
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An improvement of APE-Gen2.0 over its predecessor is the creation of an expanded

template structure database, in order for it to be used in the peptide threading step. In

particular, we created a database of pMHC crystal structures, collected from public databases

(see Methods). The data collection and filtering process resulted in a total of 699 pMHC

structures, with no duplicates (see Methods). We subsequently used this template database

in order to assess the modeling accuracy of APE-Gen2.0. More specifically, we performed a

cross-docking scenario, using the leave-one-PDB-out cross-validation scheme proposed in.30

We removed structures from the evaluation that contain additional chains, foreign molecules,

or any modifications that might alter the structural pose of the peptide (see Methods),

resulting in a total of 569 structures for evaluation. L-RMSD results can be seen in Figure 1C

(detailed L-RMSD results can be found in the Supporting Information file Data S1). More

than 50% of the conformations produced by APE-Gen2.0 are high-quality conformations

(≤ 1Å). It is interesting that the difference in modeling quality distributions between the

best scored model and the best L-RMSD model from the ensemble does not differ by a big

margin. That hints to the fact that Vinardo,50 the default scoring function included in APE-

Gen2.0 (see Methods), even though it is designed for smaller ligands, is properly ranking the

peptide conformations in terms of L-RMSD closeness to the crystal structure.

It is important to note that, the loop sampling and scoring protocol and the peptide

threading protocol do not operate as mutually exclusive, and should be used in tandem.

In fact, almost one in three conformations produced by APE-Gen2.0 that are closer to

the crystal structure in terms of L-RMSD are produced by the backbone loop sampling

process (Figure 1D). We wanted to further investigate the distinct features that this 30% of

structures, generated by backbone sampling and optimization and outperforming the peptide

threading process, have. Figure 1E shows the peptide sequence identity percentage for when

each backbone construction method performs best. Peptide threading performs better than

backbone loop sampling and optimization when the sequence of the peptide to be modeled

has a large sequence identity with a peptide in the database. On the contrary, when the
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sequence identity is low, it is more probable that backbone loop sampling yields better

results. The above observation necessitates concurrent usage of loop sampling/scoring and

peptide backbone threading during modeling.

Lastly, a good choice of backbone sampling to backbone threading ratio ensures that

sufficient variability exists in the generated peptide loops, and also ensures the best possible

ensemble in terms of accuracy. We found that, if the resulting ensemble generated by APE-

Gen2.0 contains 75%-80% conformations stemming from the backbone sampling process,

and 20%-25% from the peptide threading protocol, then this results in the best possible

L-RMSD to the crystal structure (Figure S1). Specifically, the mean best L-RMSD of the

workflow that combines both peptide threading and backbone loop sampling is lower than

the mean best L-RMSD of the peptide threading only workflow, and much lower from the

mean best L-RMSD of the ab-initio modeling. This is true for Cα, backbone, and full-

atom L-RMSD (Figure S1). It is worth underlying though, that, by employing backbone

sampling, there is a small L-RMSD performance drop when considering only the best scored

conformation. This hints that the scoring function used in APE-Gen2.0 is not impairing

sampling, but it might sometimes impair the proper ranking of conformations within the

predicted ensemble (Figure S1). However, the instances of incorrect scoring are quite rare.

As such, the backbone sampling to peptide threading ratio value that we employed in the

rest of the experiments for this paper was 80%.
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Figure 2: Leave-one-PDB-out comparison of APE-Gen2.0 to other pMHC model-
ing tools. L-RMSD comparison between APE-Gen2.0 and three different pMHC modeling
tools from the literature. On the left side, violin plots (with the inserted box plot) depict the
distribution of L-RMSD values for each method. On the right side, per-PDB-code L-RMSD
comparisons are depicted. Each point represents a unique structure, and its coordinates
represent L-RMSD values from APE-Gen2.0 and a different pMHC modeling tool. Percent-
ages in green denote the percentage of structures that APE-Gen2.0 exhibits better L-RMSD
results. Percentages in blue denote the percentage of structures that APE-Gen2.0 is out-
performed. (A) APE-Gen2.0 comparison with its previous version. Both the best scored
model and the best model in terms of L-RMSD to the crystal structure are considered. (B)
APE-Gen2.0 comparison with PANDORA. Both the best scored model and the best model
in terms of L-RMSD to the crystal structure are considered. L-RMSD values for PANDORA
are taken from.30 (C) APE-Gen2.0 comparison with Docktope. Only the best scored model
is being considered in this benchmark (best model results are not provided in the Docktope
paper). L-RMSD values for Docktope are taken from.26
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APE-Gen2.0 outperforms other pMHC modeling tools

We wanted to assess how APE-Gen2.0 is performing in comparison to other pMHC modeling

tools in the literature. We benchmarked APE-Gen2.0 with a selection of pMHC modeling

tools that is diverse in regards to the algorithms and methodologies that are employed:

APE-Gen, PANDORA and Docktope. The previous version of APE-Gen is using an ab-

initio, sampling and scoring approach, without prior knowledge or template guidance for the

middle portion of the peptide.28 PANDORA is a homology modeling-based pMHC modeling

tool that is using MODELLER53 functions and protocols to predict pMHC complexes.30

Finally, Docktope is a web-based tool that is predicting pMHC structures using a molecular

docking/energy minimization protocol.26 The aforementioned pMHC structural modeling

tools were evaluated based on two different methodologies. First, we test APE-Gen2.0 by

comparing its performance to the results reported by other tools in the literature, using

a leave-one-PDB-out experiment as previously proposed.30 However, as each tool reports

results on different sets of pMHC structures, we also wanted to run all the tools on the same

benchmark dataset. For this reason, we constructed a smaller left-out test dataset. We did

this by selecting a set of PDB codes that were not found in template databases created by

other pMHC modeling tools, in this way, creating an unbiased evaluation (the reader can

find more details on the two evaluation schemes in Methods).

Aggregated L-RMSD results for all methods, as well as per-PDB-code L-RMSD compar-

isons for the leave-one-PDB-out experiment are depicted in Figure 2 (see Tables S1-S3 in

Supporting Information for median and mean L-RMSD values). Emphasizing on the com-

parison of APE-Gen2.0 to its predecessor (see Figure 2A), it can be seen that APE-Gen2.0

does significantly better, both in terms of the best scored conformation, as well as in terms

of the best generated conformation in terms of closeness to the crystal structure. The reason

for this is the employment of crystal structures as templates during the modeling process

(peptide backbone threading). APE-Gen, it being mostly a loop sampling approach, can po-

tentially produce backbones that are far from the crystal structure, causing many L-RMSD
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values to increase beyond the acceptable threshold. When compared to PANDORA, APE-

Gen2.0 presents a better performance in terms of mean and median L-RMSD. APE-Gen2.0

also outperforms PANDORA when comparing on a per-PDB-code basis in all categories

(Figure 2B). While APE-Gen2.0 still outperforms PANDORA in terms of median L-RMSD

when considering the best possible conformation to the crystal structure, PANDORA slightly

outperforms APE-Gen2.0 in terms of overall mean Cα and backbone L-RMSD (Supporting

Information, Table S2). However, this is not true when considering the best scored confor-

mation. It follows that, while the two tools are mostly comparable when considering the best

L-RMSD conformation, PANDORA’s scoring function, molpdf,30,53 is not properly ranking

the produced conformations. Lastly, APE-Gen2.0 also outperforms Docktope in all areas

(Figure 2C and Table S3). When considering Cα L-RMSD performance only, Docktope

still produces high-quality conformations. However, it is restricted to very few alleles,26 and

it is much slower in terms of performance time. On the contrary, APE-Gen2.0 can provide

a prediction for any allele, within minutes.
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Figure 3: Comparison of APE-Gen2.0 to other pMHC modeling tools on a left-
out test set. L-RMSD and MolProbity score comparisons between APE-Gen2.0 and two
different pMHC modeling tools from the literature. Comparisons are done using top ranking
conformation provided by each tool (best scored model). For per-PDB-code L-RMSD com-
parisons, each point represents a unique structure, and its coordinates represent L-RMSD
values from APE-Gen2.0 and a different pMHC modeling tool. Percentages in green denote
the percentage of structures that APE-Gen2.0 exhibits better L-RMSD results. Percent-
ages in blue denote the percentage of structures that APE-Gen2.0 is outperformed. Violin
plots (with the inserted box plot) depict the distribution of MolProbity score values for each
method. (A) Per-PDB-code L-RMSD comparison of APE-Gen2.0 to its previous version.
(B) Per-PDB-code L-RMSD comparison of APE-Gen2.0 to PANDORA. (C) MolProbity
score comparison of APE-Gen2.0 to its previous version (p < 0.0001). (D) MolProbity score
comparison of APE-Gen2.0 to PANDORA (p < 0.0001).

