
Lazy Evaluation of Goal Specifications Guided by Motion Planning

Juan David Hernández, Mark Moll, and Lydia E. Kavraki

Abstract— Nowadays robotic systems are expected to share
workspaces and collaborate with humans. In such collaborative
environments, an important challenge is to ground or establish
the correct semantic interpretation of a human request. Once
such an interpretation is available, the request must be trans-
lated into robot motion commands in order to complete the
desired task. It is not unusual that a human request cannot
be grounded to a unique interpretation, thus leading to an
ambiguous request. A simple example is to ask a robot to “put
a cup on the table,” when there are multiple cups available. In
order to deal with this kind of ambiguous request, we propose
a delayed or lazy variable grounding. The focus of this paper
is a motion planning algorithm that, given goal regions that
represent different valid groundings, lazily finds a feasible path
to any one valid grounding. This algorithm includes a reward-
penalty strategy, which attempts to prioritize those goal regions
that seem more promising to provide a solution. We validate our
approach by solving requests with multiple valid alternatives
in both simulation and real-world experiments.

I. INTRODUCTION

While industrial robots typically operate in controlled
and structured environments, modern robotic systems are
expected to conduct autonomous or semi-autonomous tasks
in complex and cluttered environments. In these latter
challenging scenarios, robotic systems not only use their
perception capabilities to understand and safely operate
through complex surroundings, but also need to take requests
from and collaborate with humans.

In making this collaboration effective, modern robotic
systems need to be endowed with different capabilities. In
human-robot interaction (HRI), one of the main challenges is
to establish the correct semantic interpretation of a human
request. This problem is commonly referred to as symbol
or variable grounding [1]. Once such an interpretation is
available, the human request can be attended by the robotic
agent, which converts it into motion commands to complete
the desired task. However, there are cases in which it is not
possible to establish a unique grounding, thus leading to
multi-interpretation requests.

As a first example of such multi-interpretation requests
we can consider an automated valet parking (AVP) system.
In general, an AVP system consist of a parking lot that
has a centralized control infrastructure. This infrastructure
is equipped with perception sensors (e.g., optical cameras),
and a wireless network to communicate and coordinate with
automated (robotic) cars. The infrastructure can use the

This work has been supported in part by NSF 1317849, NSF 1830549
and Rice University Funds.

J.D. Hernández, M. Moll and L.E. Kavraki are with the Department of
Computer Science at Rice University, Houston, TX, USA. {juandhv,
mmoll, kavraki}@rice.edu

Fig. 1: The manipulator arm of the Fetch Robot is instructed
to “put a cup on the table,” when multiple cups are available
in the scene.

perception data to create a semantic map, which contains
information related to the state (available, occupied, or
reserved) of the parking spots [2].

In an AVP infrastructure, a human user can request an
automated car to “park.” A common approach in AVP systems
is to use the semantic map to determine and provide the
car the location of one specific parking spot, and then the
car will approach and attempt to park in the designated
spot [3]. Different heuristics could be employed to determine
the specific spot, such as the distance to the car. Nonetheless,
the infrastructure cannot determine the difficulty or even the
feasibility of parking a specific car in the designated spot.
AVP systems could provide multiple available parking spots.
In this case, the request “park” cannot be grounded to one
specific spot.

Another example of multi-interpretation requests includes
manipulation problems in collaborative environments. Let us
consider a scenario where a robotic teammate can be asked
to fetch an object (see Fig. 1). In these scenarios, robots can
use perception information to create semantic maps, which
segment, classify and report available objects [4]. Furthermore,
perception data can also be utilized to determine the different
valid ways to grasp the available objects [5].

In these collaborative scenarios, a human request such as
“take that bottle” or “give me that book,” contains semantic
ambiguities, which do not allow translating the request into
specific robot motion commands. In order to clarify such
ambiguous requests, a multimodal interface can be used to
fuse speech and gestures, thus allowing to ground the specific
object [6]. There are more complex cases in which gestures
are not enough to clearly ground the implied semantics,
e.g., pointing to an object that is nearby other semantically
equivalent objects. In such cases, establishing a dialogue

Accepted for publication in IEEE International Conference on Robotics and Automation (ICRA), May 2019



between the human and the robot can clarify the desired
action [7], [8], [9]. In this work, we are interested in solving
ambiguous requests, such as “put a cup on the table” when
multiple cups are available, without asking a human partner
further information.

