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Abstract

The identification of protein function is crucial to under-
standing cellular processes and selecting novel proteins as
drug targets. However, experimental methods for determining
protein function can be expensive and time-consuming. Protein
partial structure comparison methods seek to guide and accel-
erate the process of function determination by matching char-
acterized functional site representations, motifs, to substruc-
tures within uncharacterized proteins, matches. One common
difficulty of all protein structural comparison techniques is the
computational cost of obtaining a match. In an effort to main-
tain practical efficiency, some algorithms employ efficient ge-
ometric threshold-based searches to eliminate biologically ir-
relevant matches. Thresholds refine and accelerate the method
by limiting the number of potential matches that need to be
considered. However, because statistical models rely on the
output of the geometric matching method to accurately mea-
sure statistical significance, geometric thresholds can also ar-
tificially distort the basis of statistical models, making statisti-
cal scores dependant on geometric thresholds and potentially
causing significant reductions in accuracy of the functional an-
notation method. This paper proposes a point-weight based
correction approach to quantify and model the dependence of
statistical scores to account for the systematic bias introduced
by heuristics. Using a benchmark dataset of 20 structural mo-
tifs, we show that the point-weight correction procedure accu-
rately models the information lost during the geometric com-
parison phase, removing systematic bias and greatly reducing
misclassification rates of functionally related proteins, while
maintaining specificity.

1. Introduction
Hundreds of protein structures are added to the Protein Data
Bank [6] each month, many with unknown function [9],
highlighting the need for high-throughput methods for func-

tional annotation. Experimental methods, however, are ex-
pensive, time consuming, and often require significant expert
knowledge. A number of computational methods have been
developed to accelerate this process, ranging from amino
acid sequence- [2, 10] to protein structure-based methods
[4, 5, 13, 25, 30, 35], among others. While these approaches
have already been shown to be useful tools to suggest protein
function [34, 36], further improvements in sensitivity and
specificity are desirable.

Partial structural comparison methods, such as Geomet-
ric Hashing [35], JESS [5], PINTS [30], LabelHash [25]
and Match Augmentation [13], are based on the underlying
biological hypothesis that for a large portion of proteins,
their functionality can be traced to just a few active residues,
the active site, while the rest of the proteins structure is not
directly involved in its function. As such, these methods ap-
proach functional annotation by concentrating their attention
on protein active sites and identifying instances of greatest
geometric and chemical similarity (matches) between mod-
els of known active sites (motifs) and substructures within
functionally uncharacterized proteins (targets).

Finding a match in a target protein does not guarantee
functional similarity. Partial structural comparison methods
can identify spurious matches with similar atoms but geo-
metrically dissimilar configurations, which are unlikely to
be biologically relevant. To separate matches of functionally
related proteins from spurious matches found by chance, sta-
tistical models of substructural similarity are coupled with
partial structural comparison methods [5, 13, 33, 25]. These
models establish, for each motif, a threshold of baseline ge-
ometric similarity necessary to imply functional similarity,
based on the statistical significance score of a match.

One common limitation of partial structural comparison
approaches is the computational expense of identifying the
match of greatest geometric and chemical similarity when
potential matches have low overall similarity [31]. To iden-
tify biologically relevant matches, heuristics-based struc-
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tural searches [5, 13, 33, 20, 25] have been used to eliminate
matches with so little geometric similarity that functional
similarity is biologically unlikely. For example, after estab-
lishing the chemical compatibility of matched residues, JESS
[5], PINTS [33], LabelHash [25] and Match Augmentation
[13] use geometric thresholds to rapidly eliminate potential
matches if pair-wise distances between residues in optimal
alignment exceed specified thresholds.

Unfortunately, eliminating matches based on geometric
thresholds, while greatly reducing computing time, may im-
pact the accuracy of statistical significance scores. Statistical
models use the distribution of matches between a given motif
and a set of targets to evaluate the statistical significance of
a match. If matches are eliminated by the geometric thresh-
olds, the resulting statistical model may be distorted. The
generated significance scores may depend on the geometric
thresholds, resulting in significant misclassification rates of
functionally related proteins.

