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Abstract

Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products,
such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing
these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of
significantly reducing the total time and resources required for their production, and in turn, allows these valuable
compounds to become cheaper and more readily available.

Most biosynthesis pathways used in metabolic engineering applications have been discovered manually,
requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development
of available metabolic information has enabled the development of automated approaches for identifying novel
pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps
of metabolic engineering.

In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding
algorithms. These parameters and heuristics capture information on the metabolic network structure, compound
structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or
search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and
parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become
more sophisticated, the development of better methods for visualizing pathway results and integrating these
results into existing metabolic engineering practices is also important for encouraging wider use of these
pathfinding methods.
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1 INTRODUCTION
Metabolic engineering is the scientific process of manipulat-
ing the metabolism of a microorganism to produce valuable
compounds. Engineering microbial production involves the
disruption of endogenous genes or adding genes from het-
erologous organisms to form pathways that tap into the
natural metabolic network. There have been numerous suc-
cesses of metabolic engineering, including the well publi-
cized biosynthesis of artemisinic acid, a precursor to the
antimalarial drug artemisinin [1], and thebaine, a precursor
to hydrocodone and morphine [2]. In each of these cases, a
pathway responsible for the production in plants was trans-
lated to a chassis microorganism, such as E. coli and S. cere-
visiae, to separate the supply of these therapeutics from the
plants they were sourced from. At the root of these suc-
cesses is the identification of the requisite pathways and the
systematic transfer of these pathways to a microbial host.

Metabolic pathfinding has clear applications to the first
step in the design-build-test-learn cycle for developing
biosynthetic pathways [3]. We define metabolic pathfind-
ing as the process of identifying viable routes through a
metabolic network from a starting compound to a desired
target compound. Here, pathways are not limited to those
that exist within a single organism, but can contain any en-
zymatic reactions from multiple organisms to complete a
novel, heterologous pathway. To perform pathfinding we
need a metabolic network that is constructed using informa-
tion linking reactants to products through characterized en-
zymatic reactions. Several metabolic databases provide the
requisite connectivity data used to construct a metabolic net-
work structure. Of these, the Kyoto Encyclopedia of Genes
and Genomes (KEGG) has been employed most frequently,
likely due to being one of the first metabolic databases avail-
able with open access and a wide breadth of information.
MetaCyc [4] also has descriptive entries for metabolic path-
ways that are attributed to many groups of organisms. Some
databases, including BRENDA [5] and ExPASy [6], have
more information about the enzymes including kinetics and
protein structure, whereas others, such as ChEBI [7], spe-
cialize in descriptions of small molecules. New content is
being continuously added to all these databases, many of
which now source enzymatic reactions from thousands of
organisms.

Traditionally, researchers have manually searched existing
literature and databases to design pathways. However, the
rapidly growing body of metabolic information makes it dif-
ficult to effectively survey and utilize all available resources.
Computational approaches have been developed to enable
researchers to take advantage of these growing resources.
For example, pathways for production of 1,4-butanediol, a
non-natural compound, were discovered with the assistance
of a pathway-identification algorithm [8]. Thousands of
pathways, four to six reactions long, were generated starting
from common central metabolites. Solution prioritization

was required to whittle the pathways down to a manageable
number to be constructed and tested in the lab resulting
in a demonstration of feasibility for a novel, biocatalytic
route (Figure 1A). Assisted metabolic pathfinding may aid
in the more rapid discovery of synthesis pathways for other
valuable products.

Assisted metabolic pathfinding aims to solve two main
challenges – the challenge of efficiently speeding up the
pathway search process and the challenge of selectively
finding biologically feasible, novel pathways. This paper fo-
cuses primarily on the approaches of pathfinding algorithms
that address these two challenges. However, improvements
in the search algorithms alone are not sufficient to solve
these challenges, as the quality of the pathway results is also
heavily dependent on the metabolic resources utilized by
the search algorithm. Advancements in metabolic pathfind-
ing rely on advancements in techniques for expanding the
metabolic search space. For example, retrosynthesis-based
approaches [9, 10] can be used to build search spaces that ex-
tend beyond the data stored in curated metabolic databases.
Other databases like ATLAS [11] and XTMS [12] store
information on extended search spaces and even apply exist-
ing pathfinding techniques (BNICE [13, 14] and RetroPath
[15], respectively) to these spaces. Metabolic pathfinding
may not be the main focus of retrosynthesis algorithms and
expanded databases; however, these resources are neverthe-
less critical for finding novel metabolic pathways and will
be included in this review.