In both examples, i.e., when asking an automated car to
“park,” or when requesting a robotic teammate to “put a cup
on the table,” ambiguity comes from requests that contain
multiple interpretations. Although such interpretations can be
semantically valid, not all of them might be feasible for the
robotic agent. One option to deal with these scenarios could be
to exhaustively ground and test each alternative interpretation,
until finding a feasible one. Another option could be to ground
and test, independently and simultaneously, all the available
interpretations, until solving any of them. While the first
option would make the human-robot collaboration inefficient,
the second alternative would be computationally expensive for
a robotic agent, which also has to deal with other concurrent
computational processes (e.g., perception, navigation, etc.).

Aiming to cope with this type of multi-interpretation
requests, in this paper we introduce a delayed or lazy variable
grounding aided by motion planning. In this paper, we
assume that interpretations can be mapped to goal regions in
configuration space. While this is a hard problem in general,
for the specific applications considered in this paper such
mapping can be defined. Section II then describes how a
multi-interpretation request can then be treated as a start-
to-goal-region motion planning problem. The goal regions
are implicitly defined in the configuration space (C-SPACE)
and are approximated by random samples. Furthermore, in
order to cover a wide range of applications, which can include
high-dimensional C-SPACES, we solve this start-to-goal-region
problem with a new sampling-based motion planner, which
is presented in Section III. This new planner attempts to find
a solution path from a given start configuration to any of the
goal regions; the novelty of this planner is the use of a reward-
penalty strategy, which prioritizes those goal regions that are
more promising to provide a solution. This strategy also
permits determining when more goal samples are required
to improve the goal regions’ approximation. Finally, in order
to evaluate our proposed approach, Section IV presents
simulation and real-world results in different scenarios, which
range from navigation to manipulation problems.

A specific instance of the problem of multi-interpretation
requests also comes up in manipulation in the form of end
effector constraints for possible grasps: the goal is not a
specific goal configuration, but rather any configuration that
satisfies some workspace constraints on the end effector pose.
Different planning methodologies have been adapted to deal
with this problem [10], [11], [12]. Our work is closest in
spirit to [10]. Unlike that work, we restrict the number of goal
states considered (or the number of groundings in the context
of this paper) as long as the planner can make progress in
expanding towards them. This can be seen as putting more
emphasis on exploitation at the price of less emphasis on
exploration. Also, unlike [10] our algorithm never performs
gradient descent over end-effector distance, in part because

Fig. 2: Start-to-goal-region motion planning problem, which
consists in finding a continuous path from a given start
configuration qs, to a goal configuration qg j that must be
contained in any of the provided goal regions G1−3. The goal
configuration qg j must be not only valid (collision-free, as
occurs with qg1 , qg2 , and qg3 ), but also reachable (which does
not occur with qg3). Possible solution paths to this problem
are p1 and p2.

we do not assume goal regions are restricted to end effector
constraints, but also for computational efficiency reasons.

II. PROBLEM SETUP

A. Definitions & Assumptions

Definition 1: The robotic agent’s motion capabilities are
described through the set of configurations q, C-SPACE [13].
The C-SPACE, C, is divided into free space (C f ree) and the
obstacle region (Cobs), i.e., C= C f ree∪Cobs. The dimension-
ality of the C-SPACE is given by the robot’s n degrees of
freedom (DOF).

Definition 2: A goal region is a subset of the C-SPACE,
GR j ⊂ C. One or multiple goal regions GR j can correspond to
one specific semantic interpretation Ii. Furthermore, since the
goal regions are contained in the C-SPACE, a configuration
qg j ∈ GR j can be located either in the free space or the
obstacle region.

Assumptions: For the applications presented in this paper,
it is assumed that a semantic entity provides a set of
valid interpretations I = {I1, I2, . . . , Ik} of a given request.
Furthermore, the same semantic entity is also assumed to
provide the set of m goal regions GR = {GR1, . . . ,GRm},
which represent the different semantic interpretations. It is
important to notice that each semantic interpretation Ii can
generate more than one goal region GR j. Such goal regions
are implicitly defined, but, from them, we can sample goal
configurations qg, which have non-zero probability of being
sampled.