We will illustrate that different geometric thresholds used
by structural comparison methods can introduce serious bias.
In order to correct this effect without modifying the origi-
nal structural comparison algorithm, we have developed a
statistical framework which takes into account eliminated
matches. We used Match Augmentation as an example, but
the technique can be generalized to other partial geomet-
ric comparison methods. Our bias correction models the
information lost during the structural comparison phase of
functional annotation and provides substantially reduced mis-
classification rates for functionally related proteins. On a test
dataset of motifs derived from 20 unrelated enzymatic active
sites, we illustrate that with our correction, even at strict
levels of geometric thresholds, it is possible to achieve sensi-
tivity and specificity previously reserved only for generous
thresholds that required large computation times.

2. Related Work
Functional annotation through partial structural alignment
has been approached by a number of algorithms compar-
ing a variety of structural and chemical properties. These
include atom coordinates and amino-acid labels [30, 5, 13,
25, 33, 34], cavity comparison [8, 11], and graph-theoretic
[4] approaches. To reduce the computational cost of search
and comparison of 3D structures, many atom coordinate-
based partial structural alignment methods employ geomet-
ric thresholds. For example, to discard matches with so
little geometric similarity that they are biologically irrele-
vant, PINTS uses geometric thresholds of 7.5 Å between Cα
atoms and 6.5 Å between Cβ atoms [33], by default Match
Augmentation constrains Cα distances to ≤ 7 Å [13], and
JESS relies upon motif-dependent empirical thresholds [5].

Existing methods A common metric for measuring geo-
metric similarity between a motif and a target substructure

Table 1. Dataset. EC classifications and
residues chosen for motifs used. Motifs con-
taining functionally documented residues are
indicated by *.

PDB ID EC class Amino acids chosen EC class size
16pk*[7] 2.7.2.3 R39,P45,G376,G399,K202 27
1ady*[1] 6.1.1.21 E81,T83,R112,E130,Y264,R311 22
1ani*[14] 3.1.3.1 D51,D101,S102,R166,H331,H412 82
1ayl 4.1.1.49 L249,S250,G251,G253,K254,T255 19
1b7y[29] 6.1.1.20 W149,H178,S180,E206, 20

Q218,F258,F260
1czf 3.2.1.15 D180,D201,D202,A205, 21

G228,S229,R256,K258,Y291

1did*[15] 5.3.1.5 F25,H53,D56,F93,W136,K182 153
1dww*[16] 1.14.13.39 C194,V346,F363,W366, 239

Y367,E371,D376
1ep0 5.1.3.13 S53,R61,H64,K73,R90,D172 39
1ggm*[3] 6.1.1.14 E188,R311,E239,E341,E359,S361 11
1jg1 2.1.1.77 E97,G99,G101,D160,L179,G183 17
1juk 4.1.1.48 E51,S56,P57,F89,G91, 12

F112,E159,N180,S211,G233

1kp3 6.3.4.5 R106,F139,E202,L286,R288,Y331 36
1kpg 2.1.1.79 D17,G72,G74,W75,G76,F200 13
1lbf 4.1.1.48 E51,S56,P57,F89,G91, 12

F112,E159,N180,S211,G233

1nsk 2.7.4.6 K12,P13,Y52,R105,N115,H118 203
1ucn 2.7.4.6 K12,P13,G92,R105,N115,H118 203
2ahj 4.2.1.84 P53,L120,Y127,V190,D193,I196 39
7mht 2.1.1.73 P80,C81,S85,E119,R163,R165 11
8tln*[18] 3.4.24.27 M120,E143,L144,Y157,H231 61

is the Least Root Mean Squared Deviation (LRMSD) mea-
sured in angstroms and defined as the minimum RMSD over
all possible motif-target substructure alignments. It has been
noted, however, that geometric matches alone are not suf-
ficient to infer functional similarity, partially because the
RMSD score is affected by the number of points in the motif,
as well as individual motif geometry [5, 13, 33]. Further-
more, because different motifs have different frequencies
of appearance in proteins, as well as in common protein
structures, such as the α-helix, determining a single RMSD
threshold, applicable to all motifs, that is capable of separat-
ing matches in functionally similar proteins from matches in
functionally dissimilar proteins is difficult [5] . To address
this problem, several statistical models have been developed
to establish RMSD thresholds based on statistical signifi-
cance of matches on a per-motif basis, by accounting for a
motifs distinct 3D geometry [5, 13, 33].