The metabolic pathfinding problem itself can be further
divided into two different approaches: graph-based pathfind-
ing and constraint-based pathfinding. This review will focus
on graph-based pathfinding, which highlights the connec-
tions between compounds and reactions in the metabolic net-
work. Graph-based approaches represent a metabolic path-
way as a path that consists of an ordered series of intermedi-
ate compounds and reactions that transform some defined
starting compound(s) to some defined target compound(s).
Graph-based pathfinding utilizes a very well-studied data
structure to represent the metabolic network, abstracting
away more complicated interactions between compounds
and enzymes in the cell. This abstraction enables graph-
based methods to readily scale with larger metabolic net-
works spanning multiple organisms. However, since much
of the underlying metabolic network is abstracted by the
graph representation, there is a greater chance for graph-
based approaches to return pathways without biological
significance unless relevant parameters and heuristics are
introduced to guide the search. Constraint-based methods
(e.g., [16]) highlight the stoichiometry and relative rates
of reactions involved in the metabolic process being stud-
ied. In many constraint-based methods, a selected set of
reactions is optimized to meet a specified objective (e.g.,
maximizing the yield of a valuable compound) under the
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Figure 1 A 1,4-Butanediol is an example of a non-natural compound that is produced using a heterologous pathway generated by an
pathway-identification algorithm. These heterologous genes from organisms differing from the host are dashed. Intermediates of the citric acid
cycle were used as starting compounds in a pathway search restricted by path length toward the desired target, 1,4-butanediol. B Graph-based
networks can be described as either directed, bipartite, or hypergraphs. In directed graphs, nodes (open circles) and edges (arrows) can
represent either compounds or reactions. In the case of bipartite graphs, the pathway will be composed of nodes that alternate between
compounds and reactions. For hypergraphs, groups of multiple compounds can be linked through a single hyperedge that may represent a
reaction rule that links compounds that are associated with multiple additional reaction rules.

steady state assumption, meaning that there is no net in-
crease or decrease of metabolites within the studied sys-
tem. For constraint-based methods, elementary flux modes
or extreme pathways can serve as the representation of a
metabolic pathway [17, 18, 19]. Unlike graph-based paths
which may only include the main compounds and reactions
in a pathway, elementary flux modes and extreme path-
ways provides a more complete summary of the requisite
intermediate compounds and enzymes while conforming to
steady-state constraints. Overall, constraint-based methods
tend to offer a more accurate model of a known metabolic
network, such as one from a well-studied organism like
E. coli. However, this approach is not yet able to computa-
tionally scale to very large metabolic networks [20]. Though
algorithms have been developed to identify viable pathways
using elementary mode analysis [20, 21], we choose to fo-

cus specifically on graph-based pathfinding to examine how
parameters and heuristics can be used to efficiently guide
the search in large-scale metabolic networks.

A metabolic network can be described as connections
between compounds and the enzymes catalyzing reactions
between compounds, which lends itself well to graph rep-
resentation. There are many different ways a metabolic net-
work can be represented as a graph (Figure 1B). One of the
simplest ways is for the nodes in a graph to represent the
compounds in the metabolic network, and the edges to rep-
resent the reactions or enzymes that connect one compound
to another. This representation is used in several earlier
pathfinding algorithms [22, 23, 24]. It is also possible for
the nodes in a metabolic graph to represent the enzymatic
reactions and the edges to represent the intermediate com-
pounds, as done in MetaRoute [25]. Another possible graph
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representation of the metabolic network is for both com-
pounds and reactions to be represented as nodes in a bipar-
tite graph, where edges represent the connections between
compounds and reactions. This representation is used in a
few algorithms [26, 27]. A third possible graph representa-
tion is the hypergraph, where multiple compounds (i.e., the
reactants) can be connected to multiple target compounds
(i.e., the products) with a single hyperedge (the reaction).
Unlike other graph representations, the hypergraph repre-
sentation can connect two different groups of compounds
with a single reaction hyperedge, which allows more de-
tails about each reaction (i.e., all intermediate compounds
involved) to be shown explicitly in the representation [20].
The hypergraph representation is used in several pathfinding
and retrosynthesis algorithms [20, 28, 29, 12, 30]. Node
and edge weights based on relevant parameters (e.g., atom
mappings, compound similarity, reaction thermodynamics,
and organism-specific information) can be introduced to any
of the above graph representations to guide the pathfinding
search towards more biologically relevant results.