In this paper, we make these assumptions since we want
to focus on the problem that will be formulated in the next
section. Furthermore, such semantic entities are generally
available. For example, semantic maps are used in AVP
systems [2], which provide information about the available
parking spots. Another example includes the semantic maps
that segment, classify and report available objects in manip-
ulation scenarios [4], together with grasping pose detectors,
which can determine the different valid ways to manipulate
the available objects [5].



B. The Start-to-goal-region Motion Planning Problem

A basic start-to-goal motion planning problem requires
connecting a start configuration qs to a unique goal con-
figuration qg. The solution to this problem is a continuous
path p : [0,1]→ C f ree, such that p(0) = qs and p(1) = qg.
Our objective in this paper is to extend this problem to
connect the same start configuration qs, but now to a goal
configuration that is contained in any of the provided goal
regions, qg = qg j ∈ GR j (see Fig. 2). There are different
challenges associated with this extended problem.

Although we can assume that a semantic layer will provide
the goal regions description, we still need to find the exact
goal configuration qg that has to be both valid and reachable.
In this context, we can consider a configuration q as valid if
it is collision-free. However, computing the configuration’s
reachability is as hard as solving the motion planning problem,
which is known to be PSPACE-complete [14], [15]. Therefore,
verifying both the validity and the reachability of qg is not
a trivial problem, especially when dealing with a complex
and high-dimensional C-SPACE. The problem becomes even
harder if we have to consider multiple goal regions. Next
sections explain how the main concepts of motion planners
are used to cope with this extended problem.

C. Tree-based Motion Planner

Given that we want to cover a wide range of applications,
which can include high-dimensional C-SPACES, we propose to
solve this start-to-goal-region problem with a sampling-based
motion planner. Furthermore, since the main objective is to
find a solution path to any of the goal regions, and not to all
of them, we specifically use a tree-based motion planner. Such
planners are rooted at a given start configuration, while the
branches can be used to attempt connecting to the different
goal regions.

III. SOLVING MULTI-INTERPRETATION REQUESTS

The previous section introduced an extended start-to-goal-
region problem. Below we will describe a sampling-based
approach to solving this problem in a way that biases the
planning towards easy-to-reach goals while still preserving
completeness.

A. Initial Goal Region Sampling

We initially approximate the k goal regions by generating a
set G of n valid goal samples, so that G = {qgi ∈GR ∧ qgi ∈
C f ree}, with i = {1,2, . . .n}. This process of goal samples
generation can be observed in Fig. 3.

B. Reward-penalty Strategy for Tree-based Planners

In the previous section, we established that there are k
goal regions GR j, which are approximated by a set G of n
valid goal samples (qgi ). Since the planning problem consists
in finding a feasible path to any goal region, one possible
approach to do so is to try a different sample qgi every time
we attempt to connect to a valid goal. Two simple strategies
to choose between the goal samples qgi are: 1) to follow a
consecutive order, or 2) to randomly pick qgi . However, with

Fig. 3: Goal samples generation from goal regions GR1−3.
The valid samples are shown as green dots, while invalid
ones (in collision) are represented by red squares.

either approach, we could be trying to connect to difficult or
unreachable goal samples.

In Fig. 3, for instance, it can be observed how some goal
regions such as GR2 can be difficult to reach. There are
other goal regions like GR3 that cannot be reached from qs,
although the region contains valid samples. There is another
type of goal region that could be easier to access, such as
GR1. At this level of abstraction, the motion planner is the
only entity capable of assessing or estimating these intrinsic
goal regions’ characteristics. It is important to keep in mind
that the goal region description does not include information
about the goal samples’ reachability. Therefore, in order to
prioritize those goal regions that seem to be more promising
to provide a solution path, we propose to use a reward-penalty
strategy.

This reward-penalty strategy consists of identifying whether
the attempts to expand towards a goal sample have been
successful or not. This information determines if the cor-
responding goal sample must be rewarded or penalized. In
doing so, we can favor and reuse the least penalized goal
sample. In this paper, we validate this reward-penalty strategy
by using a tree-based planner, which is based on the rapidly-
exploring random tree (RRT) algorithm [16]. However, the
reward-penalty strategy can be extended to other sampling-
based methods such as expansive-spaces tree (EST) [17] and
probabilistic roadmap (PRM) [18], or any of their variants
(including lazy and asymptotically optimal variants).