For example, JESS [28] assesses the statistical signif-
icance of individual matches by comparing them with a
reference population of proteins obtained from CATH [27],
a multi-level nested categorization of increasingly specific
sequence and structure classifications. Matches to every
protein in this reference population are computed and a para-
metric model based on a mixture of Gaussian distributions
is used to determine how unusual, or statistically significant,



any given match is.
The PINTS method uses a sequentially non-redundant

version of Protein Data Bank (NRPDB) as a reference pop-
ulation, but imposes strict comparison thresholds to signifi-
cantly reduce computing time. PINTS employs a parametric
model based on extreme value theory to model the left tail
of the match distribution and uses RMSD between motif
and matches in the NRPDB to estimate thresholds for each
motif.

In contrast to what has been done before, this work does
not develop a model of protein sub-structural similarity, but
rather a statistical correction procedure to be applied to exist-
ing approaches in order to eliminate the dependence of the
statistical model on geometric threshold parameters. While
the effect of our procedure is demonstrated using a specific
structural comparison method (Match Augmentation), pre-
sented in detail in the methods section, it is our intention
to develop a model that can be applicable to any structural
comparison approach.

Match augmentation method In our earlier work [13,
11], motifs designed using only Cα atoms were able to suc-
cessfully identify functionally similar proteins [12, 21, 20].
Motifs employed by the Match Augmentation method [13]
are defined as sets S = {S1, ...,S|S|} of |S| points in 3D space,
whose coordinates are taken from backbone Cα atoms (Fig.
1). In order to include into consideration residue substitu-
tions, such as substitutions which have been tolerated over
the course of evolution [22, 23], each Si is assigned a set of
possible alternate residue labels lSi = GLY, ALA, PRO,....
Defining the motifs in this fashion increases the sensitivity
of the approach by performing searches for many closely
related (chemically and/or evolutionarily) functional sites at
once, at the cost of increased computing time.

In order to identify potential matches for motif S in a
target protein, the target also needs to be represented as
a set of |T | points T = {t1, ..., t|T |}, where each ti stands
for Cα coordinates, and the label set l(ti) contains only
one amino acid, lti . A bijection of corresponding mo-
tif points in S to a subset of points in T is defined as:
m = {(sa1 , tb1),(sa2 , tb2), ...,(sa|S| , tb|S|)} To consider the bi-
jection a match, it must meet two criteria:
Criterion 1: ∀i, sai and tbi are label compatible: ltbi

∈ l(sai);
Criterion 2: ∀i, ||A(sai)− tbi ||< ε , threshold for geometric
similarity, where ||A(sai)−tbi || stands for Euclidean distance
between sai and tbi where motif S is in least root mean square
deviation (LRMSD) alignment with a subset of target points,
via a rigid transformation A.

The first criterion simply requires all labels (amino acids)
in the target to match amino acids in corresponding motif
labels lists l(sai). The second criterion rejects low quality
matches without completing full motif-target alignment, by
applying the threshold criteria to less computationally ex-
pensive partial motif-target alignment(s). The parameter, ε ,

is the geometric threshold used to discard potential matches
with pair-wise distances greater than what is deemed bio-
logically or algorithmically acceptable. However, excluding
a significant number of matches from consideration can in-
troduce bias in the statistical model. In general, ε is set
empirically and varies in different partial structural align-
ment methods. For more details see [13].

Statistical hypothesis testing For each motif, the
LRMSD cutoff separating statistically significant (struc-
turally similar) matches from the rest of the matches depends
on the frequency of a motif’s appearance in target proteins,
the number of points comprising the motif, and bias caused
by incomplete knowledge of all protein structures. The sta-
tistical model can be formulated in the terms of a hypothesis
test, where the Null Hypothesis (H0) asserts that the motif
and matched substructure are not structurally similar, while
the Alternative Hypothesis (HA) states that the motif is struc-
turally similar or identical to the matched substructure. One
of the advantages of this approach is that it represents the
statistical importance of each match as a p-value.

