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Abstract

Background: The rapid growth of available knowledge on metabolic processes across
thousands of species continues to expand the possibilities of producing chemicals by
combining pathways found in different species. Several computational search
algorithms have been developed for automating the identification of possible
heterologous pathways; however, these searches may return thousands of pathway
results. Although the large number of results are in part due to the large number of
possible compounds and reactions, a subset of core reaction modules is repeatedly
observed in pathway results across multiple searches, suggesting that some subpaths
between common compounds were more consistently explored than others.

To reduce the resources spent on searching the same metabolic space, a new
meta-algorithm for metabolic pathfinding, Hub Pathway search with Atom Tracking
(HPAT), was developed to take advantage of a precomputed network of subpath
modules. To investigate the efficacy of this method, we created a table describing a
network of common hub metabolites and how they are biochemically connected and
only offloaded searches to and from this hub network onto an interactive webserver
capable of visualizing the resulting pathways.

Results: A test set of nineteen known pathways taken from literature and metabolic
databases were used to evaluate if HPAT was capable of identifying known pathways.
HPAT found the exact pathway for eleven of the nineteen test cases using a diverse
set of precomputed subpaths, whereas a comparable pathfinding search algorithm that
does not use precomputed subpaths found only seven of the nineteen test cases. The
capability of HPAT to find novel pathways was demonstrated by its ability to identify
novel 3-hydroxypropanoate (3-HP) synthesis pathways. As for pathway visualization,
the new interactive pathway filters enable a reduction of the number of displayed
pathways from hundreds down to less than ten pathways in several test cases,
illustrating their utility in reducing the amount of presented information while
retaining pathways of interest.

Conclusions: This work presents the first step in incorporating a precomputed
subpath network into metabolic pathfinding and demonstrates how this leads to a
concise, interactive visualization of pathway results. The modular nature of metabolic
pathways is exploited to facilitate efficient discovery of alternate pathways.
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Background

Identifying novel metabolic pathways for synthesizing valuable products is an important
first step in the field of metabolic engineering, where organisms are genetically manipu-
lated to serve as cellular factories for producing valuable chemicals. Recent advances in
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the field of metabolic engineering have proven successful in optimizing the production of
biofuels [1, 2], pharmaceuticals [3, 4, 5, 6], and chemical precursors [7].

Identifying the metabolic pathways used to synthesize these products has traditionally
required an expert to search through metabolic databases and literature for promising en-
zymatic reactions. However, the rapid expansion of available metabolic information stored
across many online databases has made it increasingly difficult to manually survey all pos-
sibilities and resources. To address the need for faster and broader search, several compu-
tational approaches have been developed to identify promising pathways, resulting in the
identification of novel pathways like the synthesis of 1,4-butanediol (BDO) [8], a high-
demand commercial chemical precursor that had a market of one billion tons annually in
2013 [7].

One of the universal challenges of automated pathfinding methods is the trade-off be-
tween finding a set of pathways that presents diverse alternatives for synthesizing the target
product, while also not overwhelming the user with too many options. Introducing strict
constraints during the search can limit the diversity of pathways found, but too few con-
straints will result in a large number of repetitive or biologically infeasible pathways. How
the results are presented and visualized also plays a significant role in this trade-off, as a
means of visualization can enable the user to easily sift through a large number of results.

This paper introduces a meta-algorithm designed for metabolic pathfinding, which could
be generally applied to other graph-based search approaches giving rise to a large number
of unique pathways. We demonstrate that our meta-algorithm and interactive visualization
can be coupled allowing for post-search filtering that provides the user with information
about a manageable number of pathways instead of listing all generated pathways, which
requires significant manual inspection.

The meta-algorithm proposed in this paper is built upon graph-based metabolic pathfind-
ing algorithms, such as [9, 10, 11, 12]. Graph-based methods find pathways based on the
connectivity of compounds in a metabolic network and also lend themselves well to scaling
to large metabolic networks and finding pathways that incorporate enzymes from multiple
organisms. However, the flexibility of the graph-based search approach also results in find-
ing thousands of biologically infeasible pathways. This paper contributes a new algorithm
for metabolic pathfinding, which besides its good performance, facilitates interpretation of
the results.

Existing graph-based search approaches have utilized a combination of heuristics and
cutoffs to limit the number of infeasible pathways [13]. One of the most widely used
heuristics is the conservation of chemical structure from the start to the target compound.
Pathway Hunter Tool [14], MetabolicTinker [15], and GEM-Path [16] incorporate chem-
ical similarity measures as heuristics to guide the metabolic search. Other methods track
individual atoms, or groups of connected atoms in the case of AGPathFinder [17], from
the start to target compound and aim to conserve a minimum number of atoms throughout
the pathway [12, 18, 9] or maximize the number of atoms conserved [10, 19]. Information
on enzymatic reactions, like thermodynamic favorability (∆G) [15, 20, 17] and enzyme ef-
ficiency and promiscuity [20, 21], is also used to guide the search and rank pathways. It
is important to note that many of these pathfinding methods use a combination of several
heuristics. For example, in addition to factoring in chemical similarity and thermodynamic
favorability, XTMS [22] incorporates metabolic exchange information, compound toxicity
scores, and estimated maximum pathway yield in ranking pathways. However, even when
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using these heuristics, pathfinding searches can return thousands of results, which are ei-
ther listed sequentially in full or limited by a cutoff of the top x pathways. Though users
can adjust the search by changing input parameters (i.e., changing the minimum number of
atoms to conserved), user interaction with the results themselves is limited.

Across existing pathfinding methods, pathway results are most commonly presented in
a ranked list [19, 9], which requires users to evaluate each pathway result individually.
Instead of a list, Metabolic Tinker [15] presents an overview of pathways by providing a
static output graph that represents a combination of all pathway results. Pathway results that
share all the same compound intermediates are grouped together and considered the same
pathway. However, this organization does not help group similar pathways together if the
pathways do not go through the same compound intermediates. Also, the graph produced
by Metabolic Tinker is static and does not come with any tools for users to alter or explore
the output graph after the search has been completed. For more general exploration of the
metabolic space around a target compound, both BioSynther [23] and ATLAS [24] pro-
vide views that display all compounds that are a given number of reaction steps away from
a given compound. However, this visualization becomes exponentially crowded with in-
creasing step size, considering there are no ways for the user to filter pathways. Other tools
incorporate user interaction with exploration of pathways. The MRSD tool designed by Xia
et al. [21] and BioSynther [23] provide views where the user can specify a compound, then
interactively select intermediate compounds step by step, manually constructing a pathway.
This works well for finding small variants of a pathway of interest or if the user has a spe-
cific pathway in mind. However, in the case where the user is more interested in exploring
all possible pathways for synthesizing a target compound, the interactive step-by-step ap-
proach to exploring possible pathways can be time consuming and may not provide a good
overview of all the possibilities, especially if there are many diverse routes to explore.