In our tree-based planner, we have as inputs the start con-
figuration qs and the set of goal regions GR (see Algorithm 1).
Let us define Gheap as a max heap, where all the goal samples
qgi from GR are stored with an initial maximum weight of 1.0.
As it occurs with other tree-based planners, our method also
biases some of the tree expansions towards the goal (line 5),
which, in our case, corresponds to the goal sample with the
highest weight in the max heap Gheap (line 6). In every tree
expansion, i.e., towards a random configuration or a goal
sample, the planner expands from the nearest configuration
qnear in the generated tree (line 11), for a maximum distance
ε , thus generating a new configuration qnew (line 12).

In our approach, however, we also keep track of whether
an expansion towards a goal sample succeeds or fails. In
the former case, the goal sample is rewarded by updating its



Algorithm 1: Tree-based planner
Input:
qs : Start configuration.
GR : set of goal regions.
Output:
T = (V,E): Tree of valid and feasible configurations.
p : [0,1]: Solution Path, p(0) = qs and p(1) = qgi .

1 begin
2 V = {qstart}, E = {}
3 Gheap =goalRegionsSampler(GR)
4 while not stopCondition() do
5 if biasToGoal() then
6 qtowards = Gheap.top()
7 goal biased = True

8 else
9 qtowards = C.genRandomConf()

10 goal biased = False

11 qnear← T.findNearNeighbor(qtowards)
12 qnew,success←calcNewState(qnear,ε)
13 if success then
14 V.addNewNode(qnew)
15 E.addNewEdge(qnear,qnew)
16 if goal biased then
17 Gheap.rewardGoalSample(qtowards)

18 else if not success&goal biased then
19 Gheap.penalizeGoalSample(qtowards)

weight w as (line 17):

w(qgi) = w(qgi)/(1.0−w(qgi)), if w(qgi)< 1.0,

while in the latter case, the goal sample’s weight is penalized
as (line 17):

w(qgi) = w(qgi)/(w(qgi)+1.0).

Some examples of both situations can be observed in Fig. 4.

C. Goal Region Resampling

It is difficult to determine a correct number of goal
samples. In some cases (e.g., when using numerical inverse
kinematics solvers), generating a large number of samples
can be computationally expensive. In other cases, a small
number of goal samples may fail to correctly describe the
feasibility and reachability of the goal regions.

In order to avoid fixing the number of goal samples, we
propose to start with a small number, while allowing to
generate more samples on demand. To do so, we use the
reward-penalty strategy to check if any goal sample reaches
a minimum weight value. This minimum threshold is used
to trigger the generation of additional goal samples. Such
new samples are initialized with a maximum weight of 1.0,
thus ensuring that they will be attempted before previous
samples. Furthermore, the resampling strategy also sets

Fig. 4: Tree expansion when solving a start-to-goal-region
query. The goal regions and samples are presented in green.
Nodes and branches of the tree in blue correspond to
successful expansions towards some goal samples. Nodes in
red correspond to configuration from which a failed expansion
toward a goal sample was attempted. In this example, GR1
seems to be easier to reach.

Fig. 5: The tree presented in Fig. 4 continues expanding by
using the initial set of goal samples. Additional goal samples
are generated. Although some of them are still not reachable,
one of them allows to find a solution by connecting to an
open area of one goal region.

existing samples’ weights to 0.5, which guarantees all samples
will be tried before generating more samples. This resampling
and initialization strategy also seeks to guarantee probabilistic
completeness. An example of how generating more samples
not only improves the goal regions approximation, but also
leads to an easier solution, is shown in Fig. 5.

IV. EXPERIMENTS & RESULTS

This paper has introduced a lazy grounding strategy,
which allows us to solve requests that have multiple valid
interpretations. This section presents two different test cases:
one for automotive applications, and another one for semi-
autonomous robotic teammates in collaborative tasks.

A. AVP System with Multiple Available Parking Spots

Let us consider an automated car that requests a parking
spot to an AVP system, as it was described in the Introduction.
Instead of generating a unique position to park, the AVP
system provides multiple available parking spots, each of
which is defined by a parking area, thus defining multiple
goal regions. The final decision of which parking spot must
be used can be taken by an automated car, which uses our
proposed lazy grounding approach together with its reward-
penalty strategy.

