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Abstract

Large-scale annotated metabolic databases, such as KEGG
and MetaCyc, provide a wealth of information to researchers
designing novel biosynthetic pathways. However, many
metabolic pathfinding tools that assist in identifying pos-
sible solution pathways fail to facilitate the grouping and
interpretation of these pathway results. Clustering possible
solution pathways can help users of pathfinding tools quickly
identify major patterns and unique pathways without having
to sift through individual results one by one.

In this paper, we assess the ability of three separate clus-
tering methods (hierarchical, k-means, and k-medoids) along
with three pair-wise distance measures (Levenshtein, Jac-
card, and n-gram) to expertly group lysine, isoleucine, and
3-hydroxypropanoic acid (3-HP) biosynthesis pathways. The
quality of the resulting clusters were quantitatively evaluated
against expected pathway groupings taken from the literature.

Hierarchical clustering and Levenshtein distance seemed
to best match external pathway labels across the three biosyn-
thesis pathways. The lysine biosynthesis pathways, which
had the most distinct separation of pathways, had better qual-
ity clusters than isoleucine and 3-HP, suggesting that group-
ing pathways with more complex underlying topologies may
require more tailored clustering methods.

1 Introduction
The size and number of available metabolic databases such
as KEGG [15, 16], MetaCyc [3], BRENDA [26], and Reac-
tome [5] continue to rapidly expand as new discoveries about
metabolism are made and old studies are mined for useful
data. This wealth of metabolic information significantly im-
proves the chances of discovering novel and valuable hetero-
geneous pathways. However, manually searching for these
pathways is a tedious task, providing the motivation for au-
tomating metabolic pathwayfinding. Several algorithms and
tools have been developed which utilize available metabolic
data to find novel heterogeneous metabolic pathways. Using

graph-based models is one common approach for identify-
ing metabolic pathways and is capable of generating tens of
thousands of different results (eg. [1, 4, 7, 22, 24, 25]). A
weakness of existing pathfinding methods is that they do not
facilitate interpretation of the resulting pathways, leaving the
user to sift through overwhelming amounts of information.
Current pathfinding software could be improved by providing
functionality to the end user by allowing for (1) grouping
pathways based on similarity so that results can be more
easily navigated and filtered, (2) identifying unique pathways
that differ from existing, endogenous pathways, and (3) more
effectively displaying a large number of results.

In our previous work, resulting pathways were ranked
by length, and exploration of the solutions was limited to
displaying pathways one at a time [10]. This visual approach
scales poorly when the solutions number in the thousands.
Even displaying the top hundred results simultaneously, as
done by MetaCyc, may cause the user to overlook unique
pathways or patterns that can only be observed across a
thousand pathways. Metabolic engineers will ultimately
want to narrow down the list of candidate pathways in silico
before the pathways are designed in vivo. Here, we provide a
baseline analysis of how well standard clustering techniques
can group results from pathway finding searches based on
internal and external evaluation measures.

Previous studies have compared and analyzed the clus-
tering of other biological data, even as recently as 2015 by
Wiwie et al. [28]. However, the specific case of clustering
metabolic pathways has not been examined and is worth fur-
ther study, given that an understanding of metabolic pathways
is essential to many biochemistry-related fields.

2 Resources and Methods

Metabolic pathway results were clustered using three differ-
ent distance measures and three clustering methods imple-
mented in existing R packages [23]. These clusters were then
evaluated using internal and external clustering measures.
The metabolic pathways, distance measures, clustering meth-
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Figure 1: The five expected pathway groups used for external
evaluation of lysine clusters. Four of the five pathway labels
(labels 1-4) include DAP, and the fifth pathway label includes
AAA.

ods, and internal and external cluster evaluation measures
are described in the following sections.