One aspect that is not addressed by previous search methods is the identification of com-
mon segments across different search results. Many pathways of interest in metabolic en-
gineering involve synthesis of a more complex target compound (e.g., artemisinin) from
relatively simple compounds like glucose. In several of these synthesis pathways, simple
compounds must first be converted into common intermediate precursor compounds before
being synthesized into the final target compound. The modularity of metabolic networks
has been observed by previous work [25, 26, 27, 28], and common reaction modules across
known pathways have even been identified by [29]. However, these reaction modules are
based on existing natural pathways and do not necessarily generalize to the heterologous
pathways found by metabolic pathfinding algorithms. We have observed that the subpaths
between common precursor compounds are often shared across several different heterolo-
gous pathways, acting as modules that repeatedly appear across pathways. Given that these
common subpath modules can be identified without extensive expert knowledge, precom-
puting these modules to look up during the search can keep metabolic pathfinding algo-
rithms from having to re-explore the same metabolic space in future searches and aid with
condensing the visualization of the results.

Contributions

This paper introduces and demonstrates an initial approach to take advantage of short series
of connecting reactions among common compounds across metabolic pathways by incor-
porating precomputed subpaths into graph-based metabolic pathfinding search algorithms.
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To our knowledge, no previous approaches have incorporated the use of precomputed path-
ways. In addition to their use as look-up modules in pathway searches, precomputed path-
ways can help to organize and quickly visualize pathway results, enabling a more interac-
tive user experience. Though interactive graph visualization of known pathways has been
explored [30, 31, 32] and included in recent pathway tools like PyPathway [33], this visual-
ization has not yet been applied to metabolic pathfinding results. This paper also introduces
the use of post-search sliding filters which enable the user to evaluate the validity of result
pathways based on path length, carbons conserved, and ATP used. The introduction of
post-search filters provide a more interactive experience for users that has not been pro-
vided by previous metabolic pathfinding methods, enabling users to select pathways based
on their own interests and encouraging broader exploration of the search results without
overwhelming the user.

Results
The Hub Pathway Search with Atom Tracking (HPAT) was developed as a first step to
utilizing precomputed subpaths in the metabolic pathfinding search (see Figure 1 for a
visual overview of the HPAT meta-algorithm). First, all subpaths between a set of highly
connected hub compounds are precomputed and stored in a look-up table.

Then, given a start compound and a target compound, HPAT finds pathways converting
the start to the target compound in three search steps: (1) a no-hub pathway search, where
all hub compounds are excluded from the searched metabolic network, (2) a one hub path-
way search, where all but one hub compound are excluded, and (3) the hub pathway search,
which utilizes the precomputed subpaths.

In this study, the linear atom-tracking search algorithm LPAT [9] was used to precompute
subpaths between hub compounds, find pathways containing one or less hub compounds
(Figure 1A-B), and find the segments of the hub pathways connecting the start compound
to the first hub compound and the last hub compound to the target compound (Figure 1C).
Only the hub compounds that have the most similar chemical structures to the start and
target compounds are included in the search as the first and last hub compounds respectively
(See the “First and Last Hubs Selection” section in Methods for more details).

Throughout each step of the hub pathway search, carbon atoms are tracked from the start
compound to the target compound to insure that carbon atoms from the start compound
are being incorporated into the target compound. Conserving carbon atoms throughout the
pathway prevents the search from finding infeasible pathways that go through currency
metabolites that only contribute energy or electron balance to the reaction.

A hub pathway search tool will ideally find biochemically feasible pathways that do not
already occur naturally in existing organisms. Thus the performance of the HPAT meta-
algorithm was evaluated based on its ability (1) to find a diverse set of known biochemically
feasible pathways documented in the literature, and (2) to find novel pathways that do not
occur in existing organisms and have the potential to be used for metabolic engineering
applications.

This section then describes how pathways found by HPAT are visualized on the Hub
Pathways Webserver, and how users can utilize interactive filtering options to selectively
reduce the number of results displayed.
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Figure 1: Overview of hub search process. Pathways with no hubs (A)
and one hub (B) are found using an existing linear atom-tracking graph-
based pathway search (LPAT [9]) while excluding hub compounds from the
metabolic network. The process for finding pathways with at least two hubs
(C) consists of (1) the start compound to “first” hub compounds search, (2)
the “first” hubs to the “last” hubs search using the precomputed network, and
(3) the “last” hubs to the target compound search. The “first” hubs and “last”
hubs are identified by using a chemical similarity heuristic (SIMCOMP [50])
to find the hub compounds that have the most similar chemical structures to
the start compound and target compound respectively. The first and last hub
compounds are identified before the hub to hub search is performed. For all
pathways identified by the hub pathway search, at least two carbon atoms
are conserved from the start compound to the target compound to avoid find-
ing pathways that do not utilize the start compound to synthesize the target
compound.
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Table 1: The test set of nine unique pairs of start and target compounds.
The “num. carbons” columns report the number of carbon atoms in the start
and target compounds. The “known paths” column refers to the number of
canonical pathways found in KEGG or in other literature. The “path length”
column refers to the number of reactions in the canonical pathway(s).

Start num. Target num. Known Path
Start compound Target compound carbons carbons paths length

3 6 5 8–11
Pyruvate Lysine

5 5 1 4
Glutamate Proline

15 24 1 3
UDP-galactose Stachyose

6 9 1 16
alpha-D-glucose Phenylpyruvate

6 8 1 19
alpha-D-glucose Dopamine

3 3 7 4–7
Pyruvate 3-HP

6 6 1 5
Glucose Glucaric acid

6 3 1 8
alpha-D-glucose 1,3-propanediol

11 13 1 4
Tryptophan Melatonin

Recovery of Known Pathways by HPAT

The quality of pathways found by HPAT were evaluated by comparing the HPAT results
to nineteen known pathways taken from the literature and KEGG database [34, 35]. The
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final products of the pathways were chosen because of their importance as precursors to
the synthesis of industrial or medicinal compounds. The start and target compounds of
the test set pathways varied in size and complexity. The smallest compounds (pyruvate, 3-
hydroxypropanoate, and 1,3-propanediol) only contained three carbon atoms, whereas the
largest compound (stachyose) contained twenty four carbon atoms and several ring struc-
tures (See Supplementary Materials, Table 1). The test set pathways also varied in path
length, ranging from four to fifteen enzymatic reactions. Five variants of the lysine syn-
thesis pathway and seven variants of the 3-hydroxypropanoate (3-HP) synthesis pathway
were also included in the known pathway set to test if HPAT’s could find a diverse range of
results.