In order to test the Null Hypothesis, which is technically
equivalent to computing the p-value, one needs to know the
distribution of matches ( f ) of a given motif with respect to all
possible targets, which can be approximated by the distribu-
tion of matches in the representative set of target structures,
such as Protein Databank [6], sequentially non-redundant
versions of PDB [6], or different levels of CATH fold clas-
sification database [27]. Because such distributions for dif-
ferent motifs are known to have a wide range of shapes, in
our model we reconstruct them using non-parametric Kernel
Density Estimation techniques that utilize a Gaussian kernel
with bandwidth chosen by the Sheather-Jones method[19].

3. Methods
Proposed correction model The distribution of matches
that pass the search criteria depends on the geometric thresh-
old, ε , defined earlier. However, ideally, the statistical sig-
nificance score of a match should not reflect the parameters
of the geometric comparison algorithm, as it makes the sen-
sitivity and specificity of the method highly dependent on
parameters used. To eliminate this dependence, we outline in
this section a correction that incorporates eliminated matches
into the existing statistical model of sub-structural similarity.

The proposed correction is based on the observation that
increasing the geometric threshold parameter (ε) leads to
non-random appearances of new (previously discarded)
matches. Because these matches were eliminated due to
failing geometric thresholds (criterion 2), they tend to
appear in the right tail of the LRMSD distribution (Fig. 1).
Because we are only interested in matches within the left
tail of the distribution, we can represent matches eliminated
by geometric thresholds as a point-weight (pwt) at ∞. In
the terms of the cumulative distribution function, F̂h(x), of



Figure 1. The left figure details active site motifs from (a) Nitric oxide synthase, PDB ID: 1dww,
(b) D-xylose isomerase, PDB ID: 1did, and (c) Argininosuccinate synthetase, PDB ID: 1kp3. Motif
coordinates are taken from the backbone Cα atom of the highlighted residues. The right figure
shows distributions of matches for a motif derived from 3lzt protein for ε = 4Å (dark line) and ε = 7Å
(light line). Vertical hashes (bottom of graph) represent the LRMSD scores of matches eliminated
with ε = 4Å but found using relaxed geometric thresholds of 7Å .

RMSD distance X , we can therefore write:

F̂h(x) = (1− pwt)
∫ x

0
f̂h(w)dw;x≥ 0 (1)

where, f̂h(x) is the Gaussian kernel density estimate of the
distribution of geometric matches, and h is the optimal band-
width of the kernel chosen by the Sheather Jones method
[19, 32]. The distribution function F̂h(x) is defective in the
sense that F̂h(∞) = (1− pwt) < 1. The magnitude of the
defect is exactly equal to the point-weight, pwt. Further-
more, it is possible to show (see Appendix) that in the lower
RMSD range, which contains the most biologically relevant
matches, the p-values obtained using the corrected model
will be exact for matches with RMSD < ε√

N
, where N is the

number of points comprising the motif. This range covers
most biologically relevant matches, making pwt correction a
very attractive choice.

Estimating model parameters The point-weight correc-
tion, outlined in the previous section, models matches elim-
inated due to geometric thresholds as a point-weight at ∞.
These are the matches that would have been identified if the
geometric thresholds were relaxed. Thus it is important to
separate target proteins capable of producing a match from
targets in which no match is possible due to incompatibility
of the set of target labels to any set of labels in the motif.
We employ an algorithm based on the Halls marriage theo-
rem [17] to identify and exclude target proteins that do not
have appropriate labels a priori. This ensures that the point-
weight represents the proportion of matches eliminated due
to geometric constraints.

If the reference protein population can be exhaustively
sampled, the point-weight is computed as: pwt = Np

N where
N is total number of proteins in the reference population and
Np is the number of eliminated matches. In practice, only
N is known and Np is obtained by subtracting from N the
number of targets in which a match was found. Furthermore,
sampling the entire reference population is not necessary
and the point-weight can be estimated using the maximum
likelihood estimation (MLE) paradigm.