This review covers the techniques supporting graph-based
metabolic pathfinding algorithms and the heuristics that
guide pathway discovery from networks, enzymatic reac-
tions, and chemical structures to a specific host organism
context (Figure 1B). We will begin with a description of
the structure of the metabolic network in terms of (1) graph
connectivity, which refers to the number of connections
each node has across the network, and (2) path length, or
the number of transformative steps that separate any two
compounds in the network (Section 2). Then, the role of
compound structure (Section 3) and reaction specific in-
formation (Section 4) in identifying feasible, novel path-
ways will be discussed. Next, we briefly describe the role of
organism-related information (Section 5). We conclude the
paper with a discussion of the limitations and implications
for future directions for metabolic pathfinding (Section 6).
By describing the advantages and disadvantages of features
used in current pathfinding approaches, we hope to guide
interested users to the algorithms that suit their needs while
summarizing the latest research for developers.

2 METABOLIC NETWORK STRUCTURE
Properties of the metabolic network representation can be
used to guide and constrain the search problem and rank
the resulting pathways. The properties that have been used
in the literature are the connectivity of the network and the
length of pathways found. The individual compounds and
reactions of a pathway can also be assigned weights based
on biochemical and network-based properties.

2.1 Graph connectivity
The graph-based representation of the network makes it
intuitive to gravitate towards graph-based features and con-
straints, particularly graph connectivity (Figure 2A). Many

approaches identify highly connected compound nodes in
the graph, or hub compounds, which appear in many dif-
ferent reactions. Identifying hub compounds can suggest
potential currency metabolites, or side compounds that are
used as energy or electron providers but are not incorporated
into the final product compounds (e.g., NADH, ATP, etc.).
As such, pathways routing through currency metabolites
tend to not be biologically meaningful, and for many algo-
rithms, these currency compounds are manually removed
[13, 14, 31, 24, 32]. In Croes et al. [31], the weight of com-
pound vertices is set equal to the degree of the compound in
the network, biasing the search against going through highly
connected compounds. Croes et al. compared this weighted
graph search with an unweighted graph and a filtered graph
(where 36 highly connected pool metabolites were removed),
and found that weighted graph search performed better
(85% correspondence with annotated pathways) than the
unweighted graph search (30%) and filtered graph search
(65%). Croes et al. also suggested that the small world prop-
erty of metabolic networks described by Wagner and Fell
in 2001 [33] is an artifact of having currency metabolites in
unweighted metabolic graphs, which make compounds in
the metabolic network seem more tightly connected. This is
also suggested by several other papers [34, 35, 36].

In Faust et al. [26], different weighting schemes for
compounds and reactant pairs (RPAIRs) were compared
amongst each other. The weighting schemes included
weighting compounds by degree, as described by Croes
et al. in 2006, and weighting RPAIRs by their classification
type. The RPAIR classification can be treated as a ranking
for how relevant the pair of compounds are in the reac-
tion. For example, if an RPAIR is classified as “main,” the
compounds involved in the RPAIR are considered the main
chemical transformation that occurs in the reaction, whereas
a RPAIR classified as “cofac” or “ligase” may describe com-
pounds that serve as metabolite compounds or facilitators
of the reaction. Faust et al. introduces higher weights for
RPAIR classifications that are considered less relevant to
the reaction, favoring pathways that include more RPAIRs
classified as “main.” According to this study, searches us-
ing the Croes et al. weighting for compounds found better
results than searches without compound weighting, while
using RPAIR classification weighting showed no significant
improvement in search results.

In MetaRoute [25], the weight of the compound vertices
is set to the sum of the out-degree of the compound and
the context weight of the in-going reaction nodes. The con-
text weight is based on the degree of the side compounds
involved in the reaction. The context weighting gives rare
compounds a high weight and common compounds a low
weight, encouraging paths to go through reactions that use
common compounds as side compounds.

The connectivity of a graph is very simple to compute, and
it is no surprise that it has been used by several metabolic
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Figure 2 A The degree of connectivity for a node (vertex) within a metabolic network can be described by the number edges that are incident
to it. In this case, the degree for each node, or the total number of incoming and outgoing edges in the directed graph, is provided in each node.
B The path length can be easily determined by counting the number of edges that must be traversed to complete a pathway from the starting
(green) node to the target (red) node. This is directly analogous to the number of enzymatic steps that must be engineered to complete a
biosynthetic pathway. C Atom mapping is a highly detailed interpretation of chemical transformation that occurs along each edge of the
metabolic network. Here, the first step of the citric acid cycle can be both described as a simple network with two edges and three nodes, or as
a balanced chemical reaction where atoms can be tracked between reactants and their corresponding products. Notice that the network ignores
water and coenzyme A (CoA), whereas the atom mapped reaction can be used to identify what atoms from the reactants acetyl-CoA and
oxaloacetic acid contributed to the product, citrate.