To evaluate the HPAT meta-algorithm’s ability to find the known pathways, the F1

score [36] was calculated for each result pathway based on its reactions. Reactions in the
result pathway that are also present in the known pathway are counted as true positives
(TP), whereas reactions in the result pathway that are not present in the known pathway
are counted as false positives (FP). Reactions that are in the known pathway but not the
result pathway are counted as false negatives (FN). The F1 score is calculated as F1 =
2×(P×R)/(P+R), where P = TP/(TP+FP) is the precision and R = TP/(TP+FN) is the re-
call.

The highest F1 scores of all pathways found by HPAT compared to each known path-
way is reported in Table 2. This differs from previous studies, where only the top handful
of pathways, determined by ranking heuristics like path length and thermodynamics, are
compared to the known pathway. However, unlike previous studies, it is assumed that the
user of the HPAT search can utilize interactive post-search filtering tools to narrow down
the results to a manageable set of pathways, such that the ranking of the results does not
have a significant impact on which pathways the user sees. For sake of reference, the F1

scores were also calculated for the closest pathway (1) among the top twenty pathway
results and (2) among all the results obtained from a LPAT search using comparable in-
put parameters (see Supplemental Table S4 for values of LPAT input parameters). The F1

scores were calculated for the top twenty LPAT results to evaluate if a user could quickly
find the canonical pathway in the top few LPAT results without utilizing the interactive
filtering tools.

The HPAT meta-algorithm was able to find the exact canonical pathway for eleven of the
nineteen test cases, including all five variants of the lysine synthesis pathway. Meanwhile,
the LPAT algorithm was able to find the exact canonical pathway for only seven of the
nineteen test cases and found only one of the five canonical lysine synthesis pathways.
The reason HPAT could outperform LPAT in these cases is that the maximum search depth
used for finding the precomputed hub paths (100,000) was larger than the depth used for
the HPAT hub search and LPAT search (10,000, see Supplemental Tables S2, S3, and S4).
This enables more diverse subpaths to be precomputed and then later looked-up during the
HPAT search.

Evaluating just the top twenty LPAT results (instead of all LPAT results) yielded lower
F1 scores for four of the pathway test cases (dopamine, 3-HP III, 3-HP VII, and 1,3-
propanediol). Though the known 1,3-propanediol synthesis pathway was found by LPAT, it
was not contained in the top twenty LPAT results. This example illustrates how HPAT with
interactive filtering can often enable users to find known pathways as accurately as LPAT
without having to look through as much information.
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Table 2: F1 scores of the closest pathway found by the HPAT meta-algorithm
(uses precomputed subpaths) and LPAT algorithm (does not use precom-
puted subpaths) compared to known pathways, where an F1 score of one
indicates that the HPAT search found the exact known pathway. The closer
the F1 score is to one, the more similar the found pathway’s reactions are to
that of the known pathway. The first column of F1 scores for LPAT is calcu-
lated based on the closest pathway within the top twenty pathways found by
LPAT, while the second column of F1 scores for LPAT is calculated based on
the closest pathway for all LPAT pathway results.
*: Pathway is experimentally validated; does not exist naturally in organisms.
#: Requires an engineered, non-natural 2,3-alanine aminomutase.
+: Known pathway conserves less than two carbons.
†: Hub in canonical pathway closest to start/target not among closest hubs.

F1 Score, LPAT F1 Score, LPAT
Known pathway F1 Score, HPAT (Top 20 Paths) (All Paths)

Pyruvate → Lysine I 1.00 0.70 0.70
Pyruvate → Lysine II 1.00 0.70 0.70
Pyruvate → Lysine III 1.00 1.00 1.00
Pyruvate → Lysine IV 1.00 0.78 0.78
Pyruvate → Lysine V 1.00 0.00 0.00
Glutamate → Proline 1.00 1.00 1.00
UDP-Galactose → Stachyose 1.00 1.00 1.00
alpha-D-glucose → Phenylpyruvate 0.71+ 0.71 0.71
alpha-D-glucose → Dopamine 0.59† 0.42 0.76
*Pyruvate → 3-HP, I 1.00 1.00 1.00
*Pyruvate → 3-HP, II 0.50† 0.33 0.33
*Pyruvate → 3-HP, III 0.60† 0.38 0.78
*Pyruvate → 3-HP, IV 0.42† 0.71 0.71
*Pyruvate → 3-HP, V 0.36† 0.40 0.40
*Pyruvate → 3-HP, VI 0.36# 0.36 0.36
*Pyruvate → 3-HP, VII 0.53# 0.36 0.50
Glucose → Glucaric acid 1.00 1.00 1.00
alpha-D-glucose → 1,3-propanediol 1.00 0.67 1.00
Tryptophan → Melatonin 1.00 1.00 1.00

For eight of the nineteen test cases, the HPAT meta-algorithm did not find the known
pathway. There are three main reasons for this: (1) the known pathway requires an engi-
neered, non-natural enzyme, (2) the known pathway does not conserve at least two carbons,
and (2) the first or last hub compound(s) in the known pathway were not identified as the
closest hubs to the start or target compound by the chemical similarity heuristic (See Ta-
ble 2).

For the first case, the reaction catalyzed by the engineered enzyme in these known path-
ways was not present in the KEGG database, so it was not possible for the HPAT search
to find these pathways. For the second case, the selected input parameters for both the
HPAT and LPAT searches impose the restriction that all result pathways must conserve a
minimum of two carbons atoms from the start to the target compound. Though conserving
one carbon atom from start to target compound prevents the search from finding pathways
through currency metabolites that are not used to build up the target compound, conserving
a single carbon atom does not prevent the search from finding nonsensical pathways that
break down the start compound to a single carbon compound (i.e., CO2), only to build back
up to the target compound. The two carbon atom limit was chosen to reduce the number of
these particular nonsensical pathways. However, if the known pathway only conserves one



Kim et al. Page 9 of 38

carbon atom from start to target compounds, the pathway will not be found by either HPAT
or LPAT due to this two carbon atom limit setting. In these cases, the HPAT meta-algorithm
performed about the same or slightly better than the LPAT algorithm in finding pathways
similar to the known pathway.

For the third case, whenever the start or target compound are not hub compounds, the
HPAT search will only explore pathways that go through the first and/or last hub com-
pounds identified by a chemical similarity heuristic (see Methods section for details), so
if the first or last hub compound of the known pathway is not one of the most similar
compounds, the HPAT search will not find the pathway. In these cases, the HPAT meta-
algorithm tended to perform worse than LPAT in finding pathways similar to the known
pathway.

Identification of novel pathways by HPAT

Biochemical repositories, such as KEGG, are curated to maintain completeness and ac-
curacy of standard metabolic reactions, but reactions for enzymes with either engineered
or off-target function are often not included. This is an inherent constraint on the discov-
ery of novel pathways. Despite this limitation, novel approaches and useful pathways can
be uncovered using exploratory tools such as the one described in this paper that can fil-
ter results to favor carbon conservation from start to target compound or utilize enzymes
drawn from disparate species to form heterologous pathways. Here, we look more closely
at 3-hydroxypropionic acid (3-HP), the biosynthesis of which is characterized by multiple
standard and nonstandard pathways.