Fig. 6 presents two different parking scenarios. In both
cases, a car (in white) is required to park in any of the



(a) Scenario 1 (b) Scenario 2

Fig. 6: Automated valet parking (AVP) system. When an
automated car requests a parking spot, the infrastructure
can provide the available spots (goal regions in green). Our
proposed approach can be used to find a collision-free path
to park the car in any of the available spots, while avoiding
obstacles (in red). Goal samples inside the goal regions are
presented as green arrows (position and orientation), while
the solution path and the planner’s tree branches are shown
in light and dark blue, respectively.

TABLE I: Computation time statistics (in seconds) over 1,000
runs for solving the parking scenarios presented in Fig. 6.

Parking Test Scenarios

Strategy Scenario 1 Scenario 2
mean std mean std

Consecutive (bias 5%) 0.08 0.07 0.29 0.22
Random (bias 5%) 0.07 0.06 0.29 0.24

Reward-Penalty (bias 5%) 0.03 0.03 0.17 0.20

available spots (in green), while avoiding collision with the
surrounding obstacles (in red). To calculate the solution path
(in light blue), we used the tree-based planner given in
Algorithm 1. We compared our reward-penalty strategy that
was presented in Section III-B with another two possible
alternatives for dealing with multiple goal regions. While
both alternatives consist in using a fixed number of goal
samples when the tree is expanding towards the goal (line 5),
one alternative follows a consecutive order, i.e., from the
first sample to the last one, the other alternative randomly
picks one of the samples each time. The three alternatives,
i.e., consecutive order, random, and reward-penalty, have been
evaluated for both scenarios presented in Fig. 6. Results of
this benchmark are given in Table I, where it can be observed
that our proposed reward-penalty approach reduces not only
the mean of the computation time, but also the standard
deviation.

B. Towards Autonomous Teammates in Collaborative Tasks

Let us now consider that we are in a shared and collab-
orative environment, in which we ask a robot to “pick an
object,” in an environment in which there are multiple valid

(a) Scenario 1 (b) Scenario 2

Fig. 7: Test environment for the request “pick up a can.” (a)
The available cans are marked with green circles. The most
easily reachable can is the one on the table (left). (b) An
example of a solution to the requested command, when the can
on the left is not available. In this case, it is not straightforward
to determine the easiest or reachable cans, which can only
be determined by the motion planner.

objects. For this set of experiments, we used the manipulator
of Fetch [19], which is equipped with a single 7-DOF arm, a
parallel-jaw gripper, as well as a base-mounted 3D camera
for perception (see Fig. 1). We used Gazebo to simulate
the manipulator of Fetch over different working environ-
ments [20], while our proposed approach was implemented
in MoveIt! [21] by extending the open motion planning library
(OMPL) [22]. To evaluate our approach, we define three
different scenarios, in which we solve planning problems
that involve 8 DOF, 7 of the arm plus the vertical motion of
the Fetch’s trunk.

The first test scenario includes one table and two shelves,
in which there are different objects such as boxes and cans
(see Fig. 7). In this environment, the manipulator of Fetch
responds to the request to “pick up a can.” This query can
be solved using our proposed approach, where each of the
available cans correspond to a goal region. Furthermore, let
us consider that the cans can only be grasped from the top,
but using any orientation. This last constraint allows us to
define n goal regions, one for each can, which consist of 3-
dimensional (3D) poses for the gripper, in which the position
is constant with respect to the can, but the orientation around
the vertical axis of the can can take any value. In this first
scenario, there is one can on the table, which seems to be the
easiest to be picked up (see Fig. 7a). We defined a second test
scenario that consists in solving the same request, however
this time we do not include the can on the table (see Fig. 7b).
Notice that in this latter case it is not straightforward to
determine the easiest or most reachable can, which can only
be estimated by the motion planner.

