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Abstract. This paper presents a graph-based algorithm for identify-
ing complex metabolic pathways in multi-genome scale metabolic data.
These complex pathways are called branched pathways because they can
arrive at a target compound through combinations of pathways that split
compounds into smaller ones, work in parallel with many compounds,
and join compounds into larger ones. While most previous work has
focused on identifying linear metabolic pathways, branched metabolic
pathways predominate in metabolic networks. Automatic identification
of branched pathways has a number of important applications in areas
that require deeper understanding of metabolism, such as metabolic en-
gineering and drug target identification. Our algorithm utilizes explicit
atom tracking to identify linear metabolic pathways and then merges
them together into branched metabolic pathways. We provide results on
two well-characterized metabolic pathways that demonstrate that this
new merging approach can efficiently find biologically relevant branched
metabolic pathways with complex structures.

1 Introduction

The quantity and quality of metabolic data has greatly increased in the last few
decades, as indicated by the growth of such databases as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [17] and MetaCyc [8]. Gaining
understanding from these vast quantities of metabolic data requires novel com-
putational tools that enable automatic identification and thorough analysis of
biologically relevant metabolic pathways. These computational tools may reveal
novel or alternative metabolic pathways, potentially spanning multiple species,
that could not have been identified by manual means. Importantly, the ability
to find metabolic pathways in multi-genome scale data has applications in fields
such as metabolic engineering, which focuses on discovering and implementing
new metabolic schemes.

The central problem in computational metabolic path finding is the following:
given a start and target compound, find and return biologically relevant or real-
istic pathways of enzymatic reactions that produce the target compound from
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the start compound. Previous work in this area has primarily focused on finding
linear sequences of reactions between start and target compounds [25]. However,
more complex metabolic pathways, termed branched pathways, are dominant in
metabolic networks and provide a more complete picture of metabolic processes
[22,24]. Branched pathways consist of multiple pathways that interact biochemi-
cally. For example, a start compound may be split into smaller compounds which,
in parallel, undergo several different chemical reactions. The resulting products
can then combine to form the target compound. The identification of branched
pathways enables the analysis of metabolic processes with a more comprehensive
perspective as compared to the limited picture provided by linear pathways.

The main contribution of this paper is a novel algorithm for identifying
branched metabolic pathways by using atom tracking information to merge lin-
ear pathways. The merging approach of the presented algorithm is different from
previous graph-based approaches, which start from a single linear pathway and
then find new linear pathways to attach as branches [24,16]. The results demon-
strate that the new algorithm is able to efficiently find different network topolo-
gies in multi-genome scale data obtained from KEGG. The rest of the paper
proceeds as follows: Section 2 describes the relevant previous work in the area of
graph-based metabolic pathfinding; Section 3 describes how our new algorithm
merges linear pathways to find branched pathways; Section 4 contains the re-
sults of our algorithms, validated on two well-characterized branched metabolic
pathways; Section 5 concludes the paper.

2 Previous Work

Graph-based Models for Finding Metabolic Pathways. Graphs provide a natu-
ral, well-studied computational model for identifying biologically relevant path-
ways in metabolic networks [11]. Graph-based metabolic path finding algorithms
complement stoichiometric approaches, as they focus on different aspects of mod-
eling and understanding metabolism [25,12,13]. Stoichiometric models are typ-
ically utilized for modeling specific organisms or metabolic systems [15]. Most
stoichiometric models are based on the steady-state assumption and therefore
require explicit labeling of internal and external compounds [19]. This can be a
disadvantage as there are feasible biochemical pathways that do not obey the
steady-state assumption and/or a compound that labeled as internal could easily
be provided as an external compound [25]. However, both types of models are
important for gaining insights into metabolic networks.

Graph-based methods have suffered from the disadvantage of finding path-
ways with spurious connections [3]. Several approaches have been developed
to try to overcome this problem, such as removing certain currency metabolites
from the graph [31,14,27], adding weights based on the degree of the nodes [9,12]
or using measures of structural similarity between compounds [21,26]. However,
an approach more closely related to the underlying biochemistry is to use atom
mapping data [2,3]. Atom mapping data provides a systematic way of under-
standing a biochemical reaction by providing a specific mapping between each
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atom in the input compounds of a reaction to an atom in the output compounds.
In the last few years, the availability of atom mapping data has been steadily
increasing, with one of the primary sources being the KEGG RPAIR database
[18,20].