3-HP, a compound of interest for numerous metabolic engineering projects, has had at
least seven biosynthesis pathways starting from glucose that have been patented and eval-
uated to determine if they are “biologically attractive,” meaning the pathways are ther-
modynamically favorable, maintain redox balance, and require minimal ATP utilization
([37, 38, 39, 40, 41, 42]). Pyruvate is a sensible starting point for pathfinding the synthe-
sis of many compounds, including 3-HP, because it is the natural product of glycolysis, a
central pathway of organisms consuming glucose as a carbon source. 3-HP is a good test
of the hub search because of the variety of nonstandard biosynthesis pathways that include
hub compound intermediates.

In Table 2, we can see that of the seven previously defined pathways only one is recovered
in its entirety independent of the selected hubs: Pathway I, which passes through lactate.
Two additional pathways are recovered for specific hub sets: Pathways III and IV, which
both include the carboxylation of pyruvate to oxaloacetate but differ in the conversion of
β -alanine to 3-oxopropanoate. Of the remaining four pathways, only partial coverage is ob-
tained either from overlap with Pathways I, III, and IV or because individual reaction steps
are present in the cumulative pathfinding results but not in a reaction sequence matching
the illustrated pathways. Pathways VI and VII cannot be completed because the conversion
of α-alanine to β -alanine requires an engineered, non-natural 2,3-alanine aminomutase,
which is absent from KEGG [38].
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Figure 2: HPAT can recover three of seven pathways patented for use in the
production of 3-hydroxypropionic acid (3-HP) starting from pyruvate. The
seven pathways are numbered according to Jiang et al. [41]. Intermediates
that are underlined represent hub compounds from the 50 in-degree (I) hub
table (see Table 3 for details). Arrows represent reactions linking interme-
diates where the color of the arrow indicates if they are found by the HPAT
search where at least one carbon is conserved. Solid green arrows represent
reactions that were found by the HPAT search, solid orange arrows represent
reactions that were not found in the search, dashed arrows are require mul-
tiple reactions, and an X marks those reactions that are absent from KEGG
and cannot be found by the search, grey arrows represent alternative reac-
tions found by the search but not associated with the seven pathways, and
the green highlight represents entire pathways between pyruvate and 3-HP
that are recovered. A) Reactions identified in the HPAT search connecting
TCA cycle intermediates, succinate, malate, and fumarate, to Pathways III
and IV (B) and viable acetate and malonate to Pathway II (C).
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Of the remaining pathfinding results, the majority are alternative, feasible paths that have
been documented in KEGG between the illustrated intermediates. These alternative path-
ways are valuable because they represent points where potentially more carbons can be
fed into a pathway of interest. An example of this is seen for intermediates of the TCA
cycle, succinate, fumarate, and malate, which can be fed into the oxaloacetate and aspar-
tate nodes of pathways III and IV (Figure 2B). Similarly, we can elaborate on pathway II
by adding a parallel pathway of pyruvate to acetate to malonate to 3-oxopropanoate (also
referred to as malonate semialdehyde). Between these two parallel pathways, acetyl-CoA
and malonyl-CoA can each be converted to acetate and malonate, respectively (Figure 2C).

The new visualization system makes it easier to identify connections between common
metabolic pathways and biosynthetic pathways of interest, as described in the next section.

Visualization of pathway results

The Hub Pathways Webserver (http://hpat.kavrakilab.org) was developed to execute user
pathway searches using LPAT and HPAT. Once a search query has been completed, the
user can view the pathway results in the webserver’s pathway visualization interface.

The visualization interface consists of a main panel to display the pathway search results
and a fixed left panel for displaying information on the compounds and reactions contained
in the pathway results, as well as filtering options that can be applied to the results. Pathway
results are visualized as a single combined graph, where the nodes represent compounds
and the edges represent enzymatic reactions. The starting compound node is highlighted in
green and the target compound node is highlighted in red.

Each compound node can be clicked to display the common name and chemical struc-
ture of the compound at the top of the left panel. In addition to the visualization graph, the
main panel displays the total number of pathways that are currently being visualized by
the graph in the top left-hand corner. Note that for HPAT pathways, a pathway result con-
taining precomputed hub path(s) is counted as one pathway when calculating the displayed
total number of pathways, instead of counting all possible variations of the hub path(s) as
separate pathways.

Combining all results into a single graph eliminates the redundancy of common path
segments that appear across multiple pathway results, which provides a more condensed
summary of result pathways compared to a list of individual pathways (see Figure 3 as an
example of how ninety six pathway results can be displayed in a single graph).
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Figure 3: Visualization of LPAT pathway results from glutamate
(C00025, green node) to proline (C00148, red node). Compounds in the
canonical proline synthesis pathway are highlighted in blue. The arrows of
the edges connecting the compound nodes indicate the directionality of the
reactions, where double-sided arrows indicate the reaction is reversible. The
total number of pathways (96 paths) in the graph is indicated in the upper
left corner of the interface display.

Figure 4: Visualization of pathway results for a hub search from gluta-
mate (C00025) to proline (C00148). (A) The initial visualization abstracts
the subpaths between several hub pairs as a dotted arrow, including the sub-
paths from 2-oxoglutarate (C00026) to succinate (C00042), highlighted by
the red box. (B) Clicking on the dotted edge between C00026 and C00042
in view (A) displays all the subpaths between the hub pair as a single graph,
where nodes represent compounds and edges represent enzymatic reactions.
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Figure 5: Filtering options for pathway results. A screenshot of filter op-
tions that can be found in the left column of the webserver’s pathway vi-
sualization interface. Users can (1) exclude pathways containing specific
compounds and reactions by specifying their KEGG ids, (2) only include
pathways containing specific compounds and reactions by specifying their
KEGG ids, (3) exclude pathways with a path length longer than a given num-
ber of reactions, (4) exclude pathways that conserve less than a given number
of carbon atoms, and (5) exclude pathways that produce less / consume more
than a given number of ATPs.

Hub pathway visualization
For HPAT results, the details of hub-to-hub pathways are abstracted such that there is a sin-
gle dashed arrow to indicate that one or more subpaths exist between two hub compounds.
Hiding the details of these common hub pathways simplifies the overall pathway view, al-
lowing the user to get a clearer idea of which hub compounds are used as intermediates
by the found pathways. Though all compounds and reactions between hub compounds are
initially hidden from view, the user may click any dashed arrow between a pair of hubs to
switch to a more detailed view of all the possible subpath connections between the hub pair
(See Figure 4).