Metabolic pathways. A test set of three biosynthesis path-
ways with diverse network topologies was selected for this
study. The biosynthesis of lysine and isoleucine, both key
amino acids, is central to metabolism of many organisms.
These pathways have several known variations. Lysine
biosynthesis occurs by one of two evolutionarily distinct
pathways, either via diaminopimelate (DAP) in bacteria, al-
gae, and plants or via α-aminoadipate (AAA) most preva-
lent in fungi red[3, 16]. Isoleucine, on the other hand, can
be produced by multiple pathways starting from different
metabolic precursors that almost exclusively feed through
2-oxobutanoate red[3]. These variations within pathways
sharing common starting and ending compounds make these
biosynthesis pathways ideal candidates for examining clus-
tering methods. In contrast to lysine and isoleucine, engi-
neered biosynthetic pathways for 3-hydroxypropionic acid
(3-HP) from glucose involve enzymes from multiple organ-
isms. These pathways have been patented by Cargill, an
agricultural commodities company. At least seven feasible
pathways for 3-HP synthesis with unique intermediates have
been evaluated based on ATP utilization, thermodynamic
favorability, and redox balance [11, 14]. Since 3-HP is a
valuable chemical precursor, its synthesis is of significant
interest, and the examination of the engineered pathways
provides a contrast to the endogenous pathways of lysine and
isoleucine that have differentiated through evolution.
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Figure 2: Four expected pathway groups used for external
evaluation of the isoleucine clusters. All these pathways in-
clude 2-oxobutanoate as an intermediate compound. The fifth
expected pathway group does not include 2-oxobutanoate.

For the biosynthetic pathways specific to lysine, isoleucine,
and 3-HP, we identified distinguishing pairs of sequential
compounds to differentiate pathways that otherwise share
common starting and ending points along with a varying num-
ber of intermediates. When possible, these distinguishing
compounds were selected so as to be consistent with those
used by curated metabolic databases (KEGG and MetaCyc)
and literature. Lysine biosynthesis can pass through either
the aforementioned DAP or AAA pathways, which share no
common downstream intermediates. DAP can be further dif-
ferentiated into four pathways using differences in the series
of intermediates between L-2,3,4,5-tetrahydrodipicolinate
and diaminopimelate (Figure 1). Using these series of com-
pounds exclusive to each DAP pathway in addition to the
primary DAP/AAA dyad provides identifying markers that
will serve as labels to which pathfinding solutions can be
attributed.

The pathways for isoleucine are not nearly as differentiated
as the lysine DAP and AAA pathways because they share a
terminal series of compounds common to most pathway vari-
ants. The pathways that have been included herein are those
described in MetaCyc that pass through 2-oxobutanoate (L-
isoleucine biosynthesis pathways I, II, III, and IV). The dis-
tinguishing compounds all occur upstream of 2-oxobutanoate.
L-threonine, pyruvate, L-glutamate, and propanoate are the
starting compounds in the curated MetaCyc pathways (Fig-
ure 2). Pyruvate was not selected as a distinguishing com-
pound for this work as it is the starting compound for all
pathfinding queries and would therefore not be unique to any
subset of clustered pathways. Instead, a compound down-
stream of pyruvate, (R)-citramalate, has been selected for its
uniqueness to the MetaCyc pathway initiated by pyruvate in
comparison with the other pathways. Propanoyl-CoA was
selected over propanoate because the latter compound was
never identified as an intermediate among all pathfinding
solutions.
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Figure 3: The seven expected pathway groups used for ex-
ternal evaluation of the 3-HP clusters. Pathway group labels
1-4 were taken from Henry et al. [11], while pathway group
labels 5-7 were found by the search algorithm and are varia-
tions of the known pathways.

In the case of 3-HP, we focused on pathways that origi-
nate with pyruvate as it is an intermediate common to all
biosynthetic pathways starting from glucose (Figure 3). The
substantial overlap of compounds between pathfinding so-
lutions necessitated the use of series of compounds (e.g.,
lactoyl-CoA to acroyloyl-CoA) rather than individual com-
pounds to compare clustered solutions against distinct path-
ways described in literature. This resulted in four pairs of
labels, to which three additional labels were added to include
pairs of compounds that could not be attributed to previously
numerated 3-HP biosynthetic pathways from glucose.