Previous work has mainly used atom mapping data for finding metabolic
pathways by only allowing connections through reactions where at least one
atom is being transfered from input to output compound [12,23] or only returning
pathways that conserve at least one atom, typically carbon [2,3,4,5]. However,
there are often instances where it is biochemically relevant to find pathways
which conserve a high percentage of atoms from start to target compounds [6,24].
The algorithm presented in this paper is based on our earlier work that finds
atom conserving pathways by explicitly tracking multiple atoms in metabolic
networks [16].

Foundation for the Presented Work. The algorithm presented in this paper uti-
lizes a graph-based structure that incorporates atom mapping data called an
atom mapping graph, Gam, whose design is based on the observation that the
same atom mapping pattern between two compounds often appears in multi-
ple reactions [2]. Gam is a directed bipartite graph containing compound nodes
and mapping nodes. The compound nodes have unique identifiers for both the
compound as well as its atoms. The compound nodes are connected by directed
edges to mapping nodes that explicitly specify, via the unique identifiers, what
atoms from the input compound become the atoms in the output compound.
Each atom mapping only maps the atoms between a pair of compounds and
so the mapping nodes in Gam only have one input edge and one output edge
connected to two different compound nodes, while the compound nodes have a
degree equal to the number of mappings they participate in. Since the same atom
mapping can occur in many different reactions, a correspondence is stored be-
tween the mapping nodes and the reactions in which they occur. A more detailed
description of the construction of Gam can be found in [16].

Previously, we developed and validated an algorithm for identifying the k
shortest linear pathways in Gam that conserve at least a given number of atoms
between desired start and target compounds [16]. This problem has been shown
to be PSPACE-complete and NP-complete when a compound can only be used
once in a pathway [6]. Previously unnamed, we will call the linear path find-
ing algorithm from [16] LPAT, for Linear Pathfinding with Atom Tracking. Our
results demonstrated that LPAT is able to search across the thousands of re-
actions and compounds from multiple species contained in KEGG and return
realistic metabolic pathways in a few minutes. Based on LPAT, we also developed
and validated a novel graph-based algorithm for identifying branched metabolic
pathways. Also previously unnamed, we will call the branched path finding al-
gorithm from [16] BPAT-S, for Branched Pathfinding using Atom Tracking and
Seed pathways. The first step of BPAT-S uses LPAT to obtain a set of linear
pathways between the desired start and target compounds. BPAT-S then anno-
tates and stores the linear pathways with information about the specific reactions
and compounds through which atoms are lost or gained. These annotated lin-



Identifying Branched Metabolic Pathways 73

ear pathways are called seed pathways and indexed for efficient processing and
attachment of branches. The branches are identified by calling LPAT to find lin-
ear pathways between compounds through which atoms are lost to compounds
through which atoms are gained. These linear branches are then attached to the
seed pathway to give rise to branched pathways, which are ranked first by the
number of atoms they conserve and then by the total number of reactions they
contain. In our previous study, we demonstrated that BPAT-S can efficiently
find and return branched pathways that correspond to known branched path-
ways [16]. To the best of our knowledge, the only other algorithm with similar
abilities is the recently developed ReTrace algorithm. ReTrace takes a similar
approach as BPAT-S, but is based on pathways that only conserve one atom
[24]. In this paper, we present a novel algorithm that takes a significantly dif-
ferent approach from BPAT-S or ReTrace by merging linear pathways to form
branched pathways and extends the topologies of pathways that can be identified
automatically.