Filtering of pathways

Since pathway searches may return tens of thousands of results, user are provided the op-
tion on the left panel of the visualization interface to filter results by compounds, path
length, carbons conserved, and ATP usage (See Figure 5). Users can also interact directly
with the visualization graph by right clicking compounds to filter pathways containing the
right-clicked compound. These filter options allow the user to quickly remove or highlight
pathways, narrowing down the number of results the user must view at once.
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Figure 6: Highlighting ornithine in all pathway search results from glu-
tamate to proline. For the pathway search from glutamate (C00025) to pro-
line (C00148), if the user searches for “ornithine” in the “Find” selection
bar, they will be presented a list of compounds that match their input. They
can then select L-ornithine (C00077) from the “Find” compound selection
list, and it will be highlighted with a bolded salmon-colored outline in the
graph. Users can search for any compound in the graph by entering either
the compound’s common name or KEGG id.

Compounds
Using the compounds filter, the user can specify compounds that they would like to ex-
clude from or include in all displayed pathway results (Figure 5). Users can also right click
compound nodes in the visualization graph and choose to exclude or only include all path-
ways that contain that compound. To locate compounds in the visualization graph by their
common names, the user can use the compound selection bar to highlight the compounds
in the graph (Figure 6).

Novel pathways that were found by the search can be identified by excluding result
pathways that contain specified compounds or by only including result pathways that go
through specific compounds (See Figure 7 for an example with 3-HP search results). This
provides the user an option to quickly remove pathways with features that are not interest-
ing to them without having to look at each pathway individually. The user can also switch
between different compound filters without having to re-run the search.
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Figure 7: Filtering pathway results from pyruvate to 3-HP using com-
pound selections. In the webserver visualization, users can specify which
compounds they would like to include or exclude in pathway results by typ-
ing the KEGG compound ID(s) into the “Filter” text box or by right clicking
the compound node(s) in the graph. For example, for (A) the LPAT path-
way search results between pyruvate (C00022) and 3-HP (C01013), (B)
pathways containing either 3-oxopropanoate (C00222) or propanoyl-CoA
(C00100) can be excluded from the search, reducing the number of pathways
displayed from ninety-six to twelve. (C) For the same pathway search, the
user can require all pathways to contain both 3-oxopropanoate (C00222) and
propanoyl-CoA (C00100), which reduces the number of pathways displayed
from ninety-six to three.
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Interactive sliders
In addition to the compound filter, the user also has access to three interactive sliders to filter
pathways by (1) maximum path length, defined as the number of reactions included in the
pathway, (2) minimum number of carbon atoms conserved between the start compound and
the target compound, and (3) the maximum net number of ATP consumed throughout the
pathway (Figure 5). Path length and atom tracking have been used by several pathfinding
approaches as a heuristic to find biologically feasible pathways. The default maximum
path length is set to the minimum path length found in the results to prevent cases where an
overwhelming number of pathways is initially displayed to the user. The default minimum
carbons conserved is initially set to two carbons, since this filters out inefficient pathways
that may break down the starting compound to single carbon compound intermediates (e.g.,
carbon dioxide) before building back up to the target compound.

Pathways that require less ATP (energy) tend to be more efficient and preferred in
metabolic engineering, so the ability to filter pathways by ATP can narrow down the results
based on energy efficiency. Unlike the previous two sliders, the ATP usage slider includes
both positive and negative integers. Selecting a positive value i, filters out pathways that
produce less than a net amount of i ATP molecules. Selecting a negative value −i, filters
out pathways that consume more than a net amount of i ATP molecules. The default value
for the ATP usage slider is −1, meaning that all pathways that consume more than a net
amount of one ATP molecule will be filtered from the results.

Using the three sliders can significantly reduce the number of pathways displayed to the
user. In some cases, the known pathways are captured at the extremes of the filters. For ex-
ample, the known stachyose synthesis pathway can be recovered by sliding the path length
filter to the minimum path length of three. However, aggressively filtering can exclude
known pathways, such as the case for known lysine pathways (Figure 8). This example il-
lustrates that filters may need to be adjusted by the user to identify all interesting pathways.
Using interactive filtering, users can view a manageable subset of pathways that match their
criteria for identifying feasible pathways.

Table 3: Description of hub tables that were evaluated.
Hub Table Description

20 (O) Selected twenty hub compounds involved as reactants in the most number of
reactions (highest out-degree). Subset of the 50 (O) hub table.

50 (O) Selected fifty hub compounds involved as reactants in the most number of reactions
(highest out-degree). Subset of the 80 (O) hub table.

80 (O) Selected eighty hub compounds involved as reactants in the most number of re-
actions (highest out-degree).

139 (A) 139 hubs used in the Araki et al. [43] study.

50 (IO) Selected fifty hub compounds involved in the most number of reactions (either as
reactants or products, highest degree).

50 (I) Selected fifty hub compounds involved as products in the most number of reactions
(highest in-degree).

50 (R1) and (R2) Two independent sets of fifty randomly selected hub compounds.

Hub table size and selection

The results reported so far were produced using the hub table constructed using fifty hub
compound selected by out-degree, listed as the 50 (O) hub table in Table 3. To ensure the
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Carbons Conserved

Length 2 3

5 3 (0) 2 (0)

7 11 (0) 7 (0)

8 36 (1) 11 (0)

9 166 (3) 22 (1)

10 637 (3) 64 (1)

11 1923 (5) 147 (1)

12 4770 (5) 307 (1)

13 9663 (5) 572 (1)

Max Net ATP Consumed = 1

Figure 8: Filtering pathway results from pyruvate to lysine. The number
of unique pathways found by HPAT from pyruvate to lysine for different
combinations of maximum path length and minimum number of conserved
carbons cutoffs (a maximum net ATP consumed of one is also applied for
all combinations). The number of pathways includes all possible combina-
tions of precomputed subpaths between hub pairs, and the number of known
pathways that can be found using each filtering combination is reported in
parentheses. All five known pyruvate synthesis pathways used as test cases
in this paper are displayed when the max path length = 11 and minimum car-
bons conserved = 2. The visualization of the results for two different filtering
combinations (length=9, carbons conserved=2, and length=11, carbons con-
served=2) are shown on the right.

hub table size and selection of hubs used for this study were reasonable and to observe how
changes to the selected hub compounds affected pathway results, hub tables of varying
sizes (20, 50, and 80 hubs) and varying hub selection criteria were comparatively evaluated
(See Table 3). Three of the hub selection criteria tested were based on the compound’s
connectivity in the metabolic network. Compounds could be selected by (1) largest in-
degree, or how many reactions produced the given compound as a product, (2) largest
out-degree, or how many reactions used the given compound as a reactant, or (3) largest
sum of in-degree and out-degree. Two random hub selections of fifty compounds and the
hub compounds selected by Araki et al. [43] were also included for the sake of comparison
with the hub selections based on connectivity.