Pathfinding. Biosynthesis pathway results for converting
pyruvate to lysine, isoleucine, and 3-HP were obtained by
searching a recent version of the KEGG database (downloaded
on Feb. 13, 2015) using the LPAT algorithm developed by
Heath et al. [10]. All searches conserved at least one carbon
atom from the starting compound to the target compound.
The number of pathways found by the algorithm was not
limited for any of the searches. A total of 236 pathways,
186 pathways, and 3650 pathways were found for lysine,
isoleucine, and 3-HP respectively.

Computation of pairwise pathway distances. Pairwise
pathway distance measures were computed using Leven-
shtein distance [27], Jaccard distance [13], and character
n-gram graph distance [9]. These distances were selected
to compare different levels of strictness in measuring the
similarity between pathways. Levenshtein distance takes the
ordering of pathway’s reactions into account, while Jaccard
distance disregards ordering and treats the pathway as a set of
reactions. The n-gram graph distance falls between these two
approaches by incorporating contextual information about
which reactions in the pathways tend to occur together.

To compute Levenshtein distance each pathway was repre-
sented as a string of reactions IDs, where each reaction ID
was treated as a unique character. The distance between two
pathways was quantified as the minimum number of reaction

IDs that needed to be added, removed, or changed in one
pathway to make it equivalent to the other [27].

To compute Jaccard distance, each pathway was treated
as a set of reaction IDs. Jaccard distance, dJ , was calculated
between each pair of pathways using the following equation:

dJ = 1− |A∩B|
|A∪B|

Where A and B represent the reaction sets of the two com-
pared pathways.

To compute the n-grams graph distances, pathways were
treated as strings of reaction IDs and parsed into n-grams,
given n = 3. Graphs for each pathway were then constructed
using the algorithm described by Giannakopoulos et al. [9].
redDistances were computed by finding the dissimilarity
(1 - normalized value similarity) using a distance window
size of three.

Methods for clustering pathways. Three methods were
used to cluster pathways based on the calculated pairwise dis-
tances: agglomerative hierarchical clustering, k-means clus-
tering, and k-medoids clustering. These clustering methods
are simple and widely used, making them a good baseline for
future experiments involving more complex, domain-specific
methods.

Agglomerative hierarchical clustering finds clusters by iter-
atively clumping the two most similar pathways, or groups of
pathways, together. The pathways with the smallest pairwise
distance are grouped together first. The distance between
two groups of pathways was calculated by averaging all pair-
wise distances between the pathways in the two groups. The
results of hierarchical clustering can be presented as a den-
drogram, where the number of clusters depends on what level
the tree is cut. Hierarchical clustering was selected for be-
ing a simple, straightforward clustering measure with easily
interpretable results.

Unlike hierarchical clustering, k-means and k-medoids
clustering requires the number of clusters as input. The
k-means algorithm begins by randomly initializing k cen-
troids and then assigning each pathway to the closest cen-
troid. Each pathway was treated as a n-dimensional vector
which contained the pathway’s pairwise distances to all other
n pathways. As such, the distance between a pathway and
the k-means centroids, along with the centroids themselves,
are not interpretable. Even in k-medoids, where the centers
are chosen from existing pathways, the distances between
pathways are not as easily understood as in hierarchical clus-
tering. The k-means and k-medoids clustering methods were
selected since they are well known and require only the num-
ber of clusters and feature matrix as input. The pairwise
distance matrix was used as the feature matrix to see if k-
means and k-medoids would be able to indirectly cluster
pathways with non-Euclidean distance measures.

Other clustering methods, such as DBSCAN [6] and Gaus-
sian mixture models [20], were excluded from this study
since there was no way in these methods to specify the num-



ber of resulting clusters. In this paper, the number of clusters
for each pathway was selected to match the expected number
of pathway groupings found in the literature. By fixing the
number of clusters, the study’s focus was narrowed to a com-
parison of the clustering methods and distances measures.
Finding a way to determine the optimal number of clusters
for a set of pathways without external information is a future
topic of interest.