Per-PDB-code L-RMSD comparisons in regards to the left-out dataset are depicted in

Figures 3A-B. Comparisons here are done on the basis of the top ranking conformation

provided by each tool (best scored model), which is a more realistic scenario when the crystal

structure is not known. (best L-RMSD performance on the same test dataset is shown in

Figures S2A-B). Similar to the leave-one-PDB-out experiment, APE-Gen2.0 outperforms

its predecessor (Figure 3A), as well as PANDORA (Figure 3B). When considering the best
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L-RMSD conformation, APE-Gen2.0 still outperforms APE-Gen (Figures S2A), however,

PANDORA performs better (Figures S2B). This leads us to the same conclusion as in the

leave-one-PDB-out experiment, that is, molpdf, the scoring function that is used internally

by PANDORA for pose selection and ranking, is not properly ranking PANDORA’s produced

conformations, with APE-Gen2.0 performing better in this more realistic scenario (Figure

3B).

Recent studies have suggested that solely looking on L-RMSD values might be misleading,

as the aforementioned pMHC structural modeling methods might be introducing physically

implausible structures.54 Therefore, we wanted to quantify such plausibility in APE-Gen2.0

structures, and how they compare to structures generated by other pMHC structural mod-

eling tools. We used Molprobity, a quality assessment tool that validates structures and

structural models on a global and on a local scale.55 More specifically, we used the Mol-

probity score metric, a single score corresponding to each structural model (see Methods).

The Molprobity score (lower is better) is a log-weighted combination of identified clashes,

the percentage of Ramahandran outliers, as well as the percentage of side-chain rotamers

of bad quality56 (see also Methods). Interestingly enough, APE-Gen2.0 produces a higher

MolProbity score than its predecessor (Figure 3C). However, even though the Molprobity

score is not designed to be a threshold-based metric, the Molprobity score threshold of 2.0

has been previously used by the authors of Molprobity for potential loop fragment confor-

mations selection for filling gaps in protein structures.56 From this perspective, even though

higher than its predecessor, APE-Gen2.0 still produces good Molprobity scores, with much

better L-RMSD results compared to the previous version (Figure 3A). The same however is

not true for PANDORA, as the median Molprobity score for structures generated by PAN-

DORA is greater than 2.0, and much higher than APE-Gen2.0 (Figure 3C). Specifically,

manually inspected PANDORA structures exhibit a substantial amount of steric clashes,

and a substantial percentage of Ramachandran outliers. The same results and conclusions

can be observed when considering the best L-RMSD conformation (Figures S2C-D).
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Figure 4: APE-Gen2.0 correctly identifies and models non-canonical peptide ge-
ometries. (A) Simple frequencies from peptide binding motifs can be indicative of non-
canonical anchor placements (example here is the MART-1/Melan-A peptide variant LAGIG-
ILTV binding to HLA-A*02:01). (B) Relative binding affinity contributions taken from57

can also be indicative of non-canonical anchor placements (example here is Avian Influenza
A(H7N9) Virus-derived peptide TMVMELIRMIK binding to HLA-A*11:01). (C) Confusion
matrices of three different methods on non-canonical anchor identification. (D) Structure
prediction of LAGIGILTV bound to HLA-A*02:01 by 3 different pMHC modeling tools (tar-
get structure in blue). (E) Structure prediction of TMVMELIRMIK bound to HLA-A*11:01
by 3 different pMHC modeling tools (target structure in blue).

An anchor identification module allows detection and modeling of

non-canonical peptide geometries

In the majority of the structures deposited at PDB, independently of the peptide length,

the N-terminus anchor corresponds to the amino acid in position 2 of the peptide, and the
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C-terminus anchor is the amino acid in the last position of the peptide. However, there have

been many studies that have reported non-canonical peptide anchor configurations, either

in the N-terminus side,36,37 or the C-terminus side.39,40 Detecting and correctly modeling

these cases can strengthen the accuracy of pMHC modeling tools, and expand the pMHC

modeling repertoire. We collected pMHC binding motifs generated by MHCFlurry2.0,6 as

well as relative binding affinity contributions generated by the PMBEC matrix study in57

(see Methods). As previously proposed by,35 we also noticed that either position-weight

matrices derived by peptide binding motifs, or relative binding affinity contributions, can be

predictive of non-canonical anchor conformations. Specifically, in Figure 4A, it is shown that

simple differences of amino-acid occurrence frequencies from peptide motifs can identify that,

in the case of the MART-1/Melan-A peptide variant LAGIGILTV,37 it is leucine, the first

amino acid in the peptide sequence, that assumes the anchor position. When considering

HLA-A*02:01, leucine is prominent in position 2 of the peptide binding motif (corresponding

to the B pocket), without being overly frequent in position 1 of the binding motif (corre-

sponding to the A pocket). At the same time, while alanine is not overly frequent in position

3 of the binding motif, it is almost never expressed in the B pocket. As such, we can as-

sume that leucine will overtake the B pocket anchor, resulting in a bulged conformation and

a non-canonical geometry. A similar reasoning, from the scope of binding affinity contri-

butions, is followed in Figure 4B with the Avian Influenza A(H7N9) virus-derived peptide

TMVMELIRMIK, bound to HLA-A*11:01.36 From the relative binding affinity contribution

matrix, we can see that threonine’s absence in position 2 contributes to substantial binding

affinity loss. At the same time, methionine can be critical for good binding in position 2,

but can also be critical in position 3. As such, we could hypothesize that threonine will

assume the B pocket anchor, shifting methionine to the right, resulting in a non-canonical

geometry. We subsequently devised a simple algorithm that, by using simple thresholds

for relative binding affinity contribution differences, separates canonical/non-canonical cases

(see Methods and the Supplementary text section in the Supporting Information material).
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These thresholds are kept intentionally simple and linear, in order to avoid overfitting and

maintain explainability. A visual interpretation of the relative binding affinity thresholds and

the simple boundaries that are formed as a result can be seen in Figure S3 in Supporting

Information.

To quantify the overall improvement of our anchor identification in comparison to NetMHC-

pan4.1,7 which is used as a proxy for anchor identification in PANDORA,30 we benchmarked

both approaches in our constructed crystal structure database. As relative binding affinity

contributions are not available for all alleles in the database, we kept only MHC structures

for which the relative binding affinity contributions are available. This resulted in 404 data

points in total, out of which 26 data points exhibit non-canonical anchor conformations.

Note that one of these structures (PDB code: 5TRZ ) exhibits non-canonical conformations

in both N-terminus and C-terminus, therefore this structure counts as two separate non-

canonical data points. Confusion matrices in Figure 4C show that relative binding affinity

contribution differences predicts much more non-canonical cases correctly than NetMHC-

pan4.1. This is reflected on the calculated F1 scores too, as the F1 score for NetMHCpan4.1

is equal to 0.70 compared to the F1 score when using the relative binding affinity contribu-

tion matrices, it being equal to 0.88. We further compared the performance of our simple

algorithm based on relative binding affinity contributions compared to the performance of

the expert system based on peptide binding motifs (as seen in Figure 4A). Relative binding

affinity contributions end up in fewer false positives.

The correct identification of non-canonical anchors in APE-Gen2.0 allowed us to fetch the

appropriate peptide template for the anchor alignment step. To clearly show this, we used

APE-Gen2.0 to model the two aforementioned non-canonical cases (PDB codes: 2GTW,

4MJ6 ). In Figure 4D we can see that, contrary to APE-Gen, which is not able to properly

model non-canonical conformations, APE-Gen2.0 correctly predicts the non-canonical con-

figuration and outputs a correct structural model. It is important to underline here that,

because NetMHCpan4.1 cannot identify the correct anchor placement, PANDORA ends up
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forcing Ala2 in the B pocket. Similarly, in Figure 4E, the homolog that is being fetched

by PANDORA, the peptide TIAMELIRMIK, while very similar to the H7N9 virus-derived

peptide in terms of sequence, is very different structurally (PDB code: 4MJ5 ). In contrast,

APE-Gen2.0 correctly identifies the non-canonical anchor and ends up modeling the H7N9

virus-derived peptide with the correct anchor placement.