The overlap of the different hub compound selections used to construct these hub tables
are illustrated in Figures 9 and 10. All hub tables had some overlap in hub compounds with
the other tables. Thirty eight hub compounds are shared between the top 50 out-degree (O)
hub table and 139 (A) hub table. The top 50 in-degree (I) hub table and the 50 (O) hub table
share twenty one hub compounds. All hub compounds in the top 50 combined in-degree
and out-degree (IO) hub table are contained within either the I table or O table and contains
about the same number of hub compounds from both tables.
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Figure 9: Overlap of hub compounds between the 20 (O), 50 (O), 80 (O),
and 139 (A) hub tables. Though there are a few compounds contained in
the out-degree hub table which are not included in the 139 (A) hub table,
there is a significant overlap between the out-degree tables and the hub table
constructed from the list of hub compounds taken from Araki et al. [43].
There are 68, 38, and 14 compounds shared between the 139 (A) hub table
and the 80 (O), 50 (O), and 20 (O) hub tables respectively.

The two hub tables constructed from randomly selected hub compounds shared no over-
lap with each other. The 50 (R1) table has one hub (C00235) that is in the 50 (O) and 80
(O) tables and another hub (C00002) that is shared with the 139 (A) table. The 50 (R2)
table has one hub (C00270) that is in the 50 (O), 80 (O), and 139 (A) tables. Otherwise,
there were no other overlaps with the R1 and R2 tables.

After running hub searches using the 20, 50, and 80 (O) tables to find the canonical
pathway test cases, the F1 scores of all the searches are relatively similar with the exception
of three test cases: two (D-glucarate and 1,3-propanediol) where the search using the 80
(O) table fails to find the canonical pathway while the searches using the 20 and 50 (O)
tables successfully identify the canonical pathway and one (3-HP, III) where search using
the 80(O) table finds the known pathway and the searches using the 20 and 50 tables do not
(See Table 4). Though it seems counter-intuitive that the larger 80 hub table fails to find a
few canonical pathways that are identified by the smaller 20 and 50 hub tables, having a
larger number of hub compounds increases the chances of the precomputed hub network
being used during the online search, which can fail to find the known pathway due to not
including the first or last hub compound of the known pathway as a hub closest to the
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Figure 10: Overlap of hub compounds between the 50 (O), 50 (IO), and
50 (I) hub tables. The three hub tables share twenty one hub compounds.
The hub compounds in the IO hub table are all encompassed by either the O
or I tables. The O hub table has sixteen unique hub compounds and thirteen
hub compounds shared with the IO table, but not the I table. The I hub table
has thirteen unique hub compounds and sixteen hub compounds shared with
the IO table but not the O table.

start / target compound (see “Reasons for missing some canonical pathways” section in
Discussion for more details).

The search time typically ranged from seconds to a few minutes across all hub tables.
Both the median and average total search time was lowest for the 80 (O) hub table and
highest for 20 (O) hub table (see Supplementary Table S7). When looking at only the hub-
to-hub search time, the time increases with the hub table size (see Supplementary Table S8).
However, increasing the hub table size also increases the likelihood of the start compound
being a hub compound, which reduces the search time in two ways: (1) the start to hub
search is not required, since the start compound is already in the hub table and (2) starting
with a hub compound significantly reduces the search time for the hub to target compound,
since there are fewer variations of carbons conserved. Because of this, the search time, on
average, is less for the largest hub table than the mid-sized and small hub tables.

The 20, 50, and 80 (O) hub tables were also compared based on their coverage of reac-
tions present in KEGG pathway modules, a curated list of pathways featured by KEGG as
central to metabolism across organisms. A reaction in a KEGG pathway module is consid-
ered “covered” by a hub table if the reaction is present in at least one precomputed subpath
stored in the hub table. An increasing number of reactions across KEGG modules are cov-
ered as the size of the hub table increases; however, the increase between the 20 and 50
hub table is larger than between the 50 and 80 hub table (see Table 5 for more details).
These trends remained the same when examining the reaction coverage of the forty eight
KEGG pathway modules that specifically correspond to the reaction modules found across
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Table 4: F1 scores of hub tables of different sizes and hub selections for the
known pathway test set, where an F1 score of one indicates that the HPAT
search found the exact known pathway. The closer the F1 score is to one,
the more similar the found pathway’s reactions are to that of the canonical
pathway. The different suffixes in column names indicate how hubs were
selected: IO, sum of in- and out-degree; A, from Araki et al. 2015; O, out-
degree; I, in-degree; Rn, randomly.

Number of Hubs
20 (O) 50 (O) 80 (O) 139 (A) 50 (IO) 50 (I) 50 (R1) 50 (R2)

Pyruvate → Lysine I 1.00 1.00 1.00 1.00 1.00 0.67 0.70 0.70
Pyruvate → Lysine II 1.00 1.00 1.00 1.00 1.00 0.67 0.70 0.70
Pyruvate → Lysine III 1.00 1.00 1.00 1.00 1.00 0.61 1.00 1.00
Pyruvate → Lysine IV 1.00 1.00 1.00 1.00 1.00 0.61 0.78 0.78
Pyruvate → Lysine V 1.00 1.00 1.00 1.00 1.00 0.10 0.30 0.30
Glutamate → Proline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UDP-Galactose → Stachyose 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
alpha-D-glucose → Phenylpyruvate 0.71 0.71 0.71 0.62 0.74 0.71 0.71 0.71
alpha-D-glucose → Dopamine 0.76 0.59 0.59 0.60 0.65 0.76 0.76 0.76
Pyruvate → 3-HP, I 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pyruvate → 3-HP, II 0.38 0.50 0.50 0.50 0.50 0.60 0.33 0.33
Pyruvate → 3-HP, III 0.55 0.60 1.00 1.00 0.60 1.00 0.78 0.78
Pyruvate → 3-HP, IV 0.38 0.42 0.50 0.50 0.43 1.00 0.71 0.71
Pyruvate → 3-HP, V 0.40 0.36 0.36 0.36 0.36 0.36 0.40 0.40
Pyruvate → 3-HP, VI 0.36 0.36 0.18 0.18 0.36 0.67 0.36 0.36
Pyruvate → 3-HP, VII 0.36 0.53 0.77 0.77 0.53 0.77 0.50 0.50
Glucose → Glucaric acid 1.00 1.00 0.38 0.44 0.21 1.00 1.00 1.00
alpha-D-glucose → 1,3-propanediol 1.00 1.00 0.57 0.89 1.00 1.00 1.00 1.00
Tryptophan → Melatonin 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5: The percentage of the 310 KEGG pathway modules that had all of
their reactions, at least half of their reaction, and none of their reactions con-
tained by hub tables constructed with varying numbers and selections of hub
compounds. The KEGG pathway modules represents well-documented and
important metabolic pathways that ideally should be covered by the precom-
puted subpaths stored in hub tables. The different suffixes in column names
indicate how hubs were selected: IO, sum of in- and out-degree; A, from
Araki et al. 2015; O, out-degree; I, in-degree; Rn, randomly.