3 Evaluation of results

The quality of the clustering results was assessed by (1) in-
ternal features based on the distances between pathways in
the same and different clusters, and (2) external information
based on expected pathway groupings from the literature.
The internal evaluation measures were included in this study
since clustering pathways is an unsupervised learning prob-
lem – groupings for novel pathways found by metabolic
pathfinding algorithms often do not exist in the literature,
and clustering can only be evaluated using internal measures.

Internal evaluation. The Dunn index, silhouette width,
adjusted connectivity, and stability of clusters were chosen
for the internal evaluation of clusters [2]. Compared to other
existing internal evaluation scores, the Dunn index, silhouette
width, and adjusted connectivity place more of an empha-
sis on maximizing the separation distance between clusters
and less on the tightness within the clusters. This suits the
purposes of this study as there may be many pathway vari-
ations within the cluster; however, these variations are not
as important as the separation distances between clusters.
The first three scoring measures are also robust to different
sized clusters. The stability score was included to test that
the same clusters will be found even if other pathways are
absent from the data set.
• Dunn index. The Dunn index is calculated by dividing

the minimum distance between points in different clusters
over the maximum distance between points in the same clus-
ter. This value ranges from zero to infinity, where larger
values indicate better quality clusters.
• Silhouette width. The silhouette width is calculated by

averaging all the silhouette values for each pathway, where
the silhouette value is calculated using the following func-
tion:

silhouetteVal = bi−ai
max(ai,bi)

,

where ai is the average distance between the pathway and
all other pathways in its cluster, and bi is the average dis-
tance between the pathway and all pathways in the nearest
neighboring cluster. This value ranges from −1 to 1, where
a value closer to one indicates better quality clusters.
• Connectivity. Connectivity is calculated by finding the n

closest pathways to each pathway, then adding 1
n to the total

connectivity value if the nth closest pathway is in a different
cluster than the first pathway. This value ranges from zero to

infinity, where smaller values indicate better quality clusters.
For all clustering results, connectivity was calculated using
n = 10 neighbors. The connectivity was then divided by the
total number of pathways to get the adjusted connectivity
score.
• Stability. Stability is calculated by omitting all the path-

ways in one cluster, then reclustering the remaining pathways
into N-1 clusters, where N is the original number of clusters.
The percentage of pathways that are clustered together in the
same way as they were before omitting one cluster can then
be calculated. The resulting percentages of pathways that
remain in the same clustered groups are averaged across the
different omissions to get the stability score.

External evaluation. Three external clustering measures
were used to assess how well clusters matched up with known
literature groupings of the biosynthesis pathways: cluster pu-
rity, Normalized Mutual Information (NMI), and adjusted
Rand index [18]. The adjusted Rand index is the most strict
measure, evaluating on a pairwise-basis if pathways are in-
correctly grouped. NMI penalizes more on the cluster-level,
while cluster purity falls in between the two other measures.

All external measures depended on having known labels
for pathways. Lysine, isoleucine, and 3-HP pathways were
assigned five, four, and seven different labels respectively as
described in the previous “Metabolic Pathways” subsection
of this paper (Figures 1–3).
• Cluster purity. Cluster purity was calculated as described

in [18]:
purity(P,L) = 1

N ∑
k

max
j
|pk ∩ l j|,

where N is the number of total pathways, P = [p1, p2, . . . , pk]
is the set of predicted pathway clusters, L = [l1, l2, . . . , l j] is
the set of literature-based pathway clusters, and pk and l j
represent the set of pathways included in predicted cluster k
and in literature-based cluster j respectively.

There are two features of cluster purity that could bias
evaluations: (1) it is not sensitive to small clusters, and (2) it
is biased towards having a larger number of clusters. Since
the number of clusters is held constant in this study, we only
consider the first feature.
• Purity based on percentage. The cluster purity measure

based on percentage was devised to correct for the original
cluster purity’s insensitivity to small clusters:

percPurity(P,L) = 1
k ∑

k
max

j

|pk∩l j |
|l j | ,

where the symbols are the same as described for the original
purity value calculation. Having a purity value based on
percentage allows us to weight each cluster equally, even
though the cluster groups may vary in size.
• Normalized mutual information (NMI). NMI is a measure-

ment of the certainty that the pathway belongs to a specific
literature-based cluster if it was selected from any given pre-
dicted cluster. The value is divided by an entropy value,
which gets larger with increasing number of clusters.