We defined a third test scenario that has a different setup,
which includes three shelves in which there are different
objects such as boxes, cans, metallic bars, and a trash bin
(see Fig. 8). In this environment, we instructed the manipulator
of Fetch to “pick up a box.” Each box can be grasped at any
vertical position along any of its four sides. These constraints
establish 4×n goal regions, four for each box, which consist
of 3D poses for the gripper. In each goal region the orientation
is constant with respect to the box, but the position along the
vertical axis of the box can take a value within a specified
range. Fig. 8b shows one possible solution to this task. Once



(a) Scenario 3 (b) Scenario 3 solved

Fig. 8: Test environment for the request “pick up a box.”
(a) The shelves contain different objects, such as cans, boxes
(marked with green rectangles), metallic bars, and a trash bin.
(b) An example of a solution to the requested command. In
this case, it is not straightforward to determine the easiest
or reachable boxes, which can only be determined by the
motion planner.

again, notice that it is not straightforward to determine which
box is reachable, which can only be determined by the planner.

In these three scenarios (Figs. 7, 8), we compared our
reward-penalty strategy with one alternative that follows a
consecutive order, as it was as explained in the previous
section, i.e., from the first goal sample to the last one. For
these experiments, we first set the goal bias to 5%. Results of
this benchmark are given in Table II, where it can be observed
that our proposed reward-penalty approach behaves similarly
in cases in which there is an easy and accessible option, like
grasping the can on the table (see Fig. 7a). However, our
reward-penalty strategy shows a considerable improvement
when it has to deal with more difficult scenarios, where it is
not possible to establish the most reachable goal region.

For this set of experiments, where the planner has to deal
with a high-dimensional C-SPACE (8 DOF, 7 of the arm plus
the vertical motion of the Fetch’s trunk), we observed that
increasing the goal bias percentage improves the computation
times. This means that more tree expansions are attempting to
connect to any goal region. However, this increase of the goal
bias percentage is only effective if the correct goal sample is
being used, for example by using our reward-penalty strategy.
Results that show such an improvement are also given in
Table II.

TABLE II: Computation times statistics (in seconds) over
100 runs for solving the manipulation problems presented in
Figs. 7 and 8 for different values of goal bias percentage.

Fetch Test Scenarios

Strategy Bias% Scenario1 Scenario2 Scenario3
mean std mean std mean std

Consecutive 5 0.89 0.33 15.59 17.48 64.34 42.62
Reward-Penalty 5 0.97 0.29 9.90 7.62 47.18 29.91

Consecutive 50 0.86 0.34 24.40 25.20 55.93 43.03
Reward-Penalty 50 0.82 0.34 6.91 4.51 25.98 15.02

C. Real-world Tests

We also integrated our proposed approach on the real-world
manipulator of Fetch. We defined a scenario that includes a
table and a cabinet, over which there are different objects
(see Fig. 9), where we tested several requests. One example
of those requests corresponds to a task which requires the
manipulator of Fetch to “put a box on the table.” In this

(a) Picking any box (b) Placing a box on the table

Fig. 9: The manipulator of Fetch is instructed to “put a box
on the table.” Available boxes are prismatic objects (marked
in green).

scenario, we consider a box as a rectangular prismatic object
(see Fig. 9a). Each of the available boxes can be grasped
from the top, with four different orientation, one for each side.
These constraints establish 4×n goal regions, four for each
box, which consist of 3D poses for the gripper. In each goal
region the orientation is constant with respect to the box, but
the position along the longitudinal axis of the box can take
a value within a specified range. Fig. 9a shows one possible
solution to this task. Once the box has been grasped, our
approach was also used to find a valid and feasible placing
location on the table. In this latter case, the entire table surface
was define as a goal region, and the planner found an empty
space over the table (see Fig. 9b).

V. DISCUSSION AND FUTURE WORK

In this paper, we introduced a lazy grounding strategy,
which allows us to solve requests that have multiple valid
interpretations or groundings. We proposed to formulate these
multi-interpretation requests as a motion planning problem,
in which the alternative groundings are represented with
goal regions. Such a formulation permits a single planning
problem to consider and evaluate multiple interpretations,
without having to exhaustively and separately evaluate each
of them. As part of the proposed approach, we also presented
a reward-penalty strategy, which seeks to lead the planner
to prioritize those goal regions that are more promising to
provide a final solution.

We evaluated our lazy grounding approach in two different
scenarios. The first scenario presented an application in an
AVP system, in which an automated car must decide where
to park when provided with multiple available spots. The
second scenario was oriented to manipulation tasks, in which
a robotic agent was requested to pick up a specific type of
object (can or box), when multiple options were available. In
both cases, our approach not only solved the request, but its
reward-penalty strategy also excelled when it was compared
with alternative mechanisms. Furthermore, in the scenario
of manipulation tasks, we see the possibility of using our
approach to develop multimodal interfaces for commanding
robots at a high level, which will be pursued in future work.