pathfinding approaches. Despite its simplicity, connectivity
can be used to effectively infer some biochemical infor-
mation about the metabolic network. However, excluding
features of the metabolic network based on connectivity
alone may not reflect known biochemical properties. For
example, excluding highly connected compounds to avoid
currency compounds may also exclude compounds that play
a significant role in pathways (e.g., pyruvate). Unlike other
algorithms, M-path by Araki et al. [37] uses hub compounds
as a launch point to speed up the search. The approach iden-
tifies 139 compounds involved in eight or more reactions as
hub compounds and introduces the reactions between the
start compound and the hub compounds as the first steps
in the search. Araki et al. refers to a paper by Barabasi
and Oltvai [38], which suggests that highly connected com-
pounds that are not currency metabolites are critical in link-
ing together many compounds in the metabolic network.
By including these highly connected compounds as first
intermediates, the M-path algorithm can shorten the number

of reaction steps needed to reach the target compound and
improve the performance of the search.

2.2 Path length
Pathfinding algorithms often optimize for pathways with
the smallest number of enzymatic steps, as these pathways
tend to require less manipulation in a metabolic engineering
context (Figure 2B). Many pathfinding algorithms set a
maximum path length [31] or give the user an option to
specify a maximum path length [40, 23, 48]. Pitkanen et
al. [42] uses path length as part of the pathfinding heuristic
to limit the search in the underlying networks. Pathways
can also be ranked based on path length (e.g., algorithms
finding k-shortest paths [27, 53]). Ranking by path length
is often a byproduct of the applied graph search algorithm
(i.e., k-shortest paths) and used to organize pathway results.
In order to distinguish pathfinding methods that actively
include path length as a constraint or heuristic from methods
that only use path length to rank pathway results, the latter
cases were not marked as using path length in Table 1. Since
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Table 1 Algorithms are arranged by publication date, and closed circles denote the features used in the respective pathfinding algorithms along
with the databases they draw information from. Open circles used in the organism-specific column indicate that users may input weights or
parameters to make the algorithm organism-specific, but the algorithm itself does not provide options for the user to select for specific organisms.
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Reaction rules & patterns
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Organism toxicity
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Compound exclusion
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path length is an inherent property of the solution pathway,

no additional computation is required for obtaining this

information. However, strongly biasing the search towards

shorter pathway results ignores longer pathway results that

may be equally valid for lab testing, such as the pathway for

synthesizing a precursor of opioids that took 23 enzymatic

steps in lab [2].

3 STRUCTURE OF COMPOUNDS
Most network representations include both structures of
compounds and reactions, along with parameters that give
additional information on both these parts. The chemical
structure of compounds in the metabolic network can be
useful in inferring the existence of a biochemical reaction
between compounds, as biochemical reactions tend to have
products that structurally resemble one or more reactants.
Structural information can be represented at different levels
of detail, which introduces a trade-off between the accuracy
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of the similarity measure and the computational complexity
of the overall metabolic pathfinding problem.

3.1 Atom tracking
At the finest level of detail, algorithms can track changes on
atomic level (Figure 2C). Retaining as many of the atoms
from the start compound in the target compound automati-
cally excludes currency metabolites that contribute no atoms
to the final product, which helps exclude pathway results
that are biochemically infeasible. Also, conserving as much
of the atomic structure of compounds in each reaction step
can help to select pathways that are more biologically fea-
sible. This method was first introduced by Arita in 2003
[22], which aims to conserve at least one atom from start
compound to target using k-shortest paths. The MetaRoute
algorithm [25] also uses this approach. Building on this ap-
proach, new algorithms aimed to conserve multiple atoms.
Pitkanen et al. [42] uses a heuristic to maximize the number
of carbons transferred during a reaction, while also minimiz-
ing the path length. This encourages the inclusion of reac-
tions that transfer more carbon atoms in the final branched
pathway results. In Heath et al. [27], the pathway must con-
serve a minimum number of carbon atoms from start to
target compound. A search to find the maximum number of
conserved carbon atoms will start with the total number of
carbon atoms in either the start or target compound and then
decrement this number by one if no pathways are found
that conserve that number of atoms. In Boyer and Viari
[40], pathways must conserve a minimum number of atoms
which do not necessarily need to be carbons. In the initial
carbon flux path algorithm proposed by Pey et al. [53], any
reactions not involving a carbon exchange between its main
reactant and product were removed from the search space.
Pey et al. later updated their carbon flux paths algorithm
to include atom tracking [54] to insure carbons from the
start compound were eventually incorporated into the target
compound. RouteSearch [48] maximizes atoms conserved
throughout the pathway using a heuristic scoring function.
This score accounts for five different atom types (carbon,
oxygen, nitrogen, phosphorus, and sulfur), and each type
of atom can be assigned a different weight. More recently,
atom group tracking has been introduced by AGPathFinder
[52]. Instead of tracking single atoms, this algorithm tracks
groups of adjacent atoms connected by bonds. This avoids
the computational cost of tracking individual atoms, but still
captures much of the information gained by atom tracking.
Incorporating atomic level information into the search en-
sures that at least a portion of the starting compound is used
to produce the target compound, which may filter out many
biologically infeasible pathways. In previous years, atom
mapping information was not as readily available; however,
as new methods have been developed to computationally
predict atom mapping, more and more pathfinding algo-
rithms have included atom tracking in the search. Tracking