3 BPAT-M: Branched Pathfinding by Merging Linear
Pathways

This section describes a new algorithm, Branched Pathfinding using Atom Track-
ing and Merging (BPAT-M), for finding branched pathways by merging linear
pathways returned by LPAT. BPAT-M removes the division between seed and
branch pathways found in BPAT-S, thus enabling BPAT-M to find pathway
topologies that BPAT-S cannot. BPAT-M utilizes the observation that a signifi-
cant portion of time is spent finding the branches in BPAT-S, but these branches
may already be contained in the set of linear pathways found by LPAT. This
redundancy is eliminated in BPAT-M by carefully inventorying the linear path-
ways. BPAT-M takes advantage of the fact that linear pathways can only be
merged together if the pathways do not have overlapping atoms in their target
compounds. The atom tracking information from the linear pathways provided
by LPAT are processed by BPAT-M to construct three data structures Q, C, and
M . These data structures enable the efficient merging of linear pathways to find
branched pathways. The construction of Q, C and M is described in 3.1. Section
3.2 then describes Algorithm 1, which harnesses the extensive indexing of linear
pathways contained in Q, M and C to find and return n branched pathways
ranked first by the number of atoms conserved and second by the number of
reactions.

3.1 Construction of Q, C and M from Target Atom Markings
(TAMs)

A target atom marking (TAM) of a linear pathway is a set of indices correspond-
ing to the specific atoms in the target compound that have been conserved from
the start compound. Typically, the number of TAMs found is much less than the
theoretical maximum number due to chemical constraints. On the right of Figure
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1 there are three linear pathways from α-d-glucose 6-phosphate to stachyose and
their associated TAMs. TAMs play a central role in the performance of BPAT-M
because they allow a quick way to determine which linear pathways can not be
merged together. Two pathways can not be merged together if the intersection of
their TAMs is nonempty, that is if they contain the same atom index or indices.
If two pathways have disjoint TAMs, they can not necessarily be merged because
the algorithm must check whether they share a common reaction. However, if
two pathways are mergeable, then the TAM of the merged pathway is the union
of the TAMs of the pathways.

Fig. 1. Three linear pathways from α-d-glucose 6-phosphate to stachyose and their
associated carbon TAMs, as indicated by the magenta circles. The two potentially
mergeable pairs of paths are PATH 1 with PATH 3 and PATH 2 with PATH 3. The
result of merging PATH 1 and PATH 3 is displayed on the right.

The ability to use the TAMs to quickly determine if pathways are not merge-
able motivates the construction of the data structure, Q, which maps a TAM
to a list of linear pathways containing that TAM. For a particular TAM, t, this
means that Q[t] returns all linear pathways whose TAM is equal to t, sorted by
their length. For example, using the pathways depicted in Figure 1, Q[TAM 1]
would return the pathways labeled PATH 1 and PATH 2. After Q is constructed,
all disjoint combinations of the TAMs from the linear pathways are computed
and stored in a list C. For example, for the hypothetical TAMs, t1 = {0, 1, 2},
t2 = {0, 1}, t3 = {2, 3} and t4 = {4, 5}, C would contain {t1, t4}, {t2, t3, t4},
{t2, t3}, {t2, t4} and {t3, t4} as all disjoint combinations. C is then sorted in de-
creasing order by the total size of the combination. In this example, {t2, t3, t4}
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would be first entry in C because it is of size six. Sorting C this way is im-
portant because the goal is to find pathways that conserve a larger number of
atoms. For each combination c ∈ C, the TAMs are accessed by their indices, so
if c = {t2, t3, t4}, c[1] = t2, c[2] = t3 and c[3] = t4. C is then used to dictate
how the search proceeds to merge combinations of linear pathways to obtain
branched pathways.

Once potentially mergeable linear pathways have been identified using Q and
C, they must be further compared to see if they can be merged through a
common reaction, r. The data structure M is constructed to store the results
of comparing pairs of linear pathways for mergability, thus the comparison is
only performed once. M maps all pairs of mergeable linear pathways to a tuple
containing r and the number of mapping nodes from the target compound that
r occurs. M is constructed by first identifying all pairs of pathways, p1 and p2,
with disjoint TAMs. The mapping nodes of p1 and p2 are compared starting from
the target compound. This comparison identifies the position, m, of the mapping
nodes closest to the target compound that differs between the two pathways is
identified. In Figure 1, the comparison between PATH 1 and PATH 3 would
identify RP01111 and RP00075 as the different mapping nodes closest to the
target compound and m would be 2, using zero-based indexing. The final step
is to look up the reactions that are associated with the two mapping nodes at m
and determine if the mapping nodes share common reaction that can be used to
merge the two pathways. If there is no common reaction, then the pathways are
not mergable. In the case of PATH 1 and PATH 3 in Figure 1, both RP01111
and RP00075 are found in the reaction R00803 (EC Number 2.4.1.7) in KEGG.
The right side of Figure 1 depicts PATH 1 and PATH 3 merged by R00803. This
information about the mergability of PATH 1 and PATH 3 in Figure 1 would
then be stored as M [PATH1, PATH3] = (R00803, 2). In the construction of M ,
only the mapping nodes that differ closest to the target compound are considered
as potential merge points because if merging two paths results in a larger TAM,
they must share a common reaction at this point. It is possible that two paths
may interact closer to the start compound, but this is currently not considered
by the algorithm because it does not impact the TAM.