• Adjusted Rand index. The adjusted Rand index is a
measure of simple accuracy. To use the adjusted Rand index,
the literature-based clusters were treated as the true clustering
result.

4 Implementation

Distances. The Levenshtein distance algorithm [27] was
implemented in Python. Jaccard distance was calculated
using the R “dist” function. The n-gram graph distance was
calculated using the JInsect program, a Java implementation
of Giannakopoulos et al. [9].

Clustering methods. Clustering calculations and analyses
were performed using the statistical program R [23]. For
agglomerative hierarchical clustering, pathway distance ma-
trices were passed to the “agnes” function in the “cluster”
package [17]. To obtain a specified number of clusters, the
“cutree” function was used on the result. The “kmeans” func-
tion in the “stats” package and the “pam” function in the
“cluster” package were used for k-means clustering and k-
medoids clustering respectively.

Evaluation measures. The Dunn index, silhouette width,
and connectivity of clusters were analyzed using the “dunn”,
“silhouette”, and “connectivity” functions in the “clValid”
package [2]. NMI was calculated in R using the “clue” pack-
age [12]. Adjusted Rand index was calculated in R using the
“mclust” package [8].

5 Results

Internal measures. Based on the internal clustering mea-
sures, clusters using n-grams distance appeared to be higher
quality than the other distance measures. However, there was
no one clustering method or distance measure that consis-
tently yielded the highest quality clusters. The 3-HP path-
ways appeared to have the lowest quality clusters among the
three biosynthesis pathways.

No adjusted connectivity values exceeded 0.8 across all
pathways, clustering methods, and distance measures. Clus-
ters using n-gram distance seemed to have the lowest adjusted
connectivity values across all pathways. For all but one in-
stance, clusters obtained using k-medoids had the highest
adjusted connectivity value within any given distance mea-
sure (Table 1).

Dunn index for all clustering methods and distances were
low (average value = 0.27). Dunn index only exceeded 0.5
for isoleucine clusters using hierarchical clustering and n-
grams distance. The average Dunn index for 3-HP clusters
(0.2) was lower than those of lysine (0.3) and isoleucine
(0.31). Clusters using n-grams distance appeared to have the
highest Dunn index values across pathways. Silhouette width
across pathways was also low (average value = 0.3), with the
exception of k-medoid and k-means clustering combined with

Table 1: Internal evaluation measures for lysine (A),
isoleucine (B), and 3-HP (C) biosynthesis pathways. Values
highlighted in green indicate that the clusters generated by
the corresponding clustering method and distance measure
resulted in the best value for that given internal measure,
whereas values highlighted in red indicate the clusters had
the worst value.

A.  Lysine
Clustering 

method Distance
Adjusted 

connectivity Dunn Silhoutte Stability
hierarchical Levenshtein 0.306 0.20 0.33 0.92
k-medoids Levenshtein 0.530 0.26 0.84 0.96
k-means Levenshtein 0.001 0.29 0.86 0.96
hierarchical Jaccard 0.204 0.40 0.28 0.75
k-medoids Jaccard 0.511 0.28 0.23 0.79
k-means Jaccard 0.301 0.28 0.24 0.88
hierarchical n-gram 0.119 0.32 0.36 0.71
k-medoids n-gram 0.258 0.32 0.94 0.94
k-means n-gram 0.001 0.39 0.86 0.96