individual atoms can be computationally expensive, espe-
cially if every possible combination of atoms conserved
from compound to compound is considered [55]. Even so,
the fact that many recent pathfinding approaches incorporate
atom tracking suggests it is an important parameter for the
pathfinding problem.

3.2 Chemical Similarity
If two compounds have similar chemical structures, there is
a decent chance that these compounds can be connected by
a common reaction. Several approaches have used different
representations of chemical structure as a way of guiding,
constraining, and ranking the search.

3.2.1 Chemical Fingerprint
Several approaches use chemical fingerprints and Tanimoto
coefficients [56] to measure compound similarity. A chem-
ical fingerprint is a binary vector consisting of a string of
ones and zeros. Each bit represents whether the compound
contains a certain structural feature, such as the number of
single carbon, carbon bonds present in the compound and
the presence of chemical functional groups or ring struc-
tures. There are many available compound fingerprints that
include different numbers and types of structural features.
The Tanimoto coefficient is used to measure the similar-
ity between two different compounds and is calculated by
dividing the total number of structural features shared be-
tween the two compounds by the total number of structural
features contained in both compounds. In Pathway Hunter
Tool (PHT) [23], chemical fingerprints are included in the
metabolite mapping scoring function, which is calculated
by summing the calculated chemical similarity score and
percentage atomic mass contribution. The algorithm uses
this score to determine which reactants and products will be
connected by edges in their search graph.

3.2.2 Graph-Based Comparison
Other approaches rely on the graph representation of chemi-
cal compounds. Metabolic Tinker [28] uses a heuristic based
on similarity of functional groups of atoms and bonds be-
tween the current compound and the target compound iden-
tified using a graph comparison technique similar to the
one described in [58]. In this technique, each compound
is represented as a graph, where atoms are the nodes and
bonds are the edges. Common structural features between
compounds are then identified by finding the maximal com-
mon subgraph(s). SIMCOMP [59], an algorithm that identi-
fies the maximum common substructure between the graph
representations of two compounds, was used for building
the KEGG RPAIR database utilized by many pathfinding
algorithms (Figure 3A). SIMCOMP uses a variant of the
Bron-Kerbosch maximum clique algorithm [60] to identify
the maximum common substructure of two compounds.
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Figure 3 A Chemical similarity can be quantified by comparing common structural features. For example, SIMCOMP is an algorithm that
calculates a similarity score by determining the maximum common substructure between two compounds. SIMCOMP can be used to rank all
compounds in the KEGG database against a single queried compound, in this case oxaloacetic acid, by similarity score. The structural
dissimilarities (substitutions and additions marked in red) of five familiar compounds relative to oxaloacetic acid are highlighted to provide
context to the calculated similarity score. B Generalized reaction rules describe enzymatic reactions where the reactants share structural motifs
and undergo related transformations within an EC class. Reaction rule 2.3.3.a is one of 86 BNICE generalized reaction rules described by
Henry et al. [57]. Examples of enzymatic reactions described by this reaction rule include citrate (Si)-synthase (2.3.3.1) that forms citrate from
oxaloacetate, 2-ethylmalate synthase (2.3.3.6) that forms 2-ethylmalate from 2-oxobutyrate, and malate synthase (2.3.3.9) that forms malate
from glyoxylate. Motifs of the constituent reactants are highlighted in grey (aldehyde or ketone group) and red (acetyl group), and the
corresponding atoms are identified in the products. Databases can be expanded, as is the case with MINEs and ATLAS, by applying reaction
rules to metabolites that share a common motif.