3.2 Finding Branched Pathways Using Q, C and M

After processing and indexing the linear pathways to construct Q, C and M ,
these data structures are given as input to Algorithm 1 along with n number
of branched pathways to return and a fixed beam width w, which can be used
to bound the search. Algorithm 1 then returns the final result of BPAT-M, the
top n branched pathways it finds ranked first by the number of atoms conserved
and then by the number of reactions. Despite reducing the number of linear
pathways combinations that need to be tested by using biochemical constraints,
the number of such combinations sometimes remains quite large. Therefore, the
algorithm performs a beam search with a fixed beam width, w, which is pro-
vided by the user. The heuristic used for the beam search is discussed in more
detail later in the section, and its usage means that BPAT-M does not guarantee
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Algorithm 1. BPAT-M Search

Input: Pathways organized by their TAMs, Q; Sorted list of all combinations of dis-
joint TAMs, C; Mergeable pairs of paths, M ; Number of pathways to return, n;
Limit on Intermediate Branched Pathways (IBPs), w;

Output: Sorted list of branched pathways P , containing linear pathways and merge
points, sorted first by number of atoms conserved, then by total number of nodes

1: P ← {}
2: for each c in C do
3: if P contains more than n pathways and the nth pathway conserves more atoms

than the size of c then
4: Truncate P to n pathways
5: Break
6: T ← {} //for storing the IBPs, sorted by the same criteria as P
7: for each pair of linear pathways (pi, pj) in (Q[c[1]]×Q[c[2]]) do
8: if M(pi, pj) exists then
9: Add IBP containing pi, pj , M(pi, pj) to T

10: for k = 3 to size of c do
11: N ← T
12: T ← {}
13: for each IBP P in N do
14: for each linear pathway pq in Q[c[k]] do
15: for each linear pathway pl in P do
16: if M(pq, pl) exists and is a valid merge point in P then
17: Add new IBP containing P merged with pq and M(pq, pl) to T
18: if T contains more than w pathways then
19: Truncate T to w pathways
20: Add all pathways in T to P
21: Return P

finding the optimal combination. However, the results demonstrate that the
search performs well in practice.

Algorithm 1 works by taking each combination of TAMs c ∈ C in turn and
using them to build branched pathway combinations. The first two TAMs, c[1]
and c[2], are used to obtain the set of associated pathways for each TAM from
Q and all pairs of pathways are tested for mergeability using M (lines 7-9). If a
pair of pathways are mergeable, then they are stored in the set of Intermediate
Branched Pathways (IBPs), T . The IBPs store a list of mergeable linear path-
ways and their merge points. Then, for each subsequent TAM in c (line 10), all
of the pathways associated with the TAM c[k], pq ∈ Q[c[k]] are retrieved (line
14). Each pq ∈ Q[c[k]] is then tested for mergeability with each linear pathway
in each IBP (lines 13-16). If pq is mergeable with a linear pathway, pl in IBP,
that is M [pq, pl] contains a merge point, pq can potentially be merged with the
IBP to create a branched pathway that conserves more atoms. However, because
pl has already been merged with other pathways, it must be verified that the
merge point between pq and pl is still valid (line 16).