To accurately estimate the distribution of matches, the ref-
erence population must be sampled until a specified number
of geometric matches, Gs, has been obtained. The likelihood
function based on this sampling process is defined as:

l(Np,Gp|Gs,Ns) =

(Gp)!
(Gp−Gs)!

(Np)!
(Np−Ns)!

(N)!
(N−Gs−Ns)!

(2)

where Gp, Np are the unknown total numbers of geometric
and eliminated matches in the reference population and Gs,
Nsare the known counts of geometric and eliminated matches
in the sample. Under the constraint that Gp +Np = N, with N
known, we can maximize (2) to obtain that the MLE estimate
of Np is the integer satisfying:

Lb = Ns
Ns+Gs

N− Gs
Ns+Gs

< N̂p < Ns
Ns+Gs

N + Ns
Ns+Gs

= Ub

N̂p = ceiling(Lb) = f loor(Ub),
with appropriate modifications in the case when Lb and Ub
are integers themselves. Thus, the final maximum likelihood
estimate of the point-weight is given by:

pwt =
f loor(Ub)

N
The maximum likelihood estimation approach provides an
asymptotically unbiased estimator of the point-weight that



Figure 2. Effect of the point-weight correction on the sensitivity and specificity, expressed in terms
of the proportions of True Positives (a) and False Positives (b) identified by the Match Augmentation
method with geometric thresholds, ε, set at 3Å . The ROC curves based on sensitivity and specificity
values averaged over all 20 motifs (c), with a more detailed look (d).

can be computed using quantities already determined in the
course of the sampling process.

4. Results
First, we will demonstrate that geometric thresholds can sig-
nificantly impact the sensitivity of the functional annotation
method. Next, we show that the point-weight correction re-
moves systematic bias and greatly reduces misclassification
rates of functionally related proteins, without greatly impact-
ing the methods specificity. Finally, we examine in detail
misclassification rates of 3 cases where neither the original
nor corrected model was able to improve performance.

Dataset The dataset used to illustrate effects of our model
consists of 20 motifs representing a range of distinct ac-
tive sites in non-mutated protein structures. The Enzyme
Commission (EC) functional classification [26] was used
to identify proteins homologous to each motif (Table 1).
Amino acids used to define motifs were selected by choosing
those with function documented (see Table 1) and predicted

[13, 11] using the Evolutionary Trace Method [11, 23, 24].
Experimental results We computed the distribution of
matches at geometric thresholds of ε = 3, 4, 5, 6, and 7 Å
using 95% sequence identity filtered version of the Protein
Data Bank (as of 12/22/2007) as a reference population. We
chose to consider a target match statistically significant, and
thus potentially homologous, if its p-value was less than
0.001. For each of the 20 motifs used, we define a match
as a True Positive (TP), if it is both statistically significant
under our model and it matches one of the members of the
EC class corresponding to this motif. A match is considered
a False Positive (FP) if it is statistically significant, but it is
not among the members of the EC class.

We have observed that the effects of the point-weight
correction, in terms of proportions of both TPs and FPs,
are strongest when geometric thresholds are strict (Table
2). At 3 Å the corrected model exhibited improvements
in sensitivity for 16 out of 20 motifs (Fig. 2a), with 9 mo-
tifs achieving 100% sensitivity even at a very restrictive
p-value cutoff of 0.001. The loss of specificity associated



Table 2. Results of computational experi-
ments. Effect of the point-weight correction
on average proportions of True Positive and
False Positive Matches for various levels of
geometric thresholds.

Threshold % TP matches % FP matches
ε No PWT PWT No PWT PWT
3Å 31.76% 82.00% 0.01% 0.06%
4Å 42.75% 82.00% 0.02% 0.05%
5Å 57.99% 82.29% 0.03% 0.06%
6Å 64.93% 82.29% 0.04% 0.06%
7Å 77.66% 82.29% 0.04% 0.06%

with the point-weight correction (Fig. 2b) was not signifi-
cant in comparison with the improvement in sensitivity. In
fact, the corrected model, on average, identified 36 more TP
matches, corresponding to roughly 50% increase in sensi-
tivity of the method, while introducing on average only 7
FPs, corresponding to 0.05% drop in specificity. The effect
of the correction decreases as the geometric thresholds are
relaxed, which is due to fewer potential matches being elimi-
nated by the geometric comparison algorithm. In general, the
point-weight corrected model outcompetes the non-corrected
models even if they are based on more relaxed geometric
thresholds (Fig. 2c and 2d).