Different hub tables
20 (O) 50 (O) 80 (O) 139 (A) 50 (IO) 50 (I) 50 (R1) 50 (R2)

All 19.35 26.77 32.58 34.52 24.84 28.71 13.23 20.00
At least half 42.90 54.19 61.61 63.55 53.23 56.13 35.16 45.48
None 37.42 26.13 23.55 18.06 31.29 30.00 42.58 35.16

many known pathways identified by [29] (see Supplementary Table S6). This suggest that
though increasing the size of the hub table does increase the number of KEGG module
reactions contained in the hub table’s precomputed subpaths, there are diminishing returns
for increasing the number of hub compounds. In the end, the hub table constructed with 50
hubs was chosen for this study, since the 50 hub table both covered a more sizable number
of reactions in the KEGG modules than the 20 hub table while also enabling the hub search
to find more canonical pathways than the 80 hub table.

Similar to the different hub table sizes, the three hub selections (O, I, and IO) described
in Table 3 were compared based on finding the canonical pathway test cases. The size
of the hub tables were all fixed at 50 hub compounds. The search using the 50 (O) hub
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table was able to find the canonical pathways for eleven out of nineteen test cases, whereas
the search using the 50 (I) and the 50 (IO) tables found eight and ten canonical pathways
respectively (Table 4). The differences between these three hub selections were due to
the start and/or target compound being included in the hub compounds list for one hub
selection but not included for the others. As a result, any failure to identify the closest hub
compounds to the start or target compound (which is the first step in the hub search, see
Figure 1(c) and the “First and Last Hubs Selection” section in Methods for more details)
would unequally impact the F1 scores. For example, both the start and target compound in
the lysine pathways were hub compounds for the 50 (O) and 50 (IO) hub tables, but not
the 50 (I) table. The hub search meta-algorithm did not identify the correct closest hub for
the search using the 50 (I) table, resulting in the search not finding the canonical pathways.
Meanwhile, since the start and target compound were hubs for the 50 (O) and 50 (IO)
tables, the canonical pathways were able to be found in these cases.

All three of the hub selections had comparable coverage of the KEGG module reactions
and had higher coverage than that of the hub tables constructed using randomly selected
hub compounds when looking at all 310 KEGG pathway modules (see Table 5). However,
when looking at only the KEGG pathway modules that correspond to reaction modules
identified by [29], the out-degree hub selection covered more KEGG module reactions than
the in-degree and the total degree selections (see Supplementary Table S6). Search times
for the hub tables varied for each test case and in almost all cases range from a few seconds
to a few minutes. None of the three curated hub selections resulted in a significantly lower
total search time compared to the others across all the pathway test cases (Supplemental
Table S7). For this study, the 50 (O) hub table was used since this table enabled the search
to find the most canonical pathways.

The 139 (A) hub table constructed based on the hub compounds in Araki et al. [43] had
the highest coverage of KEGG modules. Though the 139 (A) table showed significantly
wider coverage of the KEGG pathway modules corresponding to reaction modules (85.42%
of these KEGG modules were at least partially covered by the 139 (A) table while all the
other hub tables only partially covered 42-44%), in most cases the coverage of the 139 (A)
table was not significantly different from the 80 (O) table.

The number of pathways found for each pathway test case by the hub search using the
different hub tables are in Supplemental Table S9. The number of pathways are recorded
for no hub / single hub search (Figure 1(a) and (b)), and the start to hub, hub to hub, and
hub to target components of the hub search (Figure 1(c)). Both the smaller hub tables (i.e.,
20 (O)) and the hub tables constructed using randomly selected hubs tend to have a larger
number of no hub / single hub pathways and a smaller number of hub to hub pathways than
the larger hub tables (i.e., 80 (O) and 139 (A)), illustrating that the hub to hub search is
more actively used when the hub tables contain a large number of highly-connected hubs.

Discussion
This paper outlines the first steps to taking advantage of repeated, common subpaths in
the metabolic network and utilizing these subpath modules to improve the organization of
pathway results identified by metabolic pathfinding approaches. HPAT was shown to find
more known pathways than LPAT by using a diverse collection of precomputed subpaths.
The capability of HPAT to find novel pathways was illustrated through the alternative 3-
HP pathways identified by the search. The paper also introduces a new way to visualize
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pathway results as a single interactive graph, where subpaths between hub compounds can
be expanded or hidden from view to simply visualization. Filtering tools enable users to
quickly sift through pathway results without having to click individually through a list of
pathways or rely on a pre-determined ranking heuristic to present the best results.

Reasons for missing some canonical pathways

Though the HPAT meta-algorithm recovered many of the known pathways in the test set,
a few known pathways were not found due to a failure of the HPAT meta-algorithm to
identify the correct first or last hub in the pathway. The identification of closest hubs is
based on the assumption that the hub compounds with the highest chemical similarity score
to the start and target compounds would be the most likely hub compounds included in the
pathway result (See subsection “First and Last Hubs Selection” in Methods).

As seen in the results, the structure of the first or last hub compound may not neces-
sarily resemble the start or the target compound respectively due to (1) an addition of a
coenzyme or large structural addition along the way (i.e. coenzyme-A) or (2) the hub com-
pound present in the known pathway is many reactions away from both the start and the
target compound. In these cases, the heuristic is unable to identify the correct closest hub
compound.

One alternative method is to directly identify the hub compounds that are the least re-
actions away from the start and the target, using a breadth first search. Though it would
take more time to compute, this approach would be able to find closest hubs with chemical
structures that differ significantly from the start and target compounds.

Another promising option is to use the chemical similarity measure to identify a recom-
mended set of closest hub pathways, then provide the user the option to add or remove hub
compounds to the recommended set before performing the hub search. This allows the user
to provide expert guidance on which closest hubs should be explored in the search, while
also presenting the user with a smaller subset of recommended hub compounds so that the
user does not need to examine all possible hub compounds.

Conservation of carbon atoms

All the metabolic pathfinding experiments described in this paper had the constraint of
conserving at least two carbon atoms from the start compound to the target compound.
When using the term ‘conservation’ we are specifically referring to retaining a subset of
carbon atoms present in the starting compound through each biochemical transformation
in the pathway through to the final target compound. Conserving some minimum number
of carbon atoms throughout the pathway is done to ensure that the start compound is being
utilized in production of the target compound, and this heuristic has been used by several
existing metabolic pathfinding methods [12, 44, 10, 45, 9, 19, 17]. However, if the number
of atoms conserved throughout the pathway is relatively small compared to the number of
atoms in the start compound or target compound, the carbon conservation heuristic may not
be as effective at preventing the search from finding infeasible pathways, since the search is
still able to find pathways that break down the start compound to a much smaller compound
(i.e., CO2) then build that compound back up to produce the target compound.