A merge point is always valid if pl has not been merged with another pathway
in the IBP at the same mapping node it would use to merge with the new
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pathway, pq. However, if pl has been previously merged at the same point with
another pathway in the IBP, the merge point with pq can still be valid if the
reaction in the merge point of pq and pl is the same reaction used previously and
the substrate compound in pq is not contained in the other pathways. Otherwise,
the merge point is invalid. As an example, there could be a reaction r that takes
the substrate compounds a, b and c. If two pathways, p1 and p2 were merged
together through r, with pl containing a and pq containing b, there are two
possibilities for a third pathway p3, that is potentially mergable with p1 at r.
If p3 contains c, then the merge point is still valid and the resulting branched
pathway would contain p1, p2 and p3 merged through r. However, if p3 contained
b, then the merge point is invalid, as p2 has already been merged through b. By
checking for validity, multiple pathways being merged through the same reaction
are handled in a general way and only limited by the substrates used in the
reaction.

In Algorithm 1, if the merge point is valid, pq is merged with the IBP and the
resulting branched pathway is stored as another IBP (line 17). Therefore, each IBP
gives rise to a number of new IBPs equal to the number of pq that have valid merge
points with the IBP. This means that there is a theoretical combinatorial explosion
of IBPs for each Ci and we have observed that very large numbers of IBPs can be
generated in practice. This resulted in the introduction of the beam width, w, to
limit the number of combinations generated. After adding the pathways for each
TAM, only the top w IBPs, sorted by number of atoms conserved and the sum of
the length of the linear pathways, are carried over for each subsequent TAM (lines
18-19). Since the pathways are first ranked by the number of atoms they conserve
and C is sorted by the size of each combination, the search can terminate when
n pathways have been found and the next combination to try is smaller than the
TAM of the nth pathway (lines 3-5).

The final way in which the run time and/or space required by BPAT-M is
reduced is by limiting the number of pathways that are kept for each TAM in
Q. This is done by sorting the pathways by length and only keeping a user
specified number of the shortest pathways for each TAM. Future work is needed
to investigate the impact of these parameters and develop easier ways for users
to understand and select the proper limitations for their application. At this
point, it’s recommended to perform a larger search by setting the parameter
values high to utilize the computational and storage resources available. Our
results demonstrate that even with the heuristic limits, BPAT-M performs well
in practice.

4 Results

We present two representative, biologically interesting, test cases for branched
metabolic pathways. Both begin from α-d-Glucose 6-Phosphate (G6P), a com-
mon form of intracellular glucose. The target compound of the first pathway is
lycopene and the target compound of the second pathway is cephalosporin C.
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4.1 Experimental Setup

All KEGG data used in the following experiments was downloaded on February
10, 2010. After processing the KEGG RPAIR to obtain a universal index for
each atom in each compound, Gam was constructed using 11,892 RPAIR entries
involving 6,002 compounds and corresponding to 7,510 reactions from more than
1,200 organisms. In the results presented in this paper the full Gam was used,
but subgraphs of Gam corresponding to particular organisms, reactions or com-
pounds of interest can easily be created and searched. Additionally, reversibility
information was obtained from XML representations of the KEGG metabolic

(a) (b)

Fig. 2. Top ranked branched metabolic pathways for G6P to lycopene, with the linear
pathways conserving 2 carbons, as found by (a) BPAT-S and in (b) BPAT-M. In the
interest of space, in (a) 34 mapping nodes and 28 compound nodes and (b) 14 mapping
nodes and 11 compound nodes along the linear paths between merge points are hidden
from view. The full figures can be viewed in online supplementary material (URL at
the end of the paper).
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pathway maps, distributed in the the KEGG Markup Language (KGML). A
reaction is considered irreversible if it is consistently labeled as such across all
of the KEGG metabolic pathway maps. Otherwise, the reaction is considered
reversible. The processing of the KGML pathway maps resulted in 4,360 reac-
tions being labeled irreversible. Once the reaction direction is determined, this
information is then used to label RPAIR entries reversible or irreversible, which
is used in the construction of Gam. For each RPAIR entry, all associated reac-
tions have to be checked for directionality. If all of the reactions are irreversible
and consistent in the labeling of the compounds as substrates and products then
the RPAIR entry is considered irreversible. Otherwise, the entry is labeled as
reversible. This resulted in 6,386 RPAIR entries being considered irreversible.