B.  Isoleucine
Clustering 

method Distance
Adjusted 

connectivity Dunn Silhoutte Stability
hierarchical Levenshtein 0.493 0.25 0.12 0.70
k-medoids Levenshtein 0.615 0.25 0.25 0.25
k-means Levenshtein 0.739 0.25 0.19 0.80
hierarchical Jaccard 0.511 0.32 0.21 0.81
k-medoids Jaccard 0.658 0.31 0.15 0.77
k-means Jaccard 0.464 0.32 0.16 0.94
hierarchical n-gram 0.096 0.53 0.29 0.89
k-medoids n-gram 0.067 0.20 0.39 0.93
k-means n-gram 0.094 0.32 0.23 0.89

C.  3HP
Clustering 

method Distance
Adjusted 

connectivity Dunn Silhoutte Stability
hierarchical Levenshtein 0.240 0.22 0.13 0.37
k-medoids Levenshtein 0.787 0.20 0.11 0.93
k-means Levenshtein 0.693 0.22 0.12 0.69
hierarchical Jaccard 0.311 0.12 0.10 0.49
k-medoids Jaccard 0.683 0.27 0.09 0.89
k-means Jaccard 0.358 0.11 0.09 0.83
hierarchical n-gram 0.348 0.21 0.16 0.19
k-medoids n-gram 0.366 0.21 0.16 0.96
k-means n-gram 0.354 0.21 0.16 0.76

Levenshtein and n-gram distances for lysine biosynthesis
pathways. The average Silhouette width was also lower for
3-HP (0.12) than for those for lysine (0.55) and isoleucine
(0.22). For Silhouette width and to a lesser extent Dunn index,
clustering using Jaccard distance had the lowest values across
the three pathways.

Lysine clusters using Levenshtein distance showed the
most stability, with values above 0.9 across all clustering
methods. Isoleucine clusters using n-gram distance showed
the most stability, with values close to 0.9. For 3-HP clusters,
there was no one distance measure that resulted in high sta-
bility values; however, clusters obtained using hierarchical
clustering had significantly lower stability values (Table 1).

Across all pathways, hierarchical clustering yielded clus-
ters with the lowest stability values on average compared to
k-medoids and k-means clustering.



Table 2: External evaluation measures for lysine (A),
isoleucine (B), and 3-HP (C) biosynthesis pathways. Values
highlighted in green indicate that the clusters generated by
the corresponding clustering method and distance measure
resulted in the best value for that given external measure,
whereas values highlighted in red indicate the clusters had
the worst value.

A.  Lysine
Clustering 

method Distance
Standard 

purity
Purity, 

percentage
Adjusted 

Rand index NMI
hierarchical Levenshtein 0.953 0.790 0.931 0.899
k-medoids Levenshtein 0.720 0.664 0.561 0.657
k-means Levenshtein 0.839 0.790 0.789 0.851
hierarchical Jaccard 0.928 0.665 0.873 0.834
k-medoids Jaccard 0.699 0.597 0.556 0.633
k-means Jaccard 0.653 0.465 0.321 0.407
hierarchical n-gram 0.627 0.600 0.441 0.571
k-medoids n-gram 0.631 0.606 0.553 0.670
k-means n-gram 0.610 0.501 0.294 0.390

B.  Isoleucine
Clustering 

method Distance
Standard 

purity
Purity, 

percentage
Adjusted 

Rand index NMI
hierarchical Levenshtein 0.844 0.667 0.526 0.618
k-medoids Levenshtein 0.403 0.441 -0.034 0.093
k-means Levenshtein 0.435 0.470 0.066 0.246
hierarchical Jaccard 0.532 0.500 0.172 0.451
k-medoids Jaccard 0.409 0.413 -0.042 0.098
k-means Jaccard 0.484 0.500 0.165 0.449
hierarchical n-gram 0.575 0.675 0.229 0.478
k-medoids n-gram 0.489 0.674 0.059 0.218
k-means n-gram 0.489 0.578 0.080 0.280

C.  3-HP
Clustering 

method Distance
Standard 

purity
Purity, 

percentage
Adjusted 

Rand index NMI
hierarchical Levenshtein 0.692 0.545 0.458 0.562
k-medoids Levenshtein 0.438 0.482 0.242 0.398
k-means Levenshtein 0.505 0.528 0.282 0.476
hierarchical Jaccard 0.538 0.615 0.293 0.567
k-medoids Jaccard 0.411 0.538 0.254 0.461
k-means Jaccard 0.488 0.545 0.259 0.478
hierarchical n-gram 0.490 0.386 0.192 0.368
k-medoids n-gram 0.497 0.487 0.275 0.451
k-means n-gram 0.519 0.450 0.290 0.449