Unlike chemical fingerprints, where a pre-determined set
of chemical characteristics are used to compare two com-
pounds, the graph comparison approach directly compares
the chemical structure of two compounds against each other.
The graph comparison approach tends to be more accurate
in calculating structural similarity but is more computa-
tionally expensive [61]. In GEM-Path [47], both chemical
fingerprints with Tanimoto coefficients and the subgraph
matching of chemical structure are used to measure chemi-
cal similarity.

Calculating compound similarity is not as computationally
expensive as atom mapping and serves as a check that the
reactions included in pathways are biochemically feasible.

However, compound similarity falls short in the cases where
two compounds share many common structural components
but are not biochemically related.

4 REACTIONS
In addition to information about the compounds involved in
the network, graph-based searches also include information
on reactions. This information can be used to both constrain
and expand the search to find novel pathways.

4.1 Reaction rules
Building off the idea of structural similarity, some algo-
rithms introduced reaction rules, or more general transitions
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between compounds based on changes in chemical structure.
Two enzymatic reactions may involve different reactants
and products; however, if the same structural change occurs
between reactants and products in these reactions (i.e., func-
tional group A is replaced by functional group B), these re-
actions may both fall under the same reaction rule. Reaction
rules allow new, potentially feasible pathways to be found
by introducing reactions that may not yet have been added
to metabolic databases. These rules can both be used to (1)
create a metabolic network without directly requiring infor-
mation on enzymatic reactions from metabolic databases
and (2) help expand an existing metabolic network created
based on a metabolic database.

Reaction rules are based heavily on structural represen-
tations of compounds. In BNICE [13, 14], compounds are
represented as an atom-bond matrix, and the reactions are
represented as the difference between the matrices of the
substrate and product compounds (Figure 3B). With this
more generalized representation of reactions, BNICE re-
duces the existing database of 43,000 enzymes to 250 gen-
eralized enzymatic reactions by grouping together enzymes
that catalyze reactions which follow the same reaction rules.
In PathMiner [39], each compound is similarly described
as a set of 145 chemical descriptors (based on atoms/bond
information), and reactions are represented as vector differ-
ences. The reactions are used as a heuristic to guide an A*
search [62]. In M-path [37], compounds are represented by
chemical feature vectors that account for 318 atom and bond
feature types. Atom types include primary, secondary, and
tertiary carbons, and each covalent bond in a compound is
counted as a pair of atom types. Reactions are again repre-
sented as reaction feature vectors that describe difference in
number of atom/bond feature types between substrates and
products. In Cho et al. [44], there is a reaction rules database
containing constructed reaction rules. PathPred [45] uses so-
called RDM patterns from RPAIRs, which take into account
the reaction center, the difference regions, and the matched
regions between the reactants and products. PathPred also
uses Jaccard coefficient [63] to compare compounds, and it
weights the atoms closer to the reaction center more greatly
compared to more distant atoms. A reaction score is cal-
culated based on the Jaccard coefficient for each reaction,
and the overall pathway score is the average of the reac-
tion scores of all its reactions. In Faust et al. [26], RPAIR
mappings are used without atom tracking to show the con-
nectivity of compounds without annotations of atoms. In
FMM [24], reactions are represented as a 16,884×16,884
matrix, where each row and column represents a compound
and having a ‘1’ represents that there exists a forward re-
action between the compounds. In RetroPath by Carbonell
et al. [15], the molecular signature of any given compound
is defined by a subset of neighboring atoms and chemical
bonds surrounding each individual atom in the compound.
The reaction rules are defined as the differences in molecu-
lar signatures between the reactant compounds and product

compounds in a reaction. Only the atoms and bonds within a
given number of bonds away from each atom are considered
as part of the molecular signature. This distance, referred
to as the diameter by Carbonell et al., could be increased to
include more surrounding atoms and bonds in the molecu-
lar signature and in turn, make each reaction rule include
more detailed differences in molecular structure between
reactants and products. Or, the diameter could be decreased
to include less of the surrounding atoms and bonds in the
molecular signature, causing each reaction rule to be more
general and applicable to more groups of compounds. Thus,
by changing the diameter, the strictness of reaction rules can
be adjusted to prevent an exponential explosion of potential
reactions. Reaction rules allow the search to find novel path-
ways not present in existing metabolic databases. However,
the issue with using reaction rules to find new paths is that
there is a potential for an exponential explosion of results.