The implementation was done in Java using the Chemical Development Kit
[29] and the Java Universal Network/Graph Framework (http://jung.sourceforge.
net/). All result figures are drawn using Graphviz (http://www.research.att.com/
sw/tools/graphviz/). All experiments were run on the Shared University Grid at
Rice (SUG@R), using a single core from a 2.83GHz Intel Xeon E5440 with access
to 16GB of RAM for each pathway. The parameters for BPAT-S and BPAT-M
were generally chosen to perform the most exhaustive search, given the resources
available. In the branched pathway figures the ellipses are compounds, with the
start and target compounds highlighted in green, the pink diamonds contain the
KEGG ID and EC numbers for the reactions that occur at the branching points
of the pathway. Each edge corresponds to one molecule of each compound. In
the interest of space and clarity, the intermediate mapping and compound nodes
of linear pathways composing the branched pathway have been removed from
the figures, leaving only the reactions that occur at the branching points and
their immediate input and output compounds, as well as the start and target
compounds. The figures depicting the full branched pathways can be found in
the online supplementary material (URL at the end of the paper).

4.2 α-d-Glucose 6-Phosphate to Lycopene

Lycopene is a C40 carotenoid having a bright red color and is found in fruits
and vegetables, such as tomatoes and watermelons. Lycopene’s nutritional and
pharmaceutical potential has resulted in a number of investigations on using
metabolic engineering techniques to increase yield and/or produce lycopene
in microbial hosts [1,32]. The known biosynthesis pathway of lycopene is rel-
atively well understood and has an interesting “woven” topology; isopentenyl
diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are produced by
either the 2-C-methyl-d-erythritol 4-phosphate/1-deoxy-d-xylulose 5-phosphate
(MEP/DOXP) or mevalonate (MVA) pathways, and then DMAPP combines
with IPP to make two molecules of geranyl diphosphate which are combined
with IPP in two more sequential reactions resulting in two molecules of ger-
anylgeranyl diphosphate, which combine to make the C40 molecule prephytoene
diphosphate that becomes lycopene [28]. BPAT-S and BPAT-M were given as the
start compound G6P, the target compound lycopene and three as the number of
carbons to conserve. For BPAT-M, k for LPAT was set to 1,000,000, resulting in
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36,405 linear pathways without cycles, which had 16 mutually exclusive target
atom markings and generated 6,301 combinations. The number of pathways in
each cluster was limited to 2,500 and w was set to 500, due to memory limita-
tions. For BPAT-S, due to run time limitations, k for LPAT was set to 500,000,
resulting in 22,064 linear pathways without cycles. In both cases, LPAT required
about one minute to find the linear pathways.

The top ranked results from BPAT-S and BPAT-M are depicted in Figures
2(a) and 2(b), respectively. BPAT-M performs better than BPAT-S, in that it can
find find the known “woven” topology starting with IPP and DMAPP. BPAT-S
cannot identify the known topology because it only allows branches off of an
initial seed pathway. Additionally, BPAT-M completed in 74.1 minutes, while
BPAT-S required 463.2 minutes. Due to space constraints, the intermediates
to IPP and DMAPP are not displayed in Figure 2. The full figures found in
the online supplementary material (URL at the end of the paper) show that
the BPAT-M result correctly finds the lycopene pathway that utilizes the MEP
pathway to synthesize IPP and DMAPP; the BPAT-S result utilizes both the
MEP/DOXP pathway for DMAPP and MVA pathway for IPP thus revealing
the variety available. The MEP/DOXP and MVA pathways demonstrate how
search tools for metabolic pathways can illuminate different alternative pathways
that may be found in different organisms, which can have applications in areas
such as metabolic engineering. At the same time, the ability to find alternative
or novel pathways makes it more difficult to judge the performance of different
algorithms. Both the BPAT-M and BPAT-S results are biochemically correct in
the usage of MEP/DOXP and MVA pathways, but one may be preferred over
the other based on the specific application in mind.