Our statistical correction allows us to achieve sensitivity
and specificity previously possible only for large geometric
thresholds, while simultaneously reducing computation time.
On the average, running Match Augmentation at 3 Å resulted
in a 46% reduction in computing time when compared to
7 Å with little effect on prediction quality. Motifs defined
with more points (residues) and higher number of alternate
labels received the most benefit: as much as 70% reduction
in run time for some cases (1gj1, 16pk, 8tln).

Evaluating sensitivity On the average, for the 20 motifs
used in this work, our model exhibited 82% sensitivity. How-
ever, in 3 cases, regardless of thresholds used in our ap-
proach, the proportion of True Positives was particularly low.
In order to investigate these cases, we performed clustering
based on RMSD distances between motifs generated from
every member of EC class corresponding to entries 6.1.1.20
(1b7y motif), 4.2.1.84 (2ahj motif), and 2.7.2.3 (16pk motif),
as presented in Fig. 3a, Fig. 3b, and Fig. 3c respectively.
The 1b7y is a dimer consisting of non-symmetric chains A
and B, both of which are assigned the same EC classification.
The motif chosen as an example in this paper was gener-
ated from the active site chain A, and because of this our
model was unable to identify homologs of chain B (boxed
in Fig. 3b). Similarly, members of the 4.2.1.84 EC class
(2ahj motif) cluster into 4 distinct categories, making it dif-
ficult to identify a motif capable of representing the entire
class, implying either a sub-optimal motif design, possible

conformational changes in the active site, or that several
structurally different active sites comprise the EC class. No
such pattern was visible for the 16pk motif and we presume
that low sensitivity there was primarily caused by incorrect
choice of motif residues.

5. Conclusions
Partial structural alignment methods, such as JESS, PINTS,
and Match Augmentation, are promising computational ap-
proaches to the problem of functional annotation of proteins.
However, the geometric thresholds used by these approaches
to reject biologically irrelevant matches and thus maintain
practical efficiency may introduce a systematic bias into
the statistical models of sub-structural similarity, which in
turn may result in misclassification of functionally similar
proteins.

Using a test dataset of 20 structural motifs representing a
wide range of distinct active sites, we have demonstrated that
the bias introduced by geometric thresholds has a substantial
impact on the number of correctly identified homologous
proteins. The proposed point-weight correction improved
sensitivity, without significantly reducing specificity. In ad-
dition, our results suggest that the point-weight correction
may make more restrictive levels of geometric thresholds
useful without a reduction in accuracy, thus reducing the
computing cost of partial structural comparison approaches
by an average of 46% and by as much as 70% for some
of the motifs used in this work. Eliminating biologically
irrelevant matches via geometric thresholds to achieve accel-
erated runtimes is an effective practice for several existing
structural comparison methods. For Match Augmentation,
and potentially for other methods utilizing similar thresholds,
our statistical correction provides additional sensitivity and
the potential for further gains in computational efficiency.

Acknowledgements This work is supported by a grant
from the National Science Foundation NSF DBI-0318415
and NSF DBI-054795 to OL and LK. Additional support
is gratefully acknowledged from training fellowships the
Gulf Coast Consortia (NLM Grant No. 5T15LM07093)
to B.C.; from NIH GM079656, GM066099, and March of
Dimes Grant FY03-93 to O.L.; from a Whitaker Biomedical
Engineering Grant and a Sloan Fellowship to L.K; and from
an affiliation agreement between Rice University and Texas
Childrens Hospital to V.F. D.B. was supported by the Brown
School of Engineering at Rice University. Experiments were
run on equipment funded by AMD and EIA-0216467. This
work was supported in part by the Rice Terascale Cluster
funded by NSF under Grant EIA-0216467, Intel, and HP.