ACKNOWLEDGMENT

This work would have not been possible without the help
and support of Bryce Willey for setting up the software and
hardware of both the Fetch Robot and the Vicon Cameras.
The authors would also like to thank Zachary Kingston for
help with the benchmarking software infrastructure.



REFERENCES

[1] S. Harnad, “The symbol grounding problem,” Physica D: Nonlinear
Phenomena, vol. 42, pp. 335–346, jun 1990.

[2] H. Grimmett, M. Buerki, L. Paz, P. Pinies, P. Furgale, I. Posner, and
P. Newman, “Integrating metric and semantic maps for vision-only
automated parking,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 2159–2166, IEEE, may 2015.

[3] H. Banzhaf, D. Nienhuser, S. Knoop, and J. M. Zollner, “The future
of parking: A survey on automated valet parking with an outlook
on high density parking,” in IEEE Intelligent Vehicles Symposium,
pp. 1827–1834, IEEE, jun 2017.

[4] R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation
in Human Living Environments,” KI - Künstliche Intelligenz, vol. 24,
pp. 345–348, nov 2010.

[5] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp Pose Detection
in Point Clouds,” The International Journal of Robotics Research,
vol. 36, pp. 1455–1473, dec 2017.

[6] B. Burger, I. Ferrané, F. Lerasle, and G. Infantes, “Two-handed gesture
recognition and fusion with speech to command a robot,” Autonomous
Robots, vol. 32, pp. 129–147, feb 2012.

[7] S. Tellex, R. Knepper, A. Li, D. Rus, and N. Roy, “Asking for Help
Using Inverse Semantics,” in Robotics: Science and Systems (RSS),
vol. 2, p. 3, Robotics: Science and Systems Foundation, jul 2014.

[8] D. Whitney, M. Eldon, J. Oberlin, and S. Tellex, “Interpreting
multimodal referring expressions in real time,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 3331–3338, IEEE,
may 2016.

[9] D. Whitney, E. Rosen, J. MacGlashan, L. L. S. Wong, and S. Tellex,
“Reducing errors in object-fetching interactions through social feedback,”
in IEEE International Conference on Robotics and Automation (ICRA),
pp. 1006–1013, IEEE, may 2017.

[10] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner,
“Manipulation planning with workspace goal regions,” in IEEE Intl.
Conf. on Robotics and Automation, pp. 618–624, May 2009.

[11] A. D. Dragan, N. D. Ratliff, and S. S. Srinivasa, “Manipulation planning

with goal sets using constrained trajectory optimization,” in IEEE Intl.
Conf. on Robotics and Automation, pp. 4582–4588, May 2011.

[12] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev,
“Multi-heuristic A*,” The International Journal of Robotics Research,
vol. 35, no. 1-3, pp. 224–243, 2016.

[13] T. Lozano-Pérez, “Spatial Planning: A Configuration Space Approach,”
IEEE Transactions on Computers, vol. C-32, pp. 108–120, feb 1983.

[14] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in
20th Annual Symposium on Foundations of Computer Science, pp. 421–
427, IEEE, oct 1979.

[15] J. Canny, “Some algebraic and geometric computations in PSPACE,” in
Twentieth Annual ACM Symposium on Theory of Computing (STOC),
(New York, New York, USA), pp. 460–469, ACM Press, 1988.

[16] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,”
The International Journal of Robotics Research, vol. 20, pp. 378–400,
may 2001.

[17] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expan-
sive configuration spaces,” International Journal of Computational
Geometry & Applications, vol. 09, pp. 495–512, aug 1999.

[18] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[19] Melonee Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich,
“Fetch & Freight: Standard Platforms for Service Robot Applications,”
in Workshop on Autonomous Mobile Service Robots, held at the 2016
International Joint Conference on Artificial Intelligence, 2016.

[20] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–
2154, IEEE, 2004.

[21] I. A. Sucan and S. Chitta, “MoveIt!.” http://moveit.ros.org.
[22] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning

Library,” IEEE Robotics & Automation Magazine, vol. 19, pp. 72–82,
dec 2012.