External measures. Across all clustering methods and dis-
tances, lysine pathway clusters scored the highest across most
external measures (Table 2). The combination of hierarchical
clustering and Levenshtein distance had the highest values
for most external measures across pathways. For lysine path-
ways, clusters obtained using Levenshtein distance matched
with expected pathway groupings better than both Jaccard
and n-gram distances. For isoleucine pathways, Levenshtein
distance performed well only with hierarchical clustering;
across all three distance measures, hierarchical clustering
yielded the best scores for isoleucine pathways. For 3-HP,
no one distance or clustering measure appeared to perform
well across all external evaluation measures. Hierarchical
clustering with Levenshtein and Jaccard distances had the
slightly higher external evaluation scores, while hierarchical

Table 3: Spearman correlations between internal and external
evaluation measures. Correlations with asterisks are statisti-
cally significant (p < 0.05).

clustering with n-gram distance had lower scores.
Correlation between external and internal measures.
Spearman’s correlation coefficients [19] were calculated be-
tween all external and internal evaluation methods across all
pathways, distance measures, and clustering methods. There
was a statistically significant negative correlation between
both standard and percentage purity values and connectivity,
and a significant positive correlation between the two purity
values and silhouette width. This means that good clusters
that matched external labeling based purity scores tended to
also be evaluated as good clusters based on internal connec-
tivity and silhouette width scores. Similarly in the case of bad
clusters, the purity values and the connectivity and silhouette
width scores tended to agree. All other correlations had p
values greater than 0.05 (Table 3).

6 Discussion
Hierarchical clustering with Levenshtein distance performed
the best overall in terms of external evaluation measures.
However, this combination did not perform as well for the
internal evaluation measures. One possible reason for the
low internal evaluations scores is the differing separation
levels of the clusters. Of the known lysine biosynthesis
pathways, four of the expected labeled groups go through
meso-2,6-diaminopimelate (DAP, see Figure 1). Pathways
in these clusters have smaller pairwise distances between
each other, especially when using Levenshtein distance since
only a few reactions need to be changed to convert from one
labeled group to another. As a result, these clusters are not
as well separated, which results in a lower internal evalua-
tion score. The clusters using n-grams distance may have
higher internal evaluation scores because the n-grams cap-
tures more of the differences between these closely related
clusters, so the pairwise differences and thus the separation
between these clusters is larger. The higher internal evalua-
tion scores suggest that n-grams distances are more sensitive
to smaller variations between pathways and may be better
at separating pathways that share a common set of reactions
than Levenshtein distance.

For all three biosynthesis pathways, the Dunn index never
exceeded one, which suggests that on average the minimum
distance between two pathways in different clusters was



smaller than the maximum distance between two pathways
in the same cluster. However, the Silhouette width for all
pathways was never negative, indicating the average distance
between pathways within a cluster was always smaller than
the average distance between pathways in different clusters.
For lysine, the Dunn index between the AAA and all of the
DAP clusters combined was no less than 0.8 across most
distance measures and clustering techniques. However, since
the Dunn index between each of the four DAP clusters were
much smaller, the total Dunn index between all lysine clusters
did not exceed 0.55 and mostly fell under 0.3 across all
clustering and distance measures. Having a distance measure
that can better separate pathways with shared reactions would
improve the internal evaluation measures for the four DAP
pathway groups in lysine. In the cases where Dunn index and
Silhouette width did not appear tightly correlated (i.e., for
lysine clusters using k-mean and k-medoids clustering and
Levenshtein and n-grams distance), the difference correctly
indicates that there are at least a few “outlier” pathways in the
clusters with large pairwise distances between them, causing
the Dunn index to be unexpectedly lower or higher relative
to the Silhouette width.