APE-Gen2.0 models post-translationally modified peptides in a

rapid and accurate manner

By incorporating the PyTMS tool49 in the APE-Gen2.0 modeling workflow, we are able

to model pMHC complexes that include PTMs rapidly and accurately. We collected a

small set of peptides bound to MHC complexes from the PDB that exhibit at least one

PTM (see Methods). In Figure 5A, performance of APE-Gen2.0 on Cα, backbone and

full-atom L-RMSD on this small set of pMHC complexes is depicted (see Table S4 in

Supporting Information for L-RMSD results per PDB code). We can see that the Cα L-

RMSD median is below 2Å, indicating that APE-Gen2.0 correctly models pMHC complexes

that exhibit PTMs, with only few structures surpassing that threshold. MolProbity scores for

all aforementioned structures were also calculated, in order to assess the biological plausibility

of the structures. We can observe an obvious separation between phosphorylated peptide

structures, and structures exhibiting either citrullination or nitration (see Figure S4). We

hypothesize that the openMM energy minimization step, which is only supported currently

for phosphorylated peptides (see Methods), is crucial in providing structures that are free of

steric clashes, Ramahandran outliers and bad quality side-chain rotamers.
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Figure 5: APE-Gen2.0 modeling of post-translationally modified peptides. (A) L-
RMSD performance on a set of post-translationally modified peptides bound to MHCs. Dif-
ferent colors correspond to different PTM categories. Both the best scored model and the best
model in terms of L-RMSD to the crystal structure are considered. (B) Confusion matrix
denoting the performance of APE-Gen2.0 on the small IEDB dataset of phosphorylated/non-
phosphorylated peptides, in the task of identifying positive/negative binding effects in pres-
ence/absence of phosphorylation. (C) Confusion matrix denoting the performance of APE-
Gen2.0 on the small IEDB dataset of citrullinated/non-citrullinated peptides, in the task of
identifying positive/negative binding effects in presence/absence of citrullination. (D) APE-
Gen2.0 is compared to sequence-based methods NetMHCphosPan1.047 and PhosMHCpred48

on the in-house dataset of 19 phosphorylated/non-phosphorylated peptide pairs. The y-
axis in the beeswarm plots denotes the difference in predictions for a phosphorylated/non-
phosphorylated peptide pair. Ideally, peptide pairs where PTM results in better binding
(light green)/ worse binding (dark blue) should be separated.
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We also compared APE-Gen2.0 modeling with the only other method that models pMHC

complexes with PTMs, Rosetta FlexPepDock,25 on a subset of phosphorylated pMHC com-

plexes. Backbone L-RMSD results can be seen in Table S5 for four different pMHC com-

plexes. In general, all methods are competing with each other, with no clear winner. How-

ever, it is worth mentioning that the time of modeling with the Rosetta FlexpepDock protocol

is reported to be 10–16 hours long,25 while APE-Gen2.0 can provide a model within minutes.

Additionally, we wanted to check whether modeled APE-Gen2.0 structural models hint

at downstream effects that the PTM might have on the pMHC complex, particularly on

binding affinity. We collected a small set of phosphorylated peptides from the IEDB that

also come with their non-phosphorylated counterpart, comprising two alleles HLA-A*02:01

and HLA-B*40:02, for which the effects that phosphorylation has in binding affinity are

known.42,58,59 The aforementioned phosphorylated/non-phosphorylated pairs were modeled

using APE-Gen2.0, using a 5-experiment protocol, where the modeling is repeated 5 different

times to enhance robustness (see Methods). After modeling, for each phosphorylated/non-

phosphorylated pair, we compare the two values resulting from the aforementioned protocol.

If the score is better for the phosphorylated peptide in comparison to its non-phosphorylated

counterpart, it is predicted that binding affinity is to be enhanced as a result of the PTM,

and vice versa. The confusion matrix resulting from this classification can be seen in Figure

5B. APE-Gen2.0, except one case of a False Negative, predicts correctly whether a phospho-

rylation will result in a better binding affinity. While APE-Gen2.0 incorrectly classifies as

positives two of the negative instances, the Area under the ROC Curve (AUC) performance

is equal to 0.798, a value bigger than random prediction (AUC = 0.5 ). It is important here

to note that critical factors for this performance include both considering the whole ensemble

produced by APE-Gen2.0, as well as the openMM optimization step (see Methods). Omit-

ting one of these steps results in a close to, or even below 0.5 average AUC (Figure S5A).

Additionally, these factors do not just contribute to the better AUC, but to the overall sta-

bility of the scoring itself. Specifically, looking at the left part of (Figure S5A), it is evident
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that scores calculated by optimizing the structures through openMM and considering the

whole ensemble when scoring are not just the best scores in terms of performance, but also,

the most stable scores, resulting in > 0.5 AUCs for all 5 experiments.

The same experiment was performed with small set of 13 HLA-A*02:01 citrullinated pep-

tides from the IEDB (see Methods). It is important to note that the force fields parameters

that are used for the openMM energy minimization step do not support the citrullinated

arginine (see Methods). As such, for the case of citrullination, including any PTM that is

no phosphorylation, the optional openMM energy minimization step cannot be performed.

This shows in the confusion matrix results in Figure 5C. Even though the calculated AUC

given the ensemble of generated APE-Gen2.0 conformation is 0.7, a value better than ran-

dom prediction, the results are much more unstable. We hypothesize that the lack of an

optimization/energy minimization step in the case of citrullination reduces accuracy. More-

over, AUC values for the citrullinated peptides fluctuate between experiments, with some

experiments producing AUC values equal or below 0.5 (Figure S5A). This means that the

lack of an optimization/energy minimization step not only reduces accuracy, but also stabil-

ity. Future work will emphasize using force field parameters that support a larger number

of PTMs,60 as relaxed structures show to be more useful for downstream analysis. The full

list of citrullinated/non-citrullinated peptide pairs from IEDB, as well as the Vinardo scores

for different APE-Gen2.0 runs can be found in Data S4 in Supporting Information.

To further confirm the potential of using the energy-minimized ensemble of APE-Gen2.0

conformations for downstream tasks, we further employed a small in-house dataset of 19

phosphorylated peptides from 5 different alleles, also including their non-phosphorylated

counterpart (see Methods). Results of this comparison can be seen in Figure 5C (see Data

S5 in Supporting Information for the full list of peptides). Similar to the set of IEDB-

deposited phosphorylated peptides, scoring the openMM optimized generated ensemble can

distinguish between an increase/non-increase in binding affinity in the existence/absence

of a PTM. As before, considering the optimized ensemble not only yields the best posi-
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tive/negative instance separation results (Figure S5B), but the most stable ones through-

out different experiments in regards to performance (Figure S5C). Moreover, we wanted

to see how already existing sequence-based binding affinity prediction methods expanded to

phosphorylated peptides, specifically, NetMHCphosPan1.047 and PhosMHCpred48 can de-

tect changes in binding affinity due to the existence of a PTM, and how they compare to

our scoring protocol. These methods provide an ideal comparison as, contrary to the IEDB

dataset, the methods were not exposed to the in-house peptides that we are testing, making

this an unbiased comparison. Interestingly enough, sequence-based methods are not able to

rank the positive and negative instances as good as APE-Gen2.0. APE-Gen2.0 can almost

clearly separate the positive and negative instances, with the positive instances rising mostly

to the top of the beeswarm plot (Figure 5D).

A web server to facilitate pMHC modeling

To further make the tool accessible and facilitate structural pMHC modeling, APE-Gen2.0

is offered as a freely accessible web server at https://apegen.kavrakilab.org. The user

interface is comprised of two different tabs: the job submission tab and the results tab.

In the job submission page (Figure 6A), users can define the peptide sequence and the

MHC allotype of their choice. Additionally, users can define specific parameters, such as

the preferred scoring function to be used during the molecular docking step, as well as the

total number of conformations that they want to generate, among others. All these options

are provided in a clean and user-friendly way, to accommodate for both basic and advanced

users of the tool. In the results tab, the user can visualize the results generated from the

APE-Gen2.0 workflow (Figure 6B). Individual peptide conformations bound to the MHC of

choice can be visualized, along with the scoring function results. The whole pMHC structural

ensemble can then be downloaded and be utilized in further downstream analysis.
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Figure 6: The APE-Gen2.0 web server. (A) The job submission page. Users can type-
in the peptide sequence/MHC allotype pair, along with the chosen APE-Gen2.0 modeling
parameters. (B) The APE-Gen2.0 modeling results page. Users can visualize different
conformations from the produced ensemble, as well as download the ensemble for downstream
analysis.

Conclusions

The field of structural modeling of pMHC complexes, ever since its beginnings,21 has evolved

dramatically, with multiple methods and tools being published at an increasing rate.61 How-

ever, there are many pMHC pairs that cannot be modeled accurately by current pMHC

modeling tools, most notably, peptides that exhibit PTMs, or peptides that assume non-

canonical geometries in the MHC-I cleft. In this work, we have developed APE-Gen2.0, an

update from the original version of the tool.28 APE-Gen2.0 combines and extends the best

of the methodologies of previously published pMHC tools to further increase pMHC model-

ing accuracy (Figure 1C). It also innovates in expanding the pMHC modeling repertoire to

non-canonical cases in terms of peptide geometries and chemical modifications.