There are a few ways to prevent the search from including unnecessary build up / break
down steps in the pathway results. First, the user of the hub pathway search has the choice
to maximize the number of carbons conserved throughout the pathway, so that all pathways
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found by the hub pathway search conserve the largest possible numbers of carbon atoms
from start to target compound. Another option that can be easily made available is for
the user to specify what percentage of carbon atoms that exist in the start compound or
target compound should be conserved throughout the pathway. This way, a larger number
of carbon atoms are conserved when the start and target compounds are large, preventing
the search from finding pathways with unnecessary break down / build up steps, while
also accounting for scenarios where the start compound or target compound is small, and
conserving only one or two carbon atoms will not cause the search algorithm to find lengthy
infeasible pathways.

Hub compound selection

The selection of hub compounds used in the hub table can have a significant impact on
how frequently the hub table is utilized in the search. When hub compounds were selected
randomly, the hub table was often not used in finding the canonical pathways since no
feasible pathways passed through the precomputed paths. Meanwhile, when the hub com-
pounds were selected by their degree of connectivity with other compounds, the hub table
was used for finding more than half the canonical pathways. Increasing the number of hubs
also increases the use of the hub table in searches, which in some cases, had a negative
effect on the F1 score when the chemical similarity heuristic did not identify the correct
first or last hub compound. As a result, increasing the hub table size did not result in better
F1 scores for finding canonical pathways even though larger hub tables had more coverage
of the KEGG modules and KEGG reactions than smaller hub tables.

Improvements to visualization

Metabolic pathfinding has many potential applications, from suggesting new pathways for
metabolic engineering to help with understanding the metabolic space in multi-species
communities. It is essential for these tools to be flexible and interactive, so users can quickly
find the information that they are seeking. To this end, better organization and visualization
of predicted pathways will enable further development and utilization of the available,
rapidly growing metabolic information.

The sliding filters in the web server visualization allow for more flexible user interac-
tion with the pathway search results; however, there are several improvements that could
be made for an easier user experience. For example, the layout of the pathways can be
intimidating to users, especially for large pathway graphs which often resemble a hair-
ball of nodes and edges. One solution to visualizing a complex, disorganized network
of predicated pathways is to utilize an existing scaffold for organization. This could be
accomplished by overlaying the predicted pathways on curated representations of global
metabolic networks, such as those from KEGG, which have been designed to minimize
overlapping paths and to facilitate pathway navigation. Alternatively, introducing more hi-
erarchical elements described in [31] could further condense the graph while still giving
the user a feel of the connectivity and scope of the network.

More interactive filters based on other common search heuristics can be added to the
webserver to allow the user to narrow the search. For example, an organism-based filter
could allow users to view pathways that only contain enzymatic reactions from specific or-
ganisms of interest. A filter based on thermodynamic (∆G) cutoffs could also be included
for users to remove pathways that contain enzymatic reactions with unfavorable thermody-
namics.
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Standardization and Integration

The Hub Pathways Webserver is currently a stand-alone tool, to gather feedback from the
community. Such feedback and the availability of the code will drive further in-depth devel-
opment. Ultimately, the development of an open-source suite of metabolic pathway visual-
ization tools will help insure the sustainability and continued usage of these visualization
tools over the years. In the future, it would be ideal for the Hub Pathways Webserver to be
modulized such that the webserver’s functionalities can be seamlessly integrated with and
supported by existing, well established open-source network visualization softwares like
Escher [46] and Cytoscape [47]. Utilizing common standardized formats for compounds
and reactions (i.e., SBML, MDL mol, and MDL rxn files) as inputs to the webserver could
also bolster the webserver’s utility to the community. Realizing these changes is an ongo-
ing process, and feedback and collaboration from the community is encouraged to achieve
a more integrated and standardized environment for visualizing novel pathways.

Future directions

The current hub search method only explores linear pathways, which tracks the conver-
sion of a single compound throughout the pathway. However, most metabolic pathways
are more accurately represented as branching paths and require multiple intermediate com-
pounds at each enzymatic reaction step. The easiest way to introduce branched pathways
into the hub search is to identify potential merge points between subpaths connecting a
pair of hubs, similar to how the BPAT-M algorithm [48] finds branched pathways by merg-
ing linear pathways with the same start and target compound. Identifying potential branch
pathways that help to feed by-product compounds back into the main pathway can result
in a significant improvements in production. This is illustrated in a recent study by South
et al. [49], where crops were modified to have an alternate metabolic pathway that more
efficiently recycled unproductive side intermediates of photosynthesis and subsequently
showed a 40% increase in biomass in the field.

In this paper, the metabolic pathfinding problem is framed as a graph-search problem sim-
ilar to LPAT and BPAT [9]. However, there are other well-studied methods for identifying
metabolic pathways, including constraint-based optimization methods. In order to better
compare the performance of the hub search method with existing optimization approaches,
the next step is to frame the hub pathway search approach presented in this paper as an
optimization problem. This step could also facilitate the incorporation of more advanced
properties such as taking into account steady state mass balance constraints.

Beyond its applications in metabolic pathfinding, the set of hub compounds identified
in this study could be used as a tool to compare and describe the structure and proper-
ties of metabolic networks from different organisms or communities. For this paper, all
compounds and reactions in the KEGG database were included in the searched metabolic
network. However, there are cases where only a subset of the available reactions (i.e., only
reactions from a specific species or community of organisms) are of interest to the user.
The complexity and properties of the metabolic network composed of this subset may sig-
nificantly differ from the entire known metabolome and other subsets of the metabolic
network. Examining how the selection of hub compounds differ for a range of organisms,
and which hub compounds are ubiquitous across all species, could lead to more insights
about the roles these compounds play in metabolism. Also, assuming that the precomputed
paths between hub compounds are a good representation of common metabolic modules
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across species, identifying which organism(s) contain the most of these precomputed sub-
paths could be a way to identify potential chassis organisms for metabolic engineering.
This study’s initial exploration on how to select hub compounds and construct precom-
puted hub tables containing common metabolic modules serves as a good starting point for
examining different organisms and communities in the future.

Conclusion
The HPAT meta-algorithm takes advantage of the modularity of metabolic pathways by
precomputing short subpaths (containing no more than ten reactions) that conserve carbon
atoms between common hub compounds, and organizing these subpaths as a hub table for
quick lookup during the graph-based search. The HPAT meta-algorithm was able to find
a variety of known pathways and demonstrated its capability to find novel pathways. The
interactive visualization of result pathways by the Hub Pathways Webserver enables users
to filter pathways