4.2 Thermodynamics
Another common feature taken into account by pathfind-
ing algorithms is thermodynamic feasibility of the reactions
in pathways. Almost all algorithms that include thermody-
namics use the component contribution method [64] for cal-
culating ∆G. In MetabolicTinker [28], missing directional
information is inferred from ∆G. If it is not possible to cal-
culate the ∆G, the edge is treated as a bidirectional edge.
The search heuristic is based partially on thermodynamics,
and paths are ranked based on thermodynamic feasibility. In
BNICE [14], the ∆G value is used to analyze enzymatic re-
actions in different groups (profiling) and suggest feasibility
of reactions. In Cho et al. [44], enzymes are ranked based on
thermodynamic favorability, among other factors (such as
binding site covalence and chemical similarity). The XTMS
webserver [12] uses a scoring function to rank pathway re-
sults found by the RetroPath search algorithm. The XTMS
scoring function incorporates the thermodynamic favorabil-
ity of a pathway by both including the sum of all the ∆G
values (taken from MetaCyc) of each reaction in a path-
way and including the number of unfavorable reactions (any
reactions with a ∆G value greater than zero) for each path-
way. AGPathFinder [52] uses ∆Gs (in addition to compound
similarity) to guide the search as weights.

4.3 Stoichiometry
Graph-based pathfinding methods can incorporate reaction
stoichiometry to limit the number of biologically irrelevant
pathway results. The carbon flux paths algorithm proposed
by Pey et al. [53, 54] introduces steady-state constraints.
Pey et al. demonstrate that using carbon flux paths signifi-
cantly reduces the connectivity of certain compounds, such
as oxaloacetate in E. coli, compared to a graph-based search
without stoichiometric constraints. Introducing stoichiomet-
ric constraints allows carbon flux paths to distinguish be-
tween oxic and anoxic conditions in E. coli, which was not
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possible in previous graph-based algorithms. However, this
pathfinding method was only tested within the metabolic
network of a single well-studied organism (E. coli) and,
like constraint-based methods, is not easily scalable to large
multi-organism networks.

4.4 Enzyme efficiency and promiscuity
Enzymes can have different reaction rates, depending on
how efficient an enzyme is in converting the substrate to
product. On the other hand, promiscuous enzymes can cat-
alyze reactions which may not be found in existing databases
and may be used to expand the metabolic pathfinding search.
In Cho et al. [44], binding site covalence was factored into
ranking enzymes, where the highest ranked enzyme can-
didates were included in the final pathway solutions. In
MRSD [46], edges between compounds are weighted based
on the frequency of reactions that use the specified substrate
to produce the specified product. This approach does not
filter out species duplicates. The XTMS webserver scoring
function [12] takes into account a gene score in ranking
pathway results found by the RetroPath algorithm. The gene
score is calculated for each pathway based on the average
of the pathway’s individual reaction scores, which is deter-
mined by the estimated promiscuity of the putative enzyme
assigned to the given reaction based on the tensor product
technique.

5 ORGANISM
Many algorithms give the user the ability to select an organ-
ism of interest. Arita et al. [22] mention that their search
algorithm can find pathways specific to one organism if the
user specifies a weighting scheme that heavily penalizes
reactions taken from all other organisms. In RouteSearch
[48], the user can specify weights for reactions taken from
organism vs. reactions taken from a larger library includ-
ing all organisms. Many others require the user to select
which organism or group of organisms to look at [32, 46].
Other methods do not require user input. In Cho et al. [44],
enzymes are ranked based on organism specificity. DE-
SHARKY [41] limits the number of compounds that are
not organism-specific to only one non-specific reactant and
one non-specific product. In GEM-Path [47], there is an
association between reactions and organisms. One of the
more interesting of these algorithms is MRE [51], where
the search takes into account endogenous competition of
reactions. By considering which reactions happen more
frequently in an organism, pathways can be optimized to
include the most common reactions to maximize the produc-
tion of the target compound and exclude reactions that may
only occur at very low rates in the organism.

6 DISCUSSION
Pathfinding is a critical and preliminary step in the develop-
ment of novel biosynthetic pathways. Pathfinding is often

done manually, though there are many existing tools that
can enumerate putative pathways with minimal input from
the user. After a pathway has been identified, much time and
effort goes into building, testing, troubleshooting, and op-
timizing the biological system, and not the initial pathway
discovery [65]. This is acknowledged by metabolic engi-
neers and synthetic biologists alike. Assisted pathfinding,
for now, is typically restricted to providing and suggesting
a series of enzymatic conversions through the aforemen-
tioned algorithms and ranking heuristics. It is up to the user
to determine what organisms the genes should be sourced
from based on limited enzyme kinetic data, which genetic
system to use to regulate expression, and which organism
to use as an appropriate host. Each step of this process is a
challenge, and widespread adoption of assisted pathway dis-
covery algorithms will depend on improved integration with
the pathway engineering workflow. For this reason, future
directions of assisted pathfinding must include the following:
1) maximizing the utility of existing but limited databases
to find paths to non-native or other diverse commodity com-
pounds, 2) facilitating the interpretation of the generated
pathway solutions through visualizations and other meth-
ods, 3) assisting in gene selection based on known enzyme
kinetics and other parameters of enzyme activity, and 4)
identifying solutions with specific network topologies such
as branched pathways and or cycles.