APE-Gen2.0 provides a conformational ensemble that stems from both peptide backbone

threading (resulting backbones are closer to the chosen template) and peptide backbone

sampling (resulting backbones diverge from the chosen template). The combination of the

backbone sampling and peptide threading processes ensures that, no matter the sequence or

structural homology level of the peptide that is to be modeled with other peptide structures

in the database, enough conformational space is adequately explored. This is done with
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no additional computational cost, as peptide threading modifies in-place the peptide amino

acids with no added computational burden, and the algorithm that is being used to sample

backbones is very fast (see Methods for more details). The presence of peptide conformations

stemming from both backbone construction processes provides the best overall accuracy

in terms of best L-RMSD (Figure S1). Moreover, looking into the best conformations

produced by APE-Gen2.0 in the leave-one-PDB-out cross-validation experiment, we see that,

although the majority of those are stemming from the peptide threading process, a significant

portion of those also comes from backbone sampling (Figure 1D). Thus, the concurrent usage

of both backbone construction processes is crucial for the best results in terms of accuracy

and diversity of conformations.

It is important though to note that, while the combination of backbone construction pro-

cesses gives the best L-RMSD results, in some cases, the APE-Gen2.0 scoring function fails

to properly rank the conformations produced by the ensemble. This leads to the combination

of backbone construction processes underperforming the simple peptide threading process

when considering only the best conformation in terms of score (Figure S1). As such, future

work will involve the creation of more accurate pMHC scoring functions that are accustomed

to the intricacies of the pMHC system. The authors of GradDock,27 as well as the study

in62 have already produced ideas leading to scoring functions that are pMHC specific. While

the validation of those previous works is limited to specific alleles or scenarios, this is still a

promising research avenue to pursue.

APE-Gen2.0 also excels in identifying cases of peptides that assume non-canonical geome-

tries when bound to MHC-I. We prove that, by imposing simple thresholds in either amino

acid occurrence frequencies found in peptide motifs, or in relative binding affinity contri-

butions of amino acids in each peptide position (Figure S3) that the majority of cases

of irregular geometries can be identified (Figure 4C). In regards to previous approaches

attempting to identify those cases, PANDORA30 employs NetMHCpan4.1 to identify non-

canonical anchor configurations. Briefly, given a peptide sequence and an MHC allotype,
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NetMHCpan4.17 determines the 9-mer binding core of the peptide that results in the best

binding affinity out of all binding affinities predicted by all possible binding cores. While

this can be a good proxy for non-canonical anchor identification, it is not specific to anchor

identification. The previously discussed example, the infamous 9-mer MART-1/Melan-A

peptide variant bound to HLA-A*02:0137 (Figure 4A), exhibits a non-canonical configura-

tion in the N-terminus part, where, it’s the leusine in position 1 that acts as the anchor in

the B-pocket. This, in principle, cannot be identified by NetMHCpan4.1 as a non-canonical

configuration, as the 9-mer binding core of the peptide with the biggest binding potential

is the peptide itself. For similar reasons, the Avian Influenza A(H7N9) Virus-derived pep-

tide TMVMELIRMIK, bound to HLA-A*11:0136 (Figure 4B), although it exhibits the same

non-canonical configuration as the melanoma peptide, it cannot be identified by NetMHC-

pan4.1 as non-canonical. Our anchor identification module identifies both of these cases

as non-canonical, and APE-Gen2.0 creates modeled ensembles that follow the predicted

non-canonical geometry of the crystal structure (Figure 4D and Figure 4E). Moreover, in-

spired by sequence-based consensus methods that combine many peptide binding predictors

and have shown better results in peptide binding prediction and target identification scenar-

ios,63–65 future work will include combining different sources of peptide motif frequencies and

matrices (stemming from different binding affinity predictors) and relative binding affinity

contributions, in order to construct an even more robust anchor prediction module. It is also

important to note that our proposed anchor identification module is specialized in identifying

N-terminus or C-terminus anchor positions, however, it cannot explicitly identify secondary

anchors found in the middle portion of the peptide. These secondary anchors have shown

to arise in certain mouse alleles, as well as certain human alleles such as the HLA-B*08:01

allele.66,67 Even though finding the appropriate pMHC template during modeling results in

APE-Gen2.0 correctly modeling secondary anchors in the majority of cases, we plan to ex-

pand our anchor identification module to explicitly identify secondary anchors. It has been

previously shown that peptide binding motifs exhibit conservation in secondary anchor po-
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sitions,66 so it is highly probable that peptide binding motif information or relative binding

affinity contribution information can also be exploited for secondary anchor identification.

Lastly, to our knowledge, by using PyTMS,49 APE-Gen2.0 is the first method to offer

a rapid modeling protocol of post-translationally modified peptides bound to MHC-I. We

showed that APE-Gen2.0 can provide near-native (≤ 2Å) conformations of phosphorylated,

citrullinated and nitrated peptides within minutes (Figure 5A). However, as previously men-

tioned, while providing the structures is in itself important, proving that these structures can

be of use in downstream analysis and tasks is equally important. To this end, we collected two

datasets of phosphorylated peptides and their non-phosphorylated counterparts, a dataset

from IEDB and a smaller, in-house dataset. In both datasets, APE-Gen2.0 provides correct

predictions in regards to the effects of the phosphorylation to the binding affinity (Figure 5B

and Figure 5D). Surprisingly enough, on the smaller in-house dataset and on the same task,

APE-Gen2.0 even outperforms sequence-based tools that have been explicitly trained on the

task of binding prediction of phosphorylated peptides47,48 (Figure 5D). This shows, even on a

small scale, without any explicit training or fine-tuning as done by sequence-based methods,

that structural information obtained from pMHC models can be of invaluable help in down-

stream analysis. It is important to note that a huge factor in obtaining these results was the

use of the APE-Gen2.0 ensemble output, combined with the openMM energy optimization

step (Figure S5). As it stands, the energy minimization step can only be performed on pep-

tides with canonical amino acids or phosphorylated peptides (see Methods). This partially

explains the worse performance on the same task in the citrullinated peptides scenario (Fig-

ure 5C). As such, future work will emphasize on using additional force field parameters,60

in order to expand the openMM energy minimization step to other PTMs. Additionally,

as there have been already examples in the literature that use pMHC modeled structures

to learn binding affinity13 or immunogenicity labels,20 future work will emphasize modeling

a larger dataset of phosphorylated peptides and use it in downstream tasks. Given that

the scoring function alone could discern effects of the existence/absence of phosphorylation
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to the binding affinity (Figure 5B and Figure 5D), we hypothesize that further fine-tuning

scoring functions on specific binding affinity labels of phosphorylated/non-phosphorylated

peptides can further improve performance. Future work will also include expanding the PTM

repertoire of APE-Gen2.0. Currently, APE-Gen2.0 uses PyTMS, a fast and accurate tool

that has however a finite selection of PTMs.49 As previously done in,25 we plan to expand

APE-Gen2.0 to more PTMs. Lastly, future work will also include the expansion of APE-

Gen2.0 to class-II pMHCs. Specifically, we are interested in modeling post-translationally

modified peptides bound to class-II MHCs, as PTMs are quite prominent in the class-II

MHC.68,69 The field of studying post-translationally modified peptides bound to MHCs and

their clinical relevance has started to flourish,43,44 and we hope that structural modeling of

these peptides in a fast and accurate way will take center stage, and further advance the

field.

Methods

Template collection and curation

APE-Gen2.0 relies heavily on a meticulously curated and labeled database of pMHC struc-

tures. The following section describes the collection, filtering, and labeling of these structures

that are used as templates in the pMHC modeling process.

pMHC Structure Collection

A collection of pMHC class-I structures was acquired from the IMGT/3D-structureDB

database.11 Namely, the IMGT receptor description that was chosen was MH1, resulting

in 1084 entries (tested on February 2nd 2023). Dubious crystal structure files that result

in parsing errors are manually inspected, and subsequently removed if they are deemed to

not be adequate for further processing. Crystal structures with missing peptides or missing

peptide residues were also removed. For each remaining file, we follow a modified pipeline
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to the one already proposed by:30 i) Duplicate chains stemming from multiple copies of the

biological assembly are removed, ii) files are renumbered in terms of atom and residue in-

dexes using pdb-tools,70 and iii) the β2-microglobulin is removed, as it does not contribute

to the proposed pMHC modeling process.