4.3 α-d-Glucose 6-Phosphate to Cephalosporin C

Cephalosporin C is a β-lactam antibiotic, synthesized by certain bacteria and
fungi, but not used clinically because of its low potency [10]. However, it is an
important precursor for a number of related antibiotics and has been a tar-
get for increased production using metabolic engineering approaches [30]. The
biosynthetic pathway for cephalosporin C includes an reaction that synthesizes
δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine (ACV) from l-valine, l-cysteine and l-
2-aminoadipate. The pathway then proceeds through isopenicillin N which then
undergoes a series of reactions resulting in cephalosporin C [30]. BPAT-M and
BPAT-S were given as input G6P as the start compound, cephalosporin C as
the target compound and three as the minimal number of carbons to conserve.
For both BPAT-S and BPAT-M, k for LPAT was set to 1,000,000, resulting in
31,280 linear pathways without cycles found in less than one minute. For BPAT-
M the number of pathways in each cluster was limited to 5,000 and w was set
to 1,000. BPAT-M found 5 mutually exclusive target atom markings resulting in
18 combinations. BPAT-M took 1.9 minutes to complete the search and BPAT-S
took 366.4 minutes.

The top ranked pathways for BPAT-S and BPAT-M are depicted in Figures 3(a)
and 3(b), respectively. The simplified figures demonstrate that both BPAT-M and
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(a) (b)

Fig. 3. Top ranked branched metabolic pathways for G6P to cephalosporin C, with
the linear pathways conserving 3 carbons, as found by (a) BPAT-S and (b) BPAT-
M. In the interest of space, in (a) 33 mapping nodes and 25 compound nodes and in
(b) 27 mapping nodes and 21 compound nodes along the linear paths between merge
points are hidden from view. The full figures can be viewed in the online supplementary
material (URL at the end of the paper).

BPAT-S find the correct overall metabolic scheme, containing the crucial reaction
catalyzed by ACV synthetase, which requires three different substrate compounds
and produces ACV as the product [7]. Similar to the lycopene pathway, BPAT-
M is able to identify this scheme much quicker than BPAT-S. BPAT-S is able
to identify the branch through acetyl-CoA which contributes its acetyl group,
containing two carbons, to deacetylcephalosporin C to make cephalosporin C.
BPAT-M does not identify the pathway through acetyl-CoA since it is not in
the original set of linear pathways that conserved three carbons. The full path-
way figures, found in the online supplementary material (URL at the end of the
paper), reveal that BPAT-M is able to find shorter and pathways more similar
to the known pathways through l-valine and l-2-aminoadipate. While BPAT-S
finds a similar branched pathway to l-2-aminoadipate, it returns a long and un-
likely pathway to l-valine. The unlikely pathway to l-valine is due the approach
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taken by BPAT-S of attaching branches that maximize the number of atoms to
a single seed pathway.

5 Discussion

We have described and tested a new algorithm, BPAT-M, for identifying branched
metabolic pathways that utilizes atom tracking information to efficiently merge
together biochemically interacting linear pathways. The experimental results
highlight both the strengths and weakness of the approach taken by BPAT-M.
These results reveal that the algorithm’s performance may depend on the un-
derlying structure of the pathway they seek to find. The merging approach used
by BPAT-M will likely perform better if all of the branches conserve at least the
given number of atoms and are of similar length. If this is the case, then BPAT-
M can also find more complex topologies, because it is not limited to requiring
all branches to start and end from the same pathway. This is typical of large
compounds made from similar components, and the lycopene result highlights
this ability of BPAT-M. The lycopene pathway utilizes a “woven” topology that
is returned as the top result by BPAT-M, but BPAT-S is unable to find. In both
cases, BPAT-M took significantly less time than BPAT-S.

Despite the promising results, it is clear that the approach would benefit from
a number of improvements. Future work will allow multiple start and target com-
pounds to be used as input, utilize other sources of metabolic data and examine
ways to mine the resulting pathways to help the user understand them. The re-
sults also highlight that comparing the resulting branched metabolic pathways
is nontrivial, especially if the goal is to find alternative or novel pathways, and
further work is required to develop meaningful evaluation methods. Results from
ReTrace, as described in [24], are not presented because ReTrace has several pa-
rameters that affect the search. We observed that the results and runtime varied
widely depending on the parameters given to ReTrace. We found that ReTrace,
given the same KEGG data, efficiently finds branched pathways similar to those
presented in Section 4, but do not contain as many branches. This may be due
to a number of factors and performing a valid and exhaustive comparison will
be the subject of future work. While it can be difficult to identify a priori which
method will perform better, it is reasonable to try different algorithms and an-
alyze the results to gain better understanding of metabolic pathways.
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