6.1 Non-native compounds
There has been a recent push to expand searches to non-
native compounds using reaction rules, building on BNICE
[13, 14], because it is appreciated that the single greatest
limiting factor to pathfinding is the completeness of the ref-
erenced databases. The ability to find paths to a non-native
compound is severely limited when restricted to metabolic
databases consisting of almost entirely of native compounds.
General reaction rules can substitute for predicted enzyme
promiscuity where specific enzyme reactions for a struc-
turally similar but a non-native substrate are needed as ei-
ther the target or an intermediate in a pathway. Reaction
rules can serve as an acceptable best guess or a lead when
a pathway cannot be found in its absence. This need has
recently lead to the generation of expanded databases (e.g.,
MINEs [66] and ATLAS [11]) that apply reaction rules to
existing databases (e.g., KEGG [67]) to augment them and
expand their reach. More work is needed in this area, as
our research has identified a number of compounds of in-
terest that still remain outside the reach of these expanded
databases.

6.2 Databases
Although the cumulative information that is available across
all metabolic databases is extensive, manually search-
ing, gathering, and compiling information from different
databases is a challenging task. Each database often has its
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own representation and set of ID numbers for identifying
components like compounds and reactions, in addition to
its own organization schema, suited specifically for the in-
tended purposes of the database. These differences make it
challenging to determine the exact links and relationships be-
tween information in different databases. There have been a
few recent efforts to integrate different metabolic databases
and create a less redundant, more comprehensive, and more
accessible resource for metabolic information (e.g., BKM-
react [68], MetRXN [69], and MNXref [70]). The effort to
make a more comprehensive, unified metabolic resource
could be a great asset to developing new metabolic pathfind-
ing algorithms, as the metabolic representations, heuristics,
and constraints used in these algorithms rely heavily on the
breadth and completeness of the used metabolic database(s).
In addition to this, it would be very helpful for databases to
adopt an open distribution model when fiscally reasonable.
Restrictions on data distribution hinder further development
of pathfinding tools, and licensing barriers make it harder to
adopt a single framework.

6.3 Interface and Visualization
As the pathfinding capabilities improve, so do the number
of solutions that can potentially be generated, and with it
the challenge of providing the user with tools to explore
the solutions that can number in the thousands and identify
pathways of interest. Because of this, there is an increasing
amount of user interaction built into pathfinding webservers
(see MRSD [46], BioSynther [50], ATLAS [11], and XTMS
[12]). By having a more interactive webserver interface,
users can quickly modify their queries or filter the results to
find the solutions they want. This filtering may be achieved
either by ranking as has been previously discussed, cluster-
ing of results based on pathway similarity or overlap [71],
allowing the user to exclude pathways based on the presence
or absence of specific intermediates that the user chooses
to avoid, or some mixture of all of these. Improved visual-
ization solutions will provide users with a balance between
an abundance of options and ease of identifying promising
pathways.

6.4 Gene selection
In addition to visualizations, a well-developed interface
could integrate suggestions for genes based on enzyme ac-
tivity and evidence of heterologous gene expression so that
the user can seamlessly transition from pathway discovery
to the initial build phase. Databases, such as BRENDA [5],
have experimentally determined values for many enzymatic
characteristics that could be used in determining the gene of
choice for each reaction step. However, this information has
yet to be implemented in a pathway discovery and selection
webserver.

6.5 Topology
Almost all pathfinding algorithms are limited to producing
linear pathways with a few exceptions [43, 42]. Branched
pathways and cycles represent different topologies of
metabolic networks that are of interest to metabolic en-
gineering because the resulting condensation or recycling of
constituent material can potentially improve the theoretical
yield for a pathway. Though linear pathways are sufficient
in most cases, the capability of identifying more complex
and efficient pathways would be desirable.

6.6 Conclusion
Ultimately, the best pathfinding algorithm is the one that
suits the user’s needs and is paired with an interface that
facilitates pathway discovery. Pathfinding webservers can
assist with the design of novel, feasible, and hopefully im-
proved pathways, but as discussed, pathfinding needs to
become more highly integrated with the entire process of
metabolic engineering. This survey of the available features
and future directions aims to increase adoption of existing
pathfinding tools while advocating for advancements that
will increase their utility.
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