Moreover, we identify the following categories of crystal structures where a factor other

than the MHC molecule or the peptide itself contributes to the conformation of the pep-

tide: i) the peptide residues contain one or more post-translational modifications (PTMs)

or altered/non-canonical amino-acids that can lead to an altered peptide pose in compar-

ison with a non-altered version of the peptide, ii) there is an additional small molecule in

the pMHC binding cleft in close proximity to the peptide that might affect the peptide’s

structural pose, and iii) other chains that can be present in the crystal structure, e.g. T-

cell receptors (TCRs), Killer-cell immunoglobulin-like receptors (KIRs), antigen processing

(TAP)1/2, tapasin, calreticulin, ERp57, among others, that have been shown to affect the

peptide’s pose.71 We opted in keeping all of the aforementioned structures in the APE-Gen2.0

crystal structure database, as it was shown that they were helpful as templates during the

template selection step (see Figure S6 in Supporting Information). For structures belong-

ing to categories ii) and iii), we manually removed the small molecule/other chains. For

any peptide exhibiting a PTM/altered/non-canonical residue, we reverted its residue to a

canonical form based on the Parent residue entry in the Protein Data Bank (PDB).12

MHC allotype and peptide identification

To identify the MHC allotype that is present in the PDB file, unlike the study in,30 we did

not use the IMGT/3D-structureDB nomenclature, as there were valid PDB files that had

missing G-ALPHA1 and G-ALPHA2 entries (corresponding to the two α-helices). Instead,

we extracted the MHC α-chain sequence from the PDB and performed a pairwise sequence

alignment to all MHCs with known sequence. The MHC allotype with a sequence resulting

in the greatest similarity to the sequence found in the PDB file was chosen as the MHC
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allotype label for this file. The peptide sequence, as well as its length, was also extracted

from the PDB file. As previously described, PTM/altered/non-canonical residues in the

peptide sequence were converted to canonical ones based on their parent form. Finally, if

there are more than one structures with identical peptide sequence and MHC allotypes,

only one is kept, namely, the one that has the better resolution. As, in most cases, such

structures are almost identical when super-imposed, this was done to keep the database of

crystal structures diverse, but more importantly, to avoid data leakage during the leave-

one-PDB-out cross validation evaluation. The aforementioned data collection, filtering and

labeling process resulted overall in 699 distinct pMHC structures.

Anchor Identification and Labeling

A major decision factor for the selection of the peptide template is the anchor placement

of the peptide residues in the cleft. As such, there was a need to develop a protocol for

identifying and labeling, given a crystal structure in the database, the peptide residues that

assume the anchor positions in the MHC binding cleft. We identified the following features

that are descriptive of a peptide anchor:

• Relative accessible surface area: For each peptide residue, the Relative accessible Sur-

face Area (RSA) is defined as:

RSAi =
SASAi

MaxSASA(i)

where i is a given peptide residue and SASAi is the Solvent Accessible Surface Area

for this residue, denoting the surface area of the residue that is accessible to a solvent.

MaxSASA(i) denotes the maximum value that SASA can receive for a given residue i.

This normalization results in RSA values being comparable among different residues

that might have different side chain volumes that could skew the SASA value. Applied

directly to peptide residues, a higher RSA would imply that a peptide residue is more
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exposed, while a low RSA value would imply that the peptide residue is found deep

within the cleft, and is likely to be an anchor. RSA is computed using the NACCESS

2.1.172 tool, with choosing the default parameters and utilizing a standard 1.4 Å radius

probe. The MaxSASA values are taken from the default parameters of NACCESS.

When calculating the RSA for each peptide residue i, the rest of the residues were

removed from consideration, as neighboring peptide residues to the residue i are sure

to affect the SASA surface.

• Distance to the β-sheet calculation: Given that the beta-sheet floor formed by the two

polypeptide α-chains is roughly planar,73 and the bound peptide is positioned roughly

in parallel to the β-sheet, we can assume that peptide residues that are closer to the

β-sheet are more probable to be anchors. Specifically, we used the z-dist formulation

by74 to calculate, for each peptide residue, its distance to the β-sheet floor.

For each pMHC structure, two major peptide anchors are assumed. The first anchor

position is located in the N-terminus side of the peptide, and it is always placed in the

B region of the MHC binding cleft.75 The other anchor is located the C-terminus side of

the peptide, and it is always placed in the F region of the MHC binding cleft.75 Scanning

through the APE-Gen2.0 crystal structure database, it can be inferred that, for the N-anchor

positions, it is always the case that it is one of the first three residues of the peptide that take

the anchor position in the B region of the MHC. Similarly, for the C-terminus anchors, it is

always residues from position 7 of the peptide onward that compete for the anchor position

in the F region, independently of the peptide length.

Since the crystal structure database is too large for manually inspecting and defining the

anchors, the following protocol was devised for anchor identification:

• The Cα and all atom z-dist was calculated for both the N-terminus side (first three

residues) and the C-terminus side of the peptide (position 7 of the peptide onward).

The two residues exhibiting the minimum Cα and all atom z-dist, one for each residue
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group (N, C) are anchor candidates. The very few times Cα and all atom z-dist end

up in different candidates, manual inspection on these crystal structures is performed

to determine the closest residue to the β-sheet floor.

• RSA was calculated for the same residue groups (N, C). The residue with the minimum

RSA is considered an anchor candidate.

• A residue is considered an anchor if it is a candidate both in terms of z-dist and RSA.

Manual inspection to determine the major anchors is only necessary when the z-dist

and RSA consensus results in two different candidates.

Out of 699 structures in our crystal structure database, the above protocol results in 41 non-

canonical cases, which we manually inspect to confirm that they are actual non-canonical

cases.

APE-Gen2.0 workflow

The workflow of APE-Gen2.0 can be seen in (Figure 1A). It is composed of many individual

parts, which all contribute to the final ensemble of conformations that are produced as an

output of APE-Gen2.0. In the following subsections, we will examine the individual parts of

the workflow in more detail.

Anchor prediction module

We collected relative binding energy contribution matrices from57 for all supported alleles.

The relative energy contribution matrices, of size 20 × N (20 being the twenty canonical

amino acids and N being the peptide length), denote the binding affinity contribution of

a specific amino acid aa in a specific position pos, and are calculated as specified in.57

Similarly, peptide motif frequencies where collected from,6 with the 20×N matrix denoting

the frequency of an amino acid aa in a specific position pos.
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We observed that mere relative binding energy contributions or binding affinity motif

frequencies correlate with anchor placements. We subsequently developed a formal strategy

to extract features from these matrices that are predictive of anchor placements. More

specifically, we defined the energy difference feature ∆E(aa, pos, pos′):

∆E(aa, pos, pos′) = E(aa, pos′)− E(aa, pos) (1)

Values of the energy function E are taken from the relative binding contribution matrices

(or frequencies extracted from peptide motifs).

For the anchor prediction module, we have designed an expert system for identification of

possible non-canonical anchor configurations, based on the energy difference ∆E. For each

non-canonical candidate position (positions 1 and 3 for the N-terminus side and positions 7

up to position (length of peptide - 1) for the C-terminus), we set simple and interpretable

∆E thresholds that, when satisfied, result in a non-canonical configuration. In Supporting

Information, the reader can find the expert system using the relative binding affinity contri-

butions from the PMBEC work in57 (similar thresholds where defined from peptide motifs

as comparison, and are not shown in the manuscript).

Template selection

Similar to the previous version,28 APE-Gen2.0 just needs the amino acid sequence of the

peptide and an MHC allotype (or sequence) in order to predict the bound pMHC structure.

To achieve this, it needs one (or more) peptide template (e.g. an already experimentally

defined crystal structure) as a prior for the prediction of the 3D conformation of the peptide

in question, as well as an MHC template for the receptor. In this section, we describe in

more detail the protocols used for selecting a peptide template and an MHC template that

are to be used for predicting the final ensemble of pMHC conformations.

• Peptide template: The choice of peptide templates is performed through a pipeline of
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different filtering and scoring mechanisms:

1. Anchor filtering: The anchor configuration of a peptide in the MHC binding

cleft is a vital component that contributes majorly in the final peptide confor-

mation. If the anchor configuration is known, the peptide template that is to be

used to guide the pMHC modeling should exhibit the same anchor configuration.