Appendix Let X be the RMSD of a match between a mo-
tif consisting of N points and a substructure within a target
protein, and let Y be the maximum pair-wise distance be-
tween the matched residues. The joint probability density



Figure 3. Clustering based on RMSD distances between motifs generated from every member of EC
class corresponding to entries 6.1.1.20 (1b7y motif), 4.2.1.84 (2ahj motif), and 2.7.2.3 (16pk motif),
A, B, and C respectively. Motifs derived from 2ahj and 1b7y were able to identify only the members
of their immediate clusters (boxed), implying either a sub-optimal motif design or that several struc-
turally different active sites comprise the EC class. No such pattern was visible for the 16pk motif
and we presume that low sensitivity there is primarily caused by sub-optimal motif design.

function of X and Y variables is given by (X ,Y ) ∼ φ(x,y).
The marginal distribution of X is X ∼ fx(s) =

∫
R+ φ(x,y)dy,

and the marginal distribution of Y is given by Y ∼ gY (y) =∫
R+ φ(x,y)dx. The distribution we ideally would like to em-

ploy is fX (x). However, due to matches eliminated in the
course of partial structural alignment, what we observe is
the distribution of X conditional on the event [Y < ε]. The
distribution fX |Y<ε(x), can be derived as follows:

X |Y < ε ∼ fX |Y<ε(x) =
d
dx

[ ∫ x
0
∫ ε

0 φ(ξ ,η)dηdξ∫ ∞
0
∫ ε

0 φ(ξ ,η)dηdξ

]
.

Note that the denominator
∫ ∞

0
∫ ε

0 φ(ξ ,η)dηdξ =
∫ ε

0 g(η)dη
integrates to 1 − pwtε , whereas the numerator
d
dx
∫ x

0
∫ ε

0 φ(ξ ,η)dηdξ =
∫ ε

0 φ(x,η)dη . In other words,

X |Y < ε ∼ fx|y<ε(x) =
∫ ε

0 φ(x,y)dy
1− pwtε

.

The proposed corrected distribution fε(x) is given
by: fε(x) = fX |Y<ε(x)× (1− pwtε) + δ∞(x)pwtε , where
δ∞(x)pwtε includes matches eliminated by the partial struc-
tural alignment with threshold ε as a point-mass at ∞.

When the corrected distribution is placed into the non-
parametric density estimation setting we get:

f̂ε(x) = f̂ h
X |Y<ε(x)× (1− pwtε)+δ∞(x)pwtε

where f̂ h
X |Y<ε(x) is the Gaussian kernel density estimate of

the distribution of geometric matches, the optimal bandwidth
kernel (h) chosen by the Sheather-Jones method [19, 32].

Because the correction proposed above shifts the elim-
inated matches to point-weight at ∞, for some x 1 the cor-
rected and desired distributions of X will not coincide. In
other words: Fε(x) 6= FX (x),∀x. To establish the range of x
values for which the corrected model is exact, consider the
following pair of inequalities:

1√
N

[
max

1≤i≤N
(λi)
]
≤
(

1
N

N

∑
i=1

(λi)

) 1
2

≤ max
1≤i≤N

(λi) (3)

OR
Y√
N
≤ X ≤ Y,

where λi’s are the pair-wise distances between matched
points.

Let us assume x < ε√
N

. Now let us consider the
event {X ≤ x}. Under the assumption of x < ε√

N
, we get:

{X ≤ x} ⊂
{

X < ε√
N

}
.

However, from (3) we know that Y ≤ X
√

N, which under
our assumption implies Y < ε√

N

√
N = ε . This implies that

{X ≤ x} ⊂ {Y < ε}. Therefore also: Fε(x) = P(X ≤ x,Y <
ε) = P(X ≤ x) = FX (x), when x < ε√

N
.

This means that in the lower RMSD range, which contains
the most biologically relevant matches, the p-values obtained
using the corrected model will be exact for matches with
RMSD < ε√

N
. For example, when considering matches to a

6-point motif with an ε cutoff of 3Å our p-values are exact
for all matches < 1.225Å .
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