
Asynchronous Distributed Motion Planning with
Safety Guarantees under Second-Order Dynamics

Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

Abstract As robots become more versatile, they are increasingly found to oper-
ate together in the same environment where they must coordinate their motion in
a distributed manner. Such operation does not present problems if the motion is
quasi-static and collisions can be easily avoided. However, when the robots follow
second-order dynamics, the problem becomes challenging even for a known envi-
ronment. The setup in this work considers that each robot replans its own trajec-
tory for the next replanning cycle. The planning process must guarantee the robot’s
safety by ensuring collision-free paths for the consideredperiod and by not bringing
the robot to states where collisions cannot be avoided in thefuture. This problem
can be addressed through communication among the robots, but it becomes compli-
cated when the replanning cycles of the different robots are not synchronized and
the robots make planning decisions at different time instants. This paper shows how
to guarantee the safe operation of multiple communicating second-order vehicles,
whose replanning cycles do not coincide, through an asynchronous, distributed mo-
tion planning framework. The method is evaluated through simulations, where each
robot is simulated on a different processor and communicates with its neighbors
through message passing. The simulations confirm that the approach provides safety
in scenarios with up to 48 robots with second-order dynamicsin environments with
obstacles, where collisions occur often without a safety framework.

1 Introduction

This paper considers multiple autonomous robots with non-trivial dynamics operat-
ing in a static environment. The robots try to reach their individual goals without col-

Devin K. Grady, Lydia E. Kavraki
Computer Science, Rice Univ., Houston, TX, e-mail:{devin.grady,kavraki}@rice.edu

Kostas E. Bekris
Computer Science and Engineering, Univ. of Nevada Reno, Reno, NV, e-mail: bekris@cse.unr.edu

1

Published 2011, Algorithmic Foundations of Robotics IX. 68:53-70.

2 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

Fig. 1 A sample run in the office environment (left to right). Links show communicating robots.

lisions. Such scenarios are becoming increasingly interesting. For instance, consider
the case of vehicles moving in a parking lot or going through abusy intersection,
or unmanned aerial vehicles that carry out complex maneuvers. These examples in-
volve second-order systems, which cannot stop instantaneously and must respect
limits in the second-order derivatives of their state parameters. For such systems,
collisions with other robots or obstacles cannot be easily avoided.

Real applications also require the solution of such problems in a decentralized
manner. This work imposes a requirement for a decentralizedsolution and considers
robots that replan their trajectories on the fly. Replanningallows robots to consider
multiple alternative trajectories during each cycle and provides flexibility in chang-
ing environments. To coordinate the robots, this work utilizes communication. A
planning algorithm makes use of information collected through communication to
avoid collisions for the next cycle and ensure that robots reach states from where
collisions can be avoided in the future. The duration of the cycle is the same for
all robots, but the robots are not synchronized. Hence communication of plans can
happen at any point and the robots need to operate safely in the presence of par-
tial information about the plans of their neighbors. An asynchronous, distributed
framework is developed that guarantees the safety of all robots in this setup.
Background Safety issues for dynamical systems were first studied many years
ago. Collision-free states that inevitably lead to collisions have been referred as
Obstacle Shadows [24], Regions of Inevitable Collision [20] or Inevitable Collision
States (ICS) [13]. A study onICS resulted in conservative approximations [13] and
genericICS checkers [21]. It also provided3 criteria for motion safety: a robot must
(i) consider its dynamics, (ii) the environment’s future behavior, and (iii) reason
over infinite-time horizon [12]. This line of research, however, did not deal with
coordinating robots as the current paper does.

Reactive methods, such as the Dynamic Window Approach [11] and Velocity
Obstacles [10], can enable a robot to avoid collisions for unknown on dynamic en-
vironments. Many existing reactive planners, however, do not satisfy the criteria
for motion safety [12, 21]. Path deformation techniques compute a flexible path,
adapted on the fly to avoid moving obstacles [18, 27], but do not deal withICS.
Reciprocal Velocity Obstacles (RVOs) [4] involve multiple agents which simulta-
neously avoid one another without communication but do not deal yet withICS.
A related control-based approach [17] deals with second-order models of a planar
unicycle but does not provide guarantees in the presence of obstacles.

Safe and Asynchronous Distributed Planning with Dynamics 3

In contrast to reactive approaches, this paper focuses onplanning safe paths.
Planning has a longer horizon so it does not get stuck in minima as easily and
extends to high degrees-of-freedom systems. Reasoning about safety during plan-
ning focuses the search on the safe part of the state space. Inthis work planning
is achieved using a sampling-based tree planner [20, 15, 2].Alternatives include,
among others, navigation functions [8] and lattice-based approaches [23].

Braking maneuvers have been shown sufficient in providing safety in static envi-
ronments [26] and have been combined with sampling-based replanning [5, 2]. For
dynamic environments, relaxations ofICS are typically considered, such asτ-safety
[14]. This notion guarantees no collision forτ seconds in the future for each node of
a sampling-based tree. A sampling-based planner was testedon air-cushioned robots
moving in dynamic environments, where an escape maneuver was computed when
the planner failed to find a solution [15]. Learning-based approximations ofICS
can also be found [16], as well as approximations of state×time space obstacles [6].
Other works focus on the interaction between planning and sensing, and point out
that planning must be limited within the robot’s visibilityregion [1, 25]. The current
paper extends the authors’ earlier work [3], which integrated a sampling-based plan-
ner withICS avoidance [2] to safely plan for multiple robots that formeda network
and explored an unknown workspace. The previous work required a synchronous
planning operation, which simplified coordination.

Planning for dynamic networks of robots has been approachedby a combination
of centralized and decoupled planning [7], without considering, however, theICS
challenge. Centralized planning does not scale and decoupled approaches, which
may involve prioritization [9] or velocity tuning [22], areincomplete. The existing
work follows a decoupled approach for performance purposes. In contrast to veloc-
ity tuning, it weakly constraints the robots’ motion beforeconsidering interactions
since it allows multiple alternative paths for each robot ateach cycle. At the same
time, it does not impose priorities but instead robots respect their neighbors in a way
that emerges naturally from their asynchronous operation.
Contributions This work extends the range of problems that can be solved effi-
ciently with guarantees forICS avoidance. The paper presents a general framework
for independent but communicating second-order robots to reach their destinations
in an otherwise known environment. The framework is fully distributed and relies on
asynchronous interaction among the robots, where the robots’ replanning cycles are
not synchronized, the robots have no knowledge about their clock differences and no
access to a global clock. It is based on the exchange of contingency plans between
neighboring robots that are guaranteed to be collision-free. While contingency plans
have been used in the past, this work emphasizes the importance of communicating
contingencies in multi-robot scenarios and studies the asynchronous case. A proof
that the proposed scheme guaranteesICS avoidance is provided. The framework
has been implemented on a distributed simulator, where eachrobot is assigned to a
different processor and message passing is used to convey plans.The experiments
consider various scenarios involving 2 to 48 robots and demonstrate that safety is in-
deed achieved in scenarios where collisions are frequent iftheICS issue is ignored.
The experiments also evaluate the efficiency and the scalability of the approach.

4 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

2 Problem Statement

Consider robots operating in the same known workspace with static obstacles. Each
robot Ri exhibits drift and must satisfy non-holonomic constraintsexpressed by dif-
ferential equations of the form: ˙xi = f i(xi,ui), gi(xi, ẋi) ≤ 0, wherexi ∈ Xi represents
a state, ui is acontrol and f i,gi are smooth. The subset of thestate spaceXi that
does not cause a collision with static obstacles is denoted asXi

f . The robot model
used in this paper can be found in Section 5 and involves acceleration controlled
car-like systems, including versions with minimum positive velocity.

EachRi is located at an initial statexi(0) and must compute plans that will bring
it to its individual goalxi

g(tmax) without collisions and within finite timetmax. Then:

• A plan is a sequence of controlsp(dt) = {(u1,dt1), . . . , (un,dtn)} (dt =
∑

i dti).
• A plan p(dt) executed at statex(t) defines atrajectory : π(x(t), p(dt)), which is a
sequence of states.
• A trajectory isfeasibleas long as it satisfies functionsf i andgi for robotRi.
• A plan p(dt) is valid at statex(t), if it defines a feasible trajectoryπ(x(t), p(dt)).
• A state alongπ(x(t), p(dt)) at timet′ ∈ [t : t+dt] is denoted asx[π(x(t), p(dt))](t′).
• A feasible trajectoryπ(x(t), p(dt)) is collision-free with respect to the static ob-
stacles if: ∀ t′ ∈ [t : t+dt] : x[π(x(t), p(dt))](t′) ∈ X f .
• For a trajectory concatenation (figure below)π′(π(x(t), p(dt)), p′(dt′)), plan

p(dt) is executed atx(t) and thenp′(dt′) is executed at state:x[π(x(t), p(dt))](t+dt).
• Two trajectories forRi andR j arecompatible:πi(xi(ti), p(dti))≍ π j(x j(t j), p j(dt j))
as long as:

x[πi](t) ≍ x[π j](t) ∀ t ∈ [max(ti, t j) : min(ti+dti, t j+dt j)]

wherexi ≍ x j means thatRi in statexi does not collide withR j at statex j. The
corresponding plansp(dti), p(dt j) are also called compatible at statesxi(ti), x j(t j).

trajectory concatenation:

π'(π(x(t), p(dt)), p'(dt'))

x(t)

p'(dt')

π(x(t), p(dt))](t + dt)

The robots are equipped with an omnidirectional,
range-limited communication tool, which is reliable
and used for coordination and collision avoidance.
The robots within range ofRi define the neighbor-
hoodNi. A robot has information about other robots only if they communicate.

Given the above notation, the problem ofdistributed motion planning with
dynamics (DMPD) can be defined as follows: Considerm robots with range-limited
communication capabilities operating in the same workspace with obstacles. Each
robot’s motion is governed by second-order dynamics specified by f i andgi. Ini-
tially, robot Ri is located at statexi(0), wherexi(0) ∈ Xi

f and∀i, j : xi(0) ≍ x j(0).

EachRi must compute a valid planpi(tmax) so that:

• x[πi(xi(0), pi(tmax))](tmax) = xi
g(tmax) (i.e., the plans bring the robots to their indi-

vidual goals within timetmax),
• ∀ i, ∀t ∈ [0 : tmax] : x[πi(xi(0), pi(tmax))](t) ∈ X f (i.e., the resulting trajectories
are collision-free with static obstacles)
• and∀ i, j : πi(xi(0), pi(tmax)) ≍ π j(x j(0), p j(tmax)) (i.e., the trajectories are pair-
wise compatible from the beginning and until all the robots reach their goals).

Safe and Asynchronous Distributed Planning with Dynamics 5

3 A Simple Framework without Safety Guarantees

This paper adopts a decentralized framework for scalability purposes. Each robot’s
operation is broken into intervals ([ti

0 : ti
1], [ti

1, t
i
2], . . . , [ti

n : ti
n+1], . . .), called cycles.

During [ti
n−1 : ti

n], robotRi considers different plansΠ i for cycle [ti
n : ti

n+1], given the
future initial statexi(ti

n). Through coordination,Ri selects planpi∗([ti
n : ti

n+1]).
It is assumed that the duration of each cycle is constant and the same for all

robots:∀i, ∀n : ti
n+1− ti

n = dt. Nevertheless, the robots do not have a synchronous
operation: the cycles among different robots do not coincide andti

0 is typically dif-

ferent thant j
0. Synchronicity is a restrictive assumption, as it requiresall the robots

to initiate their operation at exactly the same time although they may be located in
different parts of the world and may not communicate their initial states.

Given this setup, Algorithm 3.1 outlines a straightforwardapproach for the single
cycle operation of each robot that tries to find compatible plans. During [ti

n−1 : ti
n], Ri

computes alternative partial plansΠ i for the consecutive planning cycle. In parallel,
Ri listens for messages from robots in neighborhoodNi. The messages contain the
selected trajectories for each robot. When time approachesti

n − ǫ, Ri selects among
all trajectories that are collision-free and compatible with the neighbors’ messages,
the one that brings the robot closer to its goal. If such a trajectory is indeed found at
each iteration, then theDMPD problem is eventually solved by this algorithm.

Algorithm 3.1 Simple but Unsafe Operation ofRi During Cycle [ti
n−1 : ti

n]

Π i← ∅ andΠNi ← ∅
while t < ti

n − ǫ do
πi(xi(ti

n), pi(ti
n : ti

n+1))← collision-free trajectory from a single-robot planner
Π i← Π i ∪ πi(xi(ti

n), pi(ti
n : ti

n+1))

if R j ∈ Ni is transmitting a trajectoryπ j thenΠNi ← ΠNi ∪ π j

for all πi ∈ Π i do
for all π j ∈ ΠNi

do
if πi - π j (incompatible trajectories)thenΠ i← Π i −πi

πi∗← trajectory inΠ i which bringsRi closer to the goal given a metric
Transmitπi∗ to all neighbors inNi and executeπi∗ during next cycle

4 A Safe Solution to Distributed Motion Planning with Dynamics

A robot following the above approach might fail to find a trajectoryπi∗. This section
describes a distributed algorithm that guarantees the existence of a collision-free,
compatible trajectory for all robots at every cycle.

A. Safety Considerations - Inevitable Collision States: One reason for failure
is when the single-robot planner fails to find collision-free paths. This is guaranteed
to happen whenxi(ti

n) is anICS. Statex(t) is ICS with regards to static obstacles if:
∀ p(∞) : ∃ dt ∈ [t,∞) so thatx[π(x(t), p(∞))] < X f .

6 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

Computing whether a state isICS is intractable, since it requires reasoning over
an infinite horizon for all possible plans. It is sufficient, however, to consider conser-
vative methods that identify states that arenot ICS [13, 2]. The approximation rea-
sons over a subset of predefined maneuversΓ(∞), called herecontingency plans.
If Ri can avoid collisions in the future with static obstacles atxi(tn) by guarantee-
ing that a contingency planγi(∞) ∈ Γi(∞) avoids collisions over an infinite horizon,
thenxi(tn) is notICS with regards to static obstacles. For cars, braking maneuvers
are sufficient since it is possible to reason over an infinite time horizon whether these
plans will collide with static obstacles. Circling maneuvers can be used for systems
with minimum velocity limits, such as airplanes.

Multiple moving robots pose new challenges forICS. Trajectoriesπi and π j

may be compatible for the next cycle, but the corresponding robots may reach
states that will inevitably lead them in a future collision.Thus, safety notions
have to be extended into the multi-robot case. It is still necessary for computa-
tional reasons to be conservative and focus only on a set of contingency plans.
Form robots{R1,R2, . . . ,Rm} executing plans{p1(dt1), p2(dt2), . . . , pm(dtm)} at states
{x1(t), x2(t), . . . , xm(t)}, statexi(t) is considered asafe stateif:

∃ γi(∞) ∈ Γi(∞) so that∀ t′ ∈ [t,∞) : x[πi(xi(t),γi(∞))](t′) ∈ X f and

∀ j ∈ [1,m], j, i, ∃ γ j(∞) ∈Γ j(∞) : πi(xi(t),γi(∞))≍ π j(π j(x j(t), p j(dt j)), γ j(∞)).

In the above definition,dt j is the remaining of robotR j’s cycle past timet. Note that
a trajectory concatenation is used forR j’s trajectory. In this trajectory concatenation,
p j(dt j) is executed for timedt j and then the contingencyγ j(∞) is applied. The
reason is that as robots decide asynchronously, it may happen that att, robot R j

has already committed to planp j(dt j). Extending the assumption in the problem
statement about compatible starting states, the followingdiscussion will assume
that the initial states of all the robots are safe states. Then an algorithm for theDMPD
problem must maintain the following invariant for each robot and planning cycle:

Safety Invariant: The selected trajectoryπi∗(xi(ti
n), pi(ti

n : ti
n+1)):

a) Must be collision-free with obstacles.
b) Must be compatible with all other robots, during the cycle(ti

n : ti
n+1):

πi∗(xi(ti
n), pi(ti

n : ti
n+1)) ≍ π j

∗(x j(ti
n), p j(ti

n : ti
n+1)), ∀ j , i.

c) The resulting statex[πi∗](ti
n+1) is safe for all possible future plansp j(ti

n+1 : ∞)
selected by other robots (j , i). In other words, the concatenation ofπi∗ with γi(∞)
must be compatible with the concatenations of other vehicles, i.e., ∀ j , i:
πi(πi∗(xi(ti

n), pi(ti
n : ti

n+1)),γi(∞)) ≍ π j(π j
∗(x j(ti

n), p j(ti
n : ti

n+1)),γ j(∞)).

Point c) above means thatRi has a contingency plan atx[πi∗](ti
n+1), which can

be safely followed for the other robots’ choices given the algorithm. If the invariant
holds for all the robots, then they will always be safe. If forany reason a robot can-
not find a plan that satisfies these requirements, then it can revert to its contingency
that guarantees its safety.

Safe and Asynchronous Distributed Planning with Dynamics 7

Algorithm 4.1 Safe and Asynchronous Operation ofRi During Cycle [ti
n−1 : ti

n]

1: Π i← ∅, ΠNi

prev← ∅, ΠNi

new← ∅
2: for all R j ∈ Ni do
3: ΠNi

prev← ΠNi

prev ∪ π j(π j(x j(t j
n−1), p j(t j

n−1 : t j
n)), γ(t j

n :∞))
(i.e., include all past trajectories and attached contingencies of neighbors)

4: while t < ti
n − ǫ do

5: πi(xi(ti
n), pi(ti

n : ti
n+1))← collision-free trajectory from a single-robot planner

6: πi
γ ← πi(πi(xi(ti

n), pi(ti
n : ti

n+1)), γ(ti
n+1 :∞)) (i.e., contingency concatenation)

7: if ∀ t ∈ [ti
n+1 :∞) : x[πi

γ](t) ∈ X f then
8: Π i← Π i ∪ πi

γ

9: for all π j
γ ∈ ΠNi

prev do

10: if πi
γ - π

j
γ then

11: Π i← Π i −πi
γ

12: if R j ∈ Ni is transmitting a trajectory and an attached contingencythen
13: ΠNi

new← ΠNi

new ∪ π j
γ(π

j(x j(t j
n), p j(t j

n : t j
n+1)), γ(t j

n+1 :∞))
14: for all πi

γ ∈ Π i do

15: for all π j
γ ∈ ΠNi

new do

16: if πi
γ - π

j
γ then

17: Π i← Π i −πi
γ

18: if Π i empty or if a message was received during compatibility checkthen
19: πi∗← πi(xi(ti

n),γ(ti
n :∞)) (i.e., follow the available contingency for next cycle)

20: else
21: πi∗← trajectory inΠ i which bringsRi closer to the goal given a metric
22: Transmitπi∗ to all neighbors inNi and executeπi∗ during next cycle

B. Safe and Asynchronous Distributed Solution: Algorithm 4.1, in contrast to
Algorithm 3.1, maintains the safety invariant. The protocol follows the same high-
level framework and still allows a variety of planning techniques to be used for pro-
ducing trajectories. The differences with the original algorithm can be summarized
as follows:

• The algorithm stores the messages received from neighbors during the previous
cycle in the setΠNi

prev (lines 1-3). Note that the robots transmit the selected trajec-
tory together with the corresponding contingency(lines 12-13 and 22).
• A contingency planγ(ti

n+1 : ∞) is attached to every collision-free trajectory
πi(xi(ti

n), pi(ti
n : ti

n+1)) and the trajectory concatenationπi
γ is generated(line 5-6).

Note that potentially multiple different contingencies can be attached to the trajec-
tory πi(xi(ti

n), pi(ti
n : ti

n+1)). Each resulting trajectory concatenation is treated indi-
vidually by the algorithm.
• The trajectoryπi

γ is added toΠ i only if it is collision-free with static obstacles for
an infinite time horizon(lines 7-8), thus guaranteeing thatx[πi](ti

n+1) is notICS.

• πi
γ is rejected, however, if it is not compatible with all the trajectories and contin-

gencies of neighbors from the compatibility check(lines 14-17). Ri checks not just
trajectories for the next cycle but its trajectory concatenations with contingencies
πi
γ against its neighbors’ trajectory concatenationsπ j

γ.

8 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

• The final change(lines 18-21) addresses the possibility thatΠ i is empty or when
a message arrives whileRi executes its compatibility check. If any of the two is
true, thenRi selects to follow the contingencyγ(ti

n : ∞), which was used in the
previous cycle to prove thatx(ti

n) was safe. Otherwise,Ri selects among the set
Π i the trajectory that brings it closer to the goal according toa desired metric.
previous cycle, stored inΠNi

prev (lines 9-11).
• The while loop(lines 4-13) is executed as long as timet is less than the end of the
planning cycle (ti

n) minus anǫ time period. Timeǫ should be sufficient for the robot
to complete the compatibility check(lines 14-17) and the selection process(lines
18-22). If the robot is running out of time, the robot should immediately select a
contingency in order to guarantee safety. In a real robot implementation, this can
be achieved through an interrupt or a signal that stops execution and enforces the
contingency. In a serial implementationǫ has to be sufficiently large.

Overall, each robot selects a planpi(ti
n : ti

n+1) and a contingencyγi(ti
n+1 :∞) that

respect the plans and contingencies of other robots that have been selected before
time ti

n. If no such plan is found or there is no time to check against newly incoming
messages, then the contingencyγi(ti

n :∞) is selected.
Computational Complexity: The algorithm’s complexity depends on the num-

ber of neighborsNi, which in the worst case is the total number of robotsN. In
order to evaluate the cost of operations involving trajectories, it is important to con-
sider a trajectory representation. A discrete sequence of states can be sampled along
a trajectory, given a predefined resolution in timeQ (i.e., the technique becomes
resolution-safe in this case). Then, letS be the upper limit in the number of states
used to represent each trajectory conceternation.P denotes the upper limit in the
number of plans considered during each planning cycle for the current agent.

Given the above notation, the complexity of the algorithm’svarious operations is
as follows: (a)Lines 2-3 : S ×N, (b) Lines 7 - 8: P×S , (c) Lines 9 -11: P×N ×S 2

(if the states in a trajectory are not accompanied by a globaltimestamp) orP×N×S
(if the states are tagged with a global timestamp), (d)Lines 14-17: Same as above,
(e) Lines 20-21: P, assuming constant time for computing a cost-to-go metric for
each state, (f)Line 22: N ×S .

Overall, the worst-case complexity is:P×N ×S 2. Note that for robots with lim-
ited communication, the parameterN is reduced. Furthermore, coarser resolution
in the representation of trajectories improves efficiency but introduces the probabil-
ity of collision due to resolution issues. Similarly, considering fewer plans reduces
computational complexity but reduces the diversity of solutions considered at each
time step. Finally, lower maximum velocity or higher maximum deacceleration also
assist computationally in the case of braking maneuvers.

C. Guaranteeing Maintenance of the Safety Invariant: This section provides
a proof that Algorithm 4.1 maintains the safety invariant given some simplyfying
assymptions that will be waived later.
Theorem 1: Algorithm 4.1 guarantees the maintenance of the safety invariant in
every planning cycle given it holds during the cycle (ti

0 : ti
1) and that:

Safe and Asynchronous Distributed Planning with Dynamics 9

i) all robots can communicate one with another,
ii) plans are transmitted instantaneously between robots.

Fig. 2 The replanning cycles of two neighboring robots
Ri andR j. The times denote transitions between plan-
ning cycles for each robot. The vertical arrows denote
the transmission of information, e.g., atti

n, Ri transmits
πi(πi(xi(ti

n), pi(ti
n : ti

n+1)), γ(ti
n+1 :∞)).

Proof: The proof is obtained by
induction. Thebase case holds for
Ri because of the Theorem’s as-
sumption that the Invariant holds
during cycle (ti

0 : ti
1). The induc-

tive step will show that if the In-
variant holds during the cycle (ti

n :
ti
n+1) then it will also hold dur-

ing the cycle (ti
n+1 : ti

n+2) for Al-
gorithm 4.1. Without loss of gen-
erality consider Figure 2 and fo-

cus on robotRi. To prove the inductive step, it is necessary to show that each one
of the three points of the Invariant will be satisfied during (ti

n+1 : ti
n+2). For cycle

(ti
n+1 : ti

n+2) there are two cases: (1) A compatible trajectoryπi∗ = πi
γ ∈Π i is selected,

or (2) the current contingency is returned.
Case 1: A trajectory πi

γ ∈ Π i is selected.

a) Trajectoryπi
γ has to be collision-free as part ofΠ i.

b) Assuming instantaneous plan transmission and by timeti
n+1, Ri has been sent and

has available the choices of other robots for cycles that start beforeti
n+1. Sinceπi

γ ∈
Π i is selected, none of these messages arrived during the compatibility check. This
means thatR j’s trajectoryπ j(π j(x j(t j

n+1), p j(t j
n+1 : t j

n+2)), γ(t j
n+2 :∞)) is available

to Ri during the compatibility check. Then the cycle (ti
n+1 : ti

n+2) can be broken into
two parts:

i) During part (ti
n+1 : t j

n+2), the selected planpi(ti
n+1 : ti

n+2) is compatible with

p j(t j
n+1 : t j

n+2) because the second plan was known toRi when selectingπi
γ.

ii) For part (t j
n+2 : ti

n+2) there are two cases forR j at timet j
n+2:

• R j will either select a planp j(t j
n+2 : t j

n+3) that is compatible withpi(ti
n+1 : ti

n+2),

• or it will resort to a contingencyγ j(t j
n+2 :∞), which, however, is already com-

patible with trajectoryπi
γ.

In both cases,R j will follow a plan that is compatible withpi(ti
n+1 : ti

n+2).

Thus, the second point b) of the Invariant is also satisfied for robotsRi andR j.
c) For the third point of the Invariant, the contingencyγi(ti

n+2 :∞) has to be com-
patible with the future choices of the other robots. Focus again on the interaction
betweenRi andR j. There are again two cases forR j at timet j

n+2:

i) R j will select a planp j(t j
n+2 : t j

n+3) and a corresponding contingencyγ j(t j
n+3 :∞).

This plan and contingency respect by constructionRi’s contingencyγi(ti
n+2 :∞),

since it was known toR j at timet j
n+2.

10 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

ii) Or R j will resort to its contingencyγ j(t j
n+2 : ∞), which, however, the contin-

gencyγi(ti
n+2 :∞) respected upon its selection.

In any case, whateverR j chooses at timet j
n+2, it is going to follow plans in the

future that are compatible withγi(ti
n+2 :∞). Thus, point c) is also satisfied.

Case 2: A contingency γi(ti
n+1 :∞) was selected.

Theinductive hypothesis implies thatxi(ti
n+1) is asafe state. Thus:

a) γi(ti
n+1 : ti

n+2) is collision-free with static obstacles

b) The current plans of all robots will be compatible withγi(ti
n+1 : ti

n+2), which
was known to them at timeti

n. Furthermore,γi(ti
n+1 : ti

n+2) already respects the
contingencies of other robots that might be executed beforeti

n+1.

c) The statexi[γi(ti
n+1 :∞)](ti

n+2) is trivially safe, becauseRi can keep executing the
same contingency for ever and this contingency will have to be respected by its
neighbors, as it will always be known ahead of time.

In both cases, all three points of the Invariant are satisfiedfor Ri and the inductive
step is proved. Thus, if the Invariant holds, the algorithm maintains its validity. ⊓⊔

Ri

Rj

t i
n

t j
n

Fig. 3 If messages arrive after the start of a neigh-
bor’s future cycle, as with the message fromR j to Ri

above, this is problematic.

D. Addressing the Assumptions:
Theorem 1 assumed that messages
are transmitted instantaneously and
that all the robots communicate
one with another. The assumption
that plans are transmitted instanta-
neously will not hold in real-world
experiments with wireless commu-
nication. Similarly, it is more realistic to assume that robots can communicate only
if their distance is below a certain threshold. In the lattercase, the proposed ap-
proach can be invoked using only point to neighborhood communication and thus
achieve higher scalability. The following theorem shows that the safety guarantees
can be provided without these restrictive assumptions.
Theorem 2: Algorithm 4.1 guarantees the maintenance of the safety invariant in
every planning cycle given it holds during cycle (ti

0 : ti
1) and that:

i) two robots with limited communication ranges can communicate before they en-
ter intoICS given a predefined set of contingenciesΓ(∞),

ii) robots utilize acknowledgments that signal the reception of a trajectory by a
neighbor.

Sketch of Proof: Theorem 1 showed that the invariant holds as long as it was valid
during the first cycle (ti

0 : ti
1) and that two vehicles can communicate continuously

sinceti
0. For two robots with limited communication range, denote astime tcomm the

beginning of the first planning cycle of either robot after they are able to communi-
cate. If attcomm, both robots have available a contingencyγ(∞) ∈ Γ(∞), that can be
used to prove the safety of their corresponding states, thenall the requirements of
Theorem 1 are satisfied forti

0 = tcomm. Thus the invariant will be maintained.

Safe and Asynchronous Distributed Planning with Dynamics 11

Regarding the issue of delayed messages, consider the case thatR j’s cycle ends
at time t j

n, which is before the end of the neighboringRi’s cycle at timeti
n. Figure

3 provides an example. If the transmission of the trajectoryπ j
∗ to Ri is delayed, it

might arrive after timeti
n andRi cannot detect that it did not take into account the

choice ofR j during its compatibility check given Algorithm 4.1. Thus,Ri’s choice
might end up being incompatible withπ j

∗. Notice that this problem becomes more
frequent when Algorithm 4.1 is employed by robots that have synchronized cycles.
If an acknowledgment message that signals the reception of atrajectory by a neigh-
bor is used, however,Ri can acknowledge the message’s reception, whether it arrives
before or afterti

n. If the acknowledgment arrives atR j beforet j
n (as well as from all

other neighbors), it knows that it is safe to executeπ j
∗. If the acknowledgment is not

received on time,R j can revert to its contingency which is by construction respected
by the future plan ofRi, whatever this is. Thus, the introduction of an acknowledg-
ment resolves the issue of possible delays in the transmission of trajectories. ⊓⊔

5 Experimental Results

To validate the theoretical discussion, simulated experiments were conducted. Our
first experiments revealed performance deficits, however, practical modifications in
the implementation of the algorithm were made. These resulted in significant speed
ups and quick convergence to a solution.
Implementation Specifics:This section describes some steps to make the imple-
mentation of Algorithm 4.1 more efficient computationally. In particular:

• Instead of checking all the candidate plansΠ i with the trajectories of the neigh-
borsΠNi

new, only the best plan inΠ i according to a metric is checked. If this plan
fails the check, then the previous contingency is selected.
• At each step of the “while” loop in Algorithm 4.1 (lines 4-13), the implementa-
tion propagates an edge along a tree of trajectories using a sampling-based planner,
instead of generating an entire trajectory. If the edge intersectsti

n+1, a contingency
γ(ti

n+1 :∞) is extended fromx(ti
n+1). If the contingency is collision-free and com-

patible with the available trajectories of neighbors inΠNi

prev, x(ti
n+1) is assumed safe.

Otherwise, it is unsafe and no future expansion of an edge is allowed pastx(ti
n+1).

• The sampling-based expansion of the tree structure of trajectories is biased given
a potential field in the workspace that promotes the expansion of the tree towards
the goal [2]. The tree expansion is also biased away from other vehicles. Different
algorithms can be considered for the actual planning process [20, 15, 8, 23].

• There is no need to differentiate in the implementation betweenPNi

prev andPNi

new.
Each robot maintains a buffer for messages from each neighbor. As new trajecto-
ries are transmitted, they replace the part of old trajectories that has already been
executed by a neighbor along the buffer.

12 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

• The latency in the experimental setup was relatively low. Thus, the situation in
Figure 3 did not arise. Thus, the acknowledgement step was not included for the
experiments presented below, which reduced the number of peer-to-peer messages.

x = w cosζ cosθ
y = w cosζ sinθ

θ = w sinζ
w = α
ζ = φ

Modeled System:The experiments presented in this paper are
using the model of a second-order car like vehicle [19] shown
on the right side, where (x,y) are the car’s reference point in
Cartesian coordinates,θ is the car’s orientation,w its veloc-
ity and ζ the steering angle. The controls areα, the accelera-
tion, andφ the rate of change of the steering angle. There are
limits both for state and control parameters (||w|| < wmax, ||ζ || < ζmax, ||α|| < αmax,
||φ|| < φmax). All robots have range-limited communication out to 30% ofthe total
environment width, and brake to zero speed for contingency.

Fig. 4 Starting positions for the
“empty” and “random” environ-
ments.

Environments Four simulated environments were
used for the experiments:

1. An “empty” environment (Fig. 4 (left)),
2. an “office” environment (Fig. 1),
3. a “ random” environment (Fig. 4 (right)), and
4. an “intersection” environment with two cross-
ing corridors (Fig. 5).

These environments are presented in approximate
order of difficulty. The various experiments tested
different numbers of vehicles: 2, 4, 8, 16, 32, 48. Because the 16 robots alone took up
6% of the entire workspace (ignoring obstacles), the size ofthe robots was reduced
to half for the 32 robot case, and to a quarter of their size forthe 48 robot case. If
this was not done, then the robots would take up 12% and 18% of the workspace,
respectively. Since much of the workspace is already occupied by obstacles, this
reduction in size assists in reducing clutter effects that effect solution time. The
empty environment was the easiest to solve. The office environment was chosen as
a gauge for how hard a structured environment can be. The robots, in their original
size, are about 1/5 of the size of the hallway. In the random environment, there
were polygons of varying shapes and sizes. The intersectioncase seemed to be the
hardest to solve, since the robots not only have to navigate through a relatively
narrow passage together with their neighbors, but they are all forced to traverse the
center, almost simultaneously.

Fig. 5 Snapshots from a typical run with 32 robots; Final image is the full trajectory of robot 0.

When possible, starting/goal locations were identical across runs as more robots
were added. Experiments for the same number of robots have the same start/goal

Safe and Asynchronous Distributed Planning with Dynamics 13

locations. All experiments were repeated at least 10 times.The algorithm was run
in real time such that computation time is equal to executiontime.
Evaluation of Safety To verify that the system implemented truly provides the
guarantees presented in this paper, three different cases were considered for the
algorithm: (i) an implementation without contingencies, (ii) with contingencies but
for robots with synchronized cycles and (iii) with contingencies and robots that
arenot synchronized. For each type of experiment the following figure reports the
percentage of successful experiments. 20 experiments wereexecuted for each case,
averaging across synchronous and asynchronous cases. The results presented clearly
indicate that enabling contingencies results in a safe system in all cases.

2 4 8 16
With
Contingencies

Without
Contingencies

E R O I E R O I E R O I E R O I

S
u
c
c
e
s
s
fu

l
E
x
p
e
ri

m
e
n
ts

Number of Robots

0%

100%

50%

Scalability and EfficiencyOnce the safety of the approach was confirmed, the fo-
cus turned on evaluating the effects of contingencies. A high-selection rate of con-
tingencies is expected to decrease the performance of the robots, as these plans are
not selected to make progress towards the goal. The following table presents the
average duration of experiments in seconds and the average velocity achieved by
the robots both for the case without contingencies and the case with contingencies
(both for synchronized and asynchronous robots). The performance data without
contingencies is from the cases where none of the robots enteredICS, which means
they often correspond to fewer than 20 experiments, and in some cases there is no
successful experiment without contingencies to compare against.

Effects of Contingencies
Number of Robots

2 4 8 16

Scenes Approach Time Vel. Time Vel. Time Vel. Time Vel.

Empty Without Cont. 85.1 6.7 84.5 4.8 82.9 3.9 87.5 3.4
With 82.6 6.9 90.9 4.7 88.8 3.7 335.8 1.4

Office Without Cont. 97.0 8.3 98.1 6.6 X X X X
With 99.1 8.2 111.5 5.9 206.9 2.7 553.3 1.0

Random Without Cont. 87.2 6.5 84.4 4.8 88.3 3.6 X X
With 88.0 6.5 103.1 4.4 92.4 3.6 604.8 1.3

Intersection Without Cont. 101.0 8.0 100.0 8.0 X X X X
With 108.9 7.5 272.5 4.2 469.1 2.3 1415.4 1.0

The behavior of the robots is indeed more conservative when contingencies are
employed and it takes longer to complete an experiment. Although the algorithm
has no progress guarantees, the randomized nature of the probabilistically com-
plete planning algorithms helped to offset this. The simulations always eventually

14 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

resulted in a solution for the tested problems even if the robots temporarily entered
oscillatory motions. The local penalty for trajectories that brought an agent in close
proximity to neighboring robots helped to reduce the occurrence of oscillations and
resulted in significant improvements in performance.
Synchronous vs. AsynchronousAnother objective of the experimentation proce-
dure was to evaluate the differences in the performance of the algorithm between the
synchronous and the asynchronous case. In the synchronous case, all robots have a
zero time offset but they are not aware of their synchronicity and they arenot taking
advantage of it as in previous work [3]. In the asynchronous case, the offsets are the
same across 10 averaged runs. These offsets are randomly precomputed and range
from 0 to a maximum of 3/4 of the planning cycle.

Sync. Vs. Async.
Number of Robots

2 4 8 16
Scenes Approach Time Vel. Time Vel. Time Vel. Time Vel.

Empty Asynch. 81.5 7.0 85.5 4.8 87.3 3.8 400.0 1.4
Synch. 83.8 6.8 96.3 4.5 90.3 3.6 271.5 1.4

Office Asynch. 96.0 8.4 112.5 6.0 197.5 2.8 541.0 1.0
Synch. 102.3 7.9 110.5 5.9 216.3 2.7 565.5 1.0

Random Asynch. 85.5 6.7 90.8 4.5 85.8 3.8 729.6 1.4
Synch. 90.5 6.3 115.5 4.2 99.0 3.5 480.0 1.3

Intersection Asynch. 105.0 7.8 268.3 4.1 335.8 2.9 899.8 1.3
Synch. 112.8 7.2 276.8 4.3 602.5 1.6 1931.0 0.8

When the robots’ cycles are synchronized, then it will be often the case that
robots are transmitting simultaneously, and potentially during the compatibility
check of their neighbors. This in certain cases results in slightly longer durations
for the completion of an experiment, as well as lower averagevelocities, but overall
there is no consistent effect as in the random and empty scenes, there is a perfor-
mance boost under synchronous operation, especially as thenumber of robots in-
creases. In comparison to previous work [3] where synchronicity was specifically
taken advantage of, it is clear that the quality of the paths selected are worse in the
current asynchronous implementation. However, it is expected that further research
in asynchronous coordination algorithms can reduce this performance gap.
Scaling Larger scale simulations for 32 and 48 robots were run to study the al-
gorithm’s scalability. For these cases, the approach without contingencies always
fails. Note that as mentioned earlier, these robots are of reduced size to decrease the
effects on completion time due to a cluttered environment.

32 48 32 48 32 32
0.0

400.0

800.0

1200.0

1600.0

2000.0

T
im
e
(s
)

Synch | Asynch | Synch | Asynch
Easy |Intersection

Achieving safe, asynchronous operation
for 48 second-order systems with the pro-
posed setup is a challenge. The agent model
is complex as are the safety guarantees ad-
dress theICS issue. The simulation en-
vironment mimics the constraints of real-
world communication by running each agent
on a separate processor and allowing only

Safe and Asynchronous Distributed Planning with Dynamics 15

message-passing communication (TCP sockets). An experiment with 48 robots re-
quires 49 separate processors (1 processor is used as a simulation server).
Parameter Evaluation An important parameter for the proposed approach is the
duration of the planning cycle. For shorter durations of cycles, there was a higher
deviation between runs and it was not possible to execute thelarger experiments
with 32 and 48 robots for a cycle duration less than 2 seconds.This limitation is
due to the single thread running the world simulation. It is expected that the limit
in hardware implementation would be dependent on the communication latency.
The average completion time shows a noticeable increase as the duration of a cycle
increases. The experiments presented in the previous tables were executed for a
cycle duration of 2.5 seconds.

Planning Cycle
Number of Robots

2 4 8 16
Scene Cycle Time Vel. Time Vel. Time Vel. Time Vel.

Empty

1.0s 53.3 10.8 52.5 7.8 59.2 5.8 96.9 3.5
1.5s 59.3 9.7 63.8 6.4 60.0 5.3 197.1 2.0
2.0s 71.4 8.0 74.0 5.8 75.6 4.2 116.8 2.7
2.5s 79.5 7.2 82.8 5.2 86.5 3.7 134.0 2.2
3.0s 98.4 5.8 98.4 4.4 99.9 3.2 135.0 2.0
3.5s 167.7 3.8 193.6 2.5 125.5 1.7 482.7 0.7

6 Discussion

This paper presented a fully distributed algorithm that guaranteesICS safety for
a number of second-order robots that move in the same environment. Simulations
confirm that the framework indeed provides safety and is scalable and adaptable.
Additional experiments not presented above were conductedfor a system with pos-
itive minimum velocity, i.e., a system that cannot brake to zero velocity. Safety was
achieved for this system using a different set of contingencies than braking maneu-
vers. In this case, the system was required to turn into the tightest circle possible
without exceeding the specified limits on velocity and turning rate. Future work
includes: (a) considering robots with different durations for planning cycles, (b)
dealing with unreliable communication, (c) studying the effects of motion uncer-
tainty to the protocol’s performance, (d) distributed optimization for improving the
quality of paths selected despite the asynchronous operation, (e) dealing with non-
cooperating vehicles and (f) addressing tasks that go beyond moving from initial to
final states. Experiments using physical systems with interesting dynamics would
provide a real-world verification of the approach.

Acknowledgements Work by D. Grady and L. Kavraki on this paper has been supportedin part
by the US Army Research Laboratory and the US Army Research Office under grant number
W911NF-09-1-0383 and by NSF IIS 0713623. Work by K. Bekris has been supported by NSF
CNS 0932423. Any conclusions expressed here are of the authors and do not reflect the views of
the sponsors. The authors would like to thank the anonymous reviewers for their helpful comments.

16 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

References

1. Alami, R., Simeon, T., Krishna, K.M.: On the influence of sensor capacities and environment
dynamics onto collision-free motion plans. In: IEEE/RSJ IROS. Lausanne, CH (2002)

2. Bekris, K.E., Kavraki, L.E.: Greedy but safe replanning under kinodynamic constraints. In:
IEEE ICRA. Rome, Italy (2007)

3. Bekris, K.E., Tsianos, K., Kavraki, L.E.: Safe and distributed kinodynamic replanning for
vehicular networks. Mobile Networks and Applications14(3), 292–308 (2009)

4. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocityobstacles for real-time multi-
agent navigation. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA) (2008)

5. Bruce, J., Veloso, M.: Real-time multi-robot motion planning with safe dynamics. In:
A. Schultz, L. Parker, F. Schneider (eds.) Intern. Workshop onMulti-Robot Systems (2003)

6. Chan, N., Kuffner, J.J., Zucker, M.: Improved motion planning speed and safety using regions
of inevitable collision. In: 17th CISM-IFToMM RoManSy (2008)

7. Clark, C., Rock, S., Latombe, J.C.: Motion planning for multi-robot systems using dynamic
robot networks. In: IEEE ICRA. Taipei, Taiwan (2003)

8. Dimarogonas, D.V., Kyriakopoulos, K.J.: Decentralized Navigation Functions for Multiple
Robotic Agents. Intelligent and Robotic Systems48(3), 411–433 (2007)

9. Erdmann, M., Lozano-Perez, T.: On multiple moving objects. In: ICRA, pp. 1419–1424 (’86)
10. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int.

Journal of Robotics Research17(7) (1998)
11. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE

Robotics and Automation Magazine4(1) (1997)
12. Fraichard, T.: A short paper about motion safety. In: IEEE ICRA. Rome, Italy (2007)
13. Fraichard, T., Asama, H.: Inevitable collision states: A step towards safer robots? Advanced

Robotics pp. 1001–1024 (2004)
14. Frazzoli, E., Dahleh, M., Feron, E.: Real-time motion planning for agile autonomous vehicles.

AIAA Journal of Guidance, Control and Dynamics25(1), 116–129 (2002)
15. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with

moving obstacles. IJRR21(3), 233–255 (2002)
16. Kalisiak, M., Van de Panne, M.: Faster motion planning using learned local viability models.

In: Proc. of the IEEE Int. Conf. on Robotics and Automation. Roma, Italy (2007)
17. Lalish, E., Morgansen, K.A.: Decentralized reactive collision avoidance for multivehicle sys-

tems. In: IEEE Conference on Decision and Control (2008)
18. Lamiraux, F., Bonnafous, D., Lefebvre, O.: Reactive path deformation for nonholonomic mo-

bile robots. In: IEEE Transactions on Robotics, vol. 20, pp. 967–977 (2004)
19. Laumond, J.P. (ed.): Robot Motion Planning and Control. Lectures Notes in Control and

Information Sciences 229. Springer (1998)
20. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. IJRR20(5), 378–400 (2001)
21. Martinez-Gomez, L., Fraichard, T.: Collision avoidance in dynamic environments: An ics-

based solution and its comparative evaluation. In: IEEE ICRA. Kobe, Japan (2009)
22. Peng, J., Akella, S.: Coordinating multiple robots with kinodynamic constraints along speci-

fied paths. Int. Journal of Robotics Research24(4), 295–310 (2005)
23. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion plan-

ning in state lattices. In: Journal of Field Robotics, vol. 26, pp. 308–333 (2009)
24. Reif, J., Sharir, M.: Motion planning in the presence of moving obstacles. In: Proc. of the

IEEE Int. Symp. on Foundations of Computer Science. Portland,OR (1985)
25. Vatcha, R., Xiao, J.: Perceived CT-Space for motion planning in unknown and unpredictable

environments. In: Workshop on Algorithmic Foundations of Robotics. Mexico (2008)
26. Wikman, M.S., Branicky, M., Newman, W.S.: Reflexive collision avoidance: A generalized

approach. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (1993)
27. Yang, Y., Brock, O.: Elastic roadmaps: Globally task-consistent motion for autonomous mo-

bile manipulation in dynamic environments. In: Robotics: Science and Systems II (2006)