Using the anchor prediction module, given the peptide sequence and the MHC

allotype, we predict the major anchor placements that the peptide will have in

the MHC binding cleft. We then define the major anchor difference, calculated as

the positional, index difference between the anchor in the C-terminus part of the

peptide and the anchor in the N-terminus part of the peptide. As an example,

assuming a 9-mer with canonical anchor configuration, its major anchor differ-

ence would be 9− 2 = 7. We subsequently filter and only keep peptide templates

that exhibit the same anchor difference calculated from the anchors output of

the anchor prediction module. In cases when the anchor prediction module fails

to predict the anchor placement (e.g. for alleles that peptide motifs or relative

binding affinity contributions are not provided), no crystal structures are filtered

out, and all are considered for the next steps in the peptide template selection.

2. Filter by organism: Given distinct geometrical differences between alleles of

different organisms (for example, human vs. mice alleles), no templates corre-

sponding to different organisms than the MHC allotype given as input are con-

sidered. Crystal structures from different organisms are considered if and only if

there are no crystal structures in the template database that correspond to the

organism that the MHC allotype input belongs to.

3. Template similarity: For the remaining peptide templates that passed through

the anchor filter and the organism filter discussed above, the best candidate needs

to be selected. The best candidate is based on two distinct similarity measures:

A) the similarity of the MHC allotype in question to other MHCs in the crystal
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structure database and B) the similarity of the peptide sequence to-be-modeled

with other peptide sequences in the crystal structure database.

In regards to Allele Similarity (AS), there are two main similarity measures when

comparing two alleles; similarity in terms of sequence, and similarity in terms of

binding preferences. Although there is obvious overlap between the two, there are

also distinct differences.76 In this work, we hypothesize that, for two MHCs that

have similar binding preferences (bind to similar peptides), it is highly probable

that the MHC binding cleft, including the possible conformation of the peptides,

also exhibit similarities in terms of geometry. As such, for a given MHC al-

lotype, MHCs from the crystal structure database that exhibit similar binding

preferences are given priority for the peptide template selection. To quantify the

similarity based on binding preferences, we download the peptide binding mo-

tifs from MHCFlurry2.0.6 We define MHC similarity as the similarity between

two MHC binding motifs. Specifically, we interpret a peptide binding motif as

a 20 × N normalized frequency matrix (N being the peptide length). For two

different matrices P and Q corresponding to two different alleles, we define their

allele similarity AS(P,Q) as:

AS(P,Q) = 1− 1√
2
∥
√
P −

√
Q∥2

The second part of the equation is the Hellinger distance77 between matrix P

and Q. AS(P,Q) is valued from [0-1], higher values denoting bigger similarity

between motifs. As such, motif similarities between the MHC allotype to be

modeled and the database of candidate templates are calculated in a pairwise

manner. Templates having scores closer to 1 are given the priority. If the MHC

allotype in question is identical to one of the MHCs in the template database, that

template takes the most priority, since the similarity value is the max value of 1.
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As there are peptide binding motifs corresponding to different peptide lengths,6

in practice, allele similarity depends also on the peptide length N in question,

AS(P,Q,N).

In regards to Peptide Similarity (PS), it has been shown that, given an MHC al-

lotype, similar peptides in terms of sequence are also similar in structure.16,78 As

such, the peptide template to be selected must also have as high peptide sequence

similarity as possible to the peptide that is to be modeled. As previous work has

suggested,30 the peptide sequence to be modeled is aligned in a pairwise manner

with all the peptide sequences in the crystal structure database. The BLOSUM62

matrix79 is used to score the pairwise alignment of the peptide sequences. How-

ever, it is important to underline that the alignment has to be structurally aware,

meaning that the anchors of two peptides sequences need to be correctly aligned.

As such, we perform a pairwise sequence alignment with anchor constraints. This

is done to avoid giving high scores to peptide templates that are very similar

in terms of sequence alignment but different structurally. To employ the anchor

constraint pairwise sequence alignment protocol, we use the anchors given by the

anchor prediction module. When the anchor prediction module is not available for

predictions (for example, no relative affinity contribution matrix is available for

a rare MHC allotype), then a simpler version of the pairwise sequence alignment

is performed, but with appropriate gap penalties to avoid structurally incorrect

alignments.

Finally, the AS score and the PS score are averaged to create a template similarity

score TS :

TS =
AS + PS

2

Crystal structures available in the database are ranked in decreasing order, and

the template with the highest TS score is chosen to be the peptide template. In

case of ties, one of the top scoring peptide templates is randomly chosen.
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• MHC template: The choice of MHC template will depend on whether the MHC allotype

input exists in our crystal structure database, as well as the peptide sequence input:

1. MHC filtering/modeling: If the given MHC allotype exists in the crystal

structure database, we simply filter out from consideration all the MHC tem-

plates that host a different MHC. Otherwise, similarly to the previous version

of the tool,28 the α-chain amino-acid sequence of the MHC allotype is retrieved

and matched with all of the α-chain sequences of the MHCs in the crystal struc-

ture database. The crystal structure that exhibits the greatest similarity to the

allotype in terms of sequence is used as a template for MODELLER53 to model

the structure of the MHC allotype in question. As previously mentioned,28 many

rounds of MODELLER are being run, and the conformation with the best DOPE

score is retrieved.

2. Peptide similarity: In the scenario where, multiple crystal structures in the

database exist with the same MHC, priority is given to the ones that have bound

peptides that are closer in sequence to the peptide to be modelled. Priority is

given by scoring, which, in turn is done by aligning, in a pairwise manner, the

sequences of the peptide in question with the peptides bound to the MHC. The

BLOSUM62 matrix79 is employed in order to score the sequence alignment.

Peptide alignment

Given a peptide template that contains the peptide to be used as a guide, and an MHC

template that contains the MHC of interest, they are subsequently superimposed and aligned

using PyMOL (http://www.pymol.org/). After the alignment, the MHC from the peptide

template and the peptide from the MHC template are removed.
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Peptide backbone threading

Given the pMHC pair resulting from the peptide alignment phase, as well as the result

of the pairwise sequence alignment with anchor constraints during the template similarity

computation step, we alter the amino acids of the template peptide with the amino acids of

the peptide to be modelled, by:

1. Deleting residues from the peptide template that are not to be used for the new peptide

to be modelled. This can happen only in the N-termini and C-termini ends of the

peptide, for instance, in scenarios where position 1 is predicted to be used as the N-

terminal anchor,37 while the peptide template exhibits a canonical anchor placement,

and position 1 in the peptide template needs to be deleted as a result.

2. Mutating residues from the peptide template to their new amino acid identities taken

from the peptide to be modelled. When, for a given position, there exists the same

amino acid in both the peptide template and the peptide sequence to be modelled, the

mutation process is skipped for this particular position. The mutation of the residues

is performed by PDBFixer.80

3. Inserting residues that are not in the peptide template but exist in the sequence of the

peptide to be modelled. This again can happen only in the N-termini and C-termini

ends of the peptide, for instance, in cases where there is an extended configuration

either in the N-terminus,38 or in the C-terminus.40 The insertion of the residues is also

performed by PDBFixer.80

We emphasize that throughout the backbone threading process, both the peptide and the

receptor are considered, resulting in avoidance of any steric clashes that could arise in the

absence of the receptor after amino acid mutation/insertion.

It is important to also note here that the coined term peptide backbone threading is a

portmanteau of protein threading. The scoring method that matches a peptide template

to the peptide to-be-modelled is not just using sequence information, but also structural

38



information in terms of anchor constraints. In practice, in the majority of the cases, peptide

threading ends up in similar results to homology modeling, in that the resulting conformation

will be very close to the peptide template. However, the mutation approach proposed here

is much faster computationally than a homology modeling software like MODELLER,53 as

there is no need for a sequence alignment or a refinement step, especially since all refinement

steps are applied later in the APE-Gen2.0 workflow (Figure 1A).

Backbone Sampling and Scoring

To avoid ending in potentially high modeling error in case the chosen peptide template is not

appropriate for peptide threading, we keep a modified version of the loop sampling approach

developed in the previous version of the tool.28 Namely, a big number of peptide backbone

conformations are generated using the Random Coordinate Descent algorithm (RCD).29

Contrary to the previous APE-Gen version,28 we are generating a much larger set of backbone

conformations (the defaults value is 5000 in comparison to the previous value of 100). This

is done with very little computational cost, as RCD generates potential conformations really

fast, outperforming Cyclic Coordinate Descent, and other loop methods.81 However, not all

peptide conformations are used downstream, as docking/optimizing/scoring all the generated

loops would be costly in terms of computation time. Instead, the backbone conformations

produced by RCD are ranked by score that reflects the goodness of the loop. Only the

top conformations are used downstream. Different scoring functions are being employed for

this step and are part of APE-Gen2.0, namely, statistical potentials such as ICOSA82 and

KORP83 that operate only on backbone atoms. Moreover, RMSD to the template structure

is also used. While this option falls under the paradigm of the resulting conformations being

closer to the template, still, enough backbone diversity is generated. Finally, as previously

proposed,28 the resulting top backbone conformations obtained go through a final sidechain

addition step using PDBFixer.80
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Post-Translational Modifications (PTMs)

After pMHC complexes are obtained from the peptide threading and RCD backbone sam-

pling steps, PTMs are also added to the peptide when applicable. PTMs are being added

through the PyMOL plugin PyTMS.49 The PTMs that are currently supported in APE-

Gen2.0 are acetylation, carbamylation, citrullination, cystein oxidation/di- oxidation/hydr-

oxidation, di/tri-methylation, methionine oxidation, nitration, nitrosylation, phosphoryla-

tion and proline hydroxylation.