For simple clustering cases like the lysine biosynthesis
pathway where there were two distinct pathway groups de-
fined in the literature, using hierarchical clustering and Lev-
enshtein distance yielded well defined clusters that agreed
with the expected labeling. However, for more complex cases
like 3-HP which had several overlapping pathways (Figure 3),
clusters were less defined for all clustering methods and dis-
tances. Though simple clustering methods are effective in
grouping pathways with well-defined differences, the results
for 3-HP and isoleucine suggest that simple clustering is not
an effective solution for pathways with many shared and
interweaving reaction chains. A more hierarchical approach
based on the underlying topology of the metabolic network
may yield better pathway grouping results.

Significant correlations were found between external pu-
rity scores and internal connectivity and Silhouette width
scores. This suggests that connectivity and Silhouette width
may provide a better assessment of the quality of pathway
clusters in the absence of external validation than other in-
ternal evaluation measures. This finding is in agreement
with a conclusion of Wiwie et al. [28], who tentatively rec-
ommended silhouette values as the best internal measure of
clustering quality when tested against 24 biomedical data
sets, but noted it is not a replacement for external indices
when available. It would be interesting to test if connec-
tivity and Silhouette width consistently show a significant
correlation with external measures across other biosynthesis
pathways besides the three pathways evaluated in this study.

When thousands of possible pathway solutions are found
(i.e., 3-HP), these pathways share a few common interme-
diate compounds. These intermediate compounds are often
bottleneck points, where several different series of reactions
exist that produce this compound and result in the variations

between pathway solutions. Focusing on variations found
between series of bottleneck points can improve distance
measures between pathways. Iteratively clustering pathways
based on variation between bottleneck points between the
starting and ending compound can help limit pathway com-
parison to a shorter segment of the reactions, making it easier
to group pathways. Accounting for bottleneck points in path-
ways or making adjustments to the distance measure based
on the pathways’ underlying biochemical features could im-
prove clustering in the future.

Hierarchical clustering has been used widely for many
clustering problems. Since hierarchical clustering can be
used with any distance measure, it is ideal for problems that
require the use of non-triangular distances that do not make
sense in a Euclidean space. New ideas for improving distance
measures for metabolic pathways could potentially be applied
more generally to classifying items with similar underlying
structure, including grouping documents [30], clustering pro-
tein complexes from protein interaction networks and species
from metagenomic DNA [21], and grouping protein and gene
sequence data. Gaining a better understanding of grouping
metabolic pathways can provide additional insight into sim-
ilar clustering problems. Distance measures could even be
learned to more closely emulate expert knowledge and clas-
sification [29]. However, more experiments are needed to
confirm that these observations about pathways in this study
can be more generally applied to other metabolic pathways.
Additionally, our results were evaluated based on pathway
grouping found in current literature and expert knowledge,
which itself is biased by existing tools. In the future, it would
be better to have a way to identify if a cluster with high in-
trinsic quality also exhibits a significant grouping beyond the
existing expert knowledge.

In conclusion, though there was no one combination of
clustering methods and distances that performed well across
all three example biosynthesis pathways, some clustering
methods and distance measures (i.e., hierarchical clustering
and Levenshtein distance) resulted in clusters that matched
the expected external labeling found in the literature. This
suggests that an automated method for grouping pathways is
possible given a more directed approach, and a classification
method that factors in the pathways’ unique topology (i.e.,
clustering using more fine-tuned distance measures) may be
a promising direction.
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paring the performance of biomedical clustering methods.
Nature Methods, 12(11):1033–1038, September 2015.

[29] Liu Yang and Rong Jin. Distance metric learning: A compre-
hensive survey. Michigan State Universiy, 2, 2006.

[30] Ying Zhao, George Karypis, and Usama Fayyad. Hierarchical
clustering algorithms for document datasets. Data Mining and
Knowledge Discovery, 10(2):141–168, March 2005.


	Introduction
	Resources and Methods
	Evaluation of results
	Implementation
	Results
	Discussion
	Acknowledgements