Energy minimization and scoring

The final step to the APE-Gen workflow, as the previous version,28 involves the optimization

of the peptide conformation in the MHC cleft using one of the scoring functions provided

by SMINA.52 Vinardo50 is being used by default, but Vina51 is also available in APE-

Gen2.0. As before, SMINA is kept intact in the new workflow, as it exhibits a very fast local

search protocol, and because of its ability to consider the flexibility of the MHC residues

during docking. It is important to note that, as previously reported, some of the favorable,

low energy output conformation produced by SMINA might deviate a lot from the proper,

anchor restrained pMHC conformation, for example, peptides floating away from the MHC

binding cleft. Therefore, when, for a particular peptide conformation, a RMSD difference

bigger than 2 Å is detected in the anchor amino acids (N, C) when compared to the chosen

peptide template, this conformation is filtered out.

In addition to the local search protocol by SMINA, we also employ an optional energy

minimization protocol using OpenMM.80 This is done to further optimize the conformation

of the peptide side chains. During the energy minimization, we apply an external force to

the backbone atoms of the peptide in order to keep the backbone intact. The employed

force field for the energy minimization is the Amber ff14SB forcefield, with the addition

of phosaa14SB parameters in case of presence of phosphorylated residues in the peptide84

(other PTMs are not yet supported in the optional OpenMM step). The energy tolerance
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to which the system should be minimized is set to 10× kilojoules/mole.

Comparisons with other pMHC modeling tools

Throughout the literature, each pMHC modeling tool performs different evaluation exper-

iments. Some tools perform cross-docking leave-one-PDB-out experiments,26,30 while some

tools perform re-docking experiments.21,28 Here, we chose to evaluate performance based

on two different experiments: (A) A leave-one-PDB-out experiment, where APE-Gen2.0 is

directly compared to L-RMSD results reported by other tools in the literature and (B) a

left-out test set evaluation, where a separate left-out test set is created, and we run and

evaluate all the tools on this test dataset. In both evaluation schemes, re-docking is not

considered, and we only test the methods on cross-docking. In the following subsections, we

will describe in more details the evaluation protocol that we have developed for each method.

Comparison with PANDORA

Leave-one-PDB-out experiment: Similar to APE-Gen2.0, PANDORA, a homology modeling

approach, uses a curated database of pMHC crystal structures to be used as homologs during

pMHCmodeling.30 However, the crystal structure database of PANDORA contains duplicate

pMHC structures in terms of peptide-MHC pairs (although the PDB codes are different).

Additionally, it does not contain crystal structures that include PTMs, or structures that

contain additional molecules inside the pMHC binding cleft. As such, any performance gains

of APE-Gen2.0 could just be attributed to the different crystal structure database content.

To ensure a proper comparison between APE-Gen2.0 and PANDORA, we used the crystal

structure database from PANDORA as our crystal structure database of reference instead.

This certifies that performance differences between the two methods on this experiment will

stem purely from the algorithm and the methodology used in each method. We subsequently

used this database to compare APE-Gen2.0 and PANDORA in a leave-one-PDB-out cross-

docking scenario as previously proposed.30 Moreover, in aiming for a proper comparison,
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similar to PANDORA, we set the maximum number of conformations generated by APE-

Gen2.0 to 20 (the default is 100). Finally, as the crystal structure database of PANDORA

contains duplicate pMHC structures, we opted in removing those from the database, as

this would introduce data leakage. Finally, the evaluation is being done using 427 different

structures in total. As PANDORA followed the same leave-one-PDB-out evaluation protocol,

the L-RMSD results from PANDORA were taken from the original publication.30

Left-out test set experiment: We identified, from our template database, all pMHC pairs

that do not appear in PANDORA’s template database. We subsequently removed those

crystal structures from our database. This acts as the left-out test dataset, which neither

APE-Gen2.0 nor PANDORA have access to during the template selection step. From this

test set, during evaluation, we filtered out structures that PANDORA could not model

(mostly due to MHC allele name support). This resulted in 58 different crystal structures. As

before, during modeling those structures with both PANDORA and APE-Gen, the maximum

number of conformations generated was set to 20 (PANDORA’s default) for a more fair

comparison. The list of the PDB codes, along with L-RMSD and Molprobity score results

for each one, can be found Data S2 in Supporting Information.

Comparison with APE-Gen

Leave-one-PDB-out experiment: To compare APE-Gen2.0 to its predecessor, we used our

template database of 699 structures (see the Template collection and curation Section

for more details). Structures containing additional chains, foreign molecules, or any mod-

ifications that might alter the structural pose of the peptide were removed, leaving 569

structures for evaluation in total. For this set of structures, we tested both APE-Gen and

APE-Gen2.0 on a cross-docking leave-one-PDB-out experiment as previously proposed.30 We

did not consider the cases where APE-Gen failed to produce conformations during evalua-

tion. This resulted in 229 different structures that we evaluated the performance of APE-Gen

and APE-Gen2.0 on.
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Left-out test set experiment: We used the same pMHC pairs that we identified when

comparing with PANDORA’s template database. Similarly, as before, we removed any

crystal structure in our template that corresponds to these pMHC pairs. We only consider

the cases where APE-Gen successfully produced conformations. PDB codes, L-RMSDs and

Molprobity scores for this comparison can be found Data S3 in Supporting Information.

Comparison with Docktope

Leave-one-PDB-out experiment: Per the original publication, Docktope was tested on 135

non-redundant pMHC structures.26 For each one of these structures, by using a molecular

docking/energy optimization approach, 1000 conformations were generated. We used these

135 structures to also test APE-Gen2.0. For each of these structures, we applied a cross-

docking leave-one-PDB-out protocol, by removing the crystal structure from the APE-Gen2.0

database if it exists. Additionally, we generated 1000 conformation instead of 100 (the default

value of APE-Gen2.0) for a fairer comparison with Docktope. Docktope L-RMSD results

were taken from the original publication.26 It is worth underlining that this increased the

APE-Gen2.0 execution time from under a minute to 7-8 minutes per complex on average,

but it is still well below Docktope’s reported execution time of 6 hours maximum.

Left-out test set experiment: As Docktope’s web server interface was not functional at

the time of assessment (assessed January 30th 2024), we could not model pMHC complexes

using Docktope. However, as Docktope is restricted to very few alleles, the test set that

could be used for comparison purposes would have been too small to confidently extrapolate.

Therefore, all things considered, we opted on not using Docktope for the left-out test set

experiment.
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Details on experiments involving post-translationally modified pep-

tides

Crystal structures involving PTMs

Crystal structures that exhibit PTMs were downloaded from PDB.12 To enforce non-redundancy

and mitigate bias, duplicate structures were removed (example: 3BGM, 4NNX ). To further

mitigate redundancy, non-phosphorylated peptide counterparts that exist in the APE-Gen2.0

crystal structure database were removed during modeling. In total, 13 structures with phos-

phorylated peptides, 4 structures with citrullinated peptides and 1 structure with a nitrated

peptide were used for accessing the accuracy of APE-Gen2.0 in modeling post-translationally

modified peptides (see Table S4 in Supporting Information).

Post-translationally modified peptides from IEDB

We searched IEDB8 for peptide entries exhibiting one or more PTMs with a corresponding

IC50 value. Specifically, for each PTM that can be modeled by APE-Gen2.0, we search for

peptide entries that contain the IC50 value of the peptide, as well as entries that contain

the IC50 of the non-PTM variant. In regards to phosphorylation, we found 20 datapoints

deposited in the IEDB that contain IC50 values of both the phosphorylated and the non-

phosphorylated version of the peptide. 14 of those peptides bind to HLA-A*02:01, and 6

of the peptides bind to HLA-B*40:02. Both the phosphorylated and non-phosphorylated

peptides are characterized by a binding affinity value (measured in nM). For the majority

of peptides binding to HLA-A*02:01, phosphorylation is seen at position 4, creating a neg-

ative charge which improves binding, as previously discussed.58 A notable exception is the

β-Catenin peptide (YLDSGIHSGA, PDB codes: 3FQN, 3FQR),42 where the phosphoryla-

tion does not contribute to better binding as expected. The majority of phosphorylated

peptides bound to HLA-B*40:02 exhibit the opposite effect, that is, phosphorylation in po-

sition 4 mainly decreases binding affinity, as it has been previously observed.59 In regards
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to citrullination, 14 datapoints deposited in the IEDB were found, all binding to HLA-

A*02:01. As with the phosphorylated peptides, all 14 datapoints contain IC50 values of

both the citrullinated and the non-citrullinated version of the peptide. For both the phos-

phorylated and citrullinated peptides, if IC50 binding affinity values are better than their

non-phosphorylated/non-citrullinated counterparts, then we consider the PTM to have pos-

itive effects on the binding (labeled as Better Binding), else, we consider the PTM to have

negative/neutral effects on the binding (labeled as Worse Binding). The list of all the IEDB

curated peptides can be found in Data S4 in Supporting Information.

In-house dataset

A total of 19 selected peptides (Data S5) across 5 alleles (HLA-A*01:01, HLA-A*02:01,

HLA-B*07:02, HLA-B*40:01, HLA-C*07:02) were obtained from Immunotrack company at

purity of ¿80% with quality control by reverse-phase HPLC and mass spectrometry (SC1208).

All HLA molecules were made and re-folded as described elsewhere.85 For affinity measure-

ments, peptides were titrated (8 concentrations: 10000 to 0,01 nM) and incubated in the

presence of each HLA followed by analysis with conformation-dependent W6/32 antibodies

to determine the affinity of the peptides. The affinities were determined by using sigmoidal

curve fitting. For the stability assays, peptides were incubated with each HLA to fold com-

plexes. After overnight incubation, the folded complexes were transferred to 384 plates and

subjected to stress at increasing urea concentrations at 0, 1, 2, 3, 4, 5, 6, and 7M, followed by

analysis with W6/32. Measurements were carried out as duplicates, and reference peptides

were included to ensure the performance of the affinity and stability assay.

Similar to the post-translationally modified peptides from IEDB, we want to differentiate

between positive and negative/neutral effects of the phosphorylation on the binding affinity.

As before, we assign a positive effect if the phosphorylation results in a better binding

affinity (labeled as Better Binding), and a negative effect if the phosphorylation results in

a worse/similar binding affinity (labeled as Worse Binding). Neutrality is assigned when a
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negligible change in binding affinity and a less than 20% change in stability is observed.

5-Experiment protocol specifications

The experiment protocol is as follows: post-translationally modified peptides and their non-

modified counterparts from both IEDB and Immunotrack were modeled using APE-Gen2.0.

Later, the Vinardo50 scoring function was used to score both the post-translationally mod-

ified peptides and their non-modified counterparts. The difference in Vinardo scores was

used as a determinant of positive/negative effects that the PTM can have on peptide binding

affinity. As the output from APE-Gen2.0 is an ensemble of conformations, to assess the con-

tribution of the ensemble, we used both the conformation that gives the best Vinardo score,

as well as the average Vinardo score from the whole ensemble. However, due to the small

number of peptides collected from either IEDB or Immunotrack, and the non-deterministic

nature of APE-Gen2.0, scoring function results vary between different APE-Gen2.0 runs. As

such, we devised a 5-experiment protocol, where the above process is repeated 5 times, in

order to avoid large variations in the results. For each experiment, we get a Vinardo score

for each peptide pMHC complex. Therefore, after 5 experiments, the 5 Vinardo scores were

averaged in one final score for each pMHC structure. For each post-translationally modified

peptide and its non-modified counterpart, we compare the two scores resulting from the

above 5-experiment protocol. If the Vinardo score is better for the post-translationally mod-

ified peptide in comparison to the vanilla peptide, its binding affinity is then predicted to be

better (effectively a labeling threshold of 0). Finally, for all pMHC structures modeled, we

opted in not applying any constraints on the peptide backbone during the openMM energy

minimization steps, as it has been shown that PTMs can lead to severe structural alterations

on the peptide backbone.18
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Comparison with Rosetta FlexpepDock and Refinement protocols

To our knowledge, the only other effort in modeling pMHC complexes that include PTMs

is the work by.25 Specifically, the authors modified the Rosetta FlexpepDock24 and Refine-

ment22 protocols in order to be able to model peptides bound to MHCs that exhibit PTMs.

The authors were able to expand the Rosetta protocols to three different PTMs. We wanted

to compare APE-Gen2.0 to the modified Rosetta protocols. We collected the 4 phosphory-

lated peptide-MHC structures in the PDB12 that are also used in comparisons in.25 We used

APE-Gen2.0 for modeling, setting the number of generated conformations to 1000 instead

of 100 (the default value of APE-Gen2.0), as the Rosetta Refinement protocol also generates

1000 conformations by default. The L-RMSD values reported by25 for Rosetta FlexpepDock

protocol however assume 50000 conformations. This will practically cause the L-RMSD val-

ues from Rosetta FlexpepDock to be better than if 1000 generated conformations were used

instead.

Evaluation metrics

Ligand Root Mean Square Deviation (L-RMSD)

To evaluate the quality of a conformation produced by a pMHC modeling tool in comparison

to a ground truth crystal structure, we used the Ligand Root Mean Square Deviation (L-

RMSD), a standard metric used extensively in the literature:26,28,30

L-RMSD =

√√√√ 1

N

N∑
i=1

di

where N is the total number of atoms found in the peptide, while di is the Euclidean distance

between a pair of two corresponding atoms i from the two different structures (model and

ground truth). To calculate the L-RMSD, we used ProFit,86 as previously used by.30 Three

different types of L-RMSD were considered: A) Cα L-RMSD, calculated by considering only
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the Cα atoms of the peptide, one per position, B) Backbone L-RMSD, considering only the

[Cα, N, O, C] atoms, and C) Full-Atom L-RMSD, taking all the atoms of the peptide into

account.

We also define a variant of the CAPRI criteria87 to categorize L-RMSD values to different

categories: A) High-quality conformations (L-RMSD ≤ 1Å), B) Medium, (L-RMSD ≤ 1.5Å),

C) Acceptable (L-RMSD ≤ 2Å) and D) Incorrect (L-RMSD > 2Å). The reason for not

following the already established CAPRI criteria here is because pMHC modeling tools have

long succeeded in producing near-native (≤ 2Å) conformations of most pMHC complexes.

As such, we wanted to have a more fine-grained categorization in the 1-2 Å frame.

F1 Score

To assess the quality of the anchor identification module, we used the F1 score, defined as

the harmonic mean of precision and recall:

F1 = 2 · Precision ·Recall

Precision+Recall
=

2 · TP
2 · TP + FP + FN

where TP is the number of True Positives, FP the number of False Positives and FN the

number of False Negatives. For the purpose of our anchor identification task, a positive label

represents a non-canonical anchor case, while a negative label represents a canonical anchor.

the F1 score receives values scaling from 0-1 (closer to 1 indicates better classification). We

make usage of the F1 score in this task because of the large class imbalance between canonical

and non-canonical anchor cases. Specifically, the number of non-canonical anchor cases is

much lower than the canonical case. As such, we do not wish to focus on the number of

True Negatives (not present in the F1 score), as identifying a canonical anchor case is an

easy task.
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MolProbity Score

We used MolProbity,55 more specifically, the MolProbity score,56 in order to assess the valid-

ity of our pMHC modeled structures, as well as to compare APE-Gen2.0 MolProbity scores

to MolProbity scores taken from other pMHC structural modeling tools in the literature.56

The MolProbity score is a single log-weighted value, that combines the calculated clashscore

(number of serious clashes per 1000 atoms), the percentage of Ramachandran outliers and

the percentage of bad side-chain rotamers. A lower MolProbity score value corresponds to a

more protein-like model.
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(Data S4)

6. The list of the in-house dataset of phosphorylated/non-phosphorylated peptides pairs,

along with a Kd (nM) value (peptides with Kd value equal to 5000 are designated as

non-binder peptides), as well as a Stability percentage value (calculated using a control

peptide for each allele) for both phosphorylated/non-phosphorylated peptides. (Data

S5)

Data and Software Availability

APE-Gen2.0 is freely available online at https://apegen.kavrakilab.org. All data that

comprise this study are available in the main text, Supporting Information, or in the github

repository provided below. Modeled structures that were used in benchmarks can be provided

upon request to the authors. APE-Gen2.0 code, building instructions, as well as additional

material, can be found in https://github.com/anon528/cautious-funicular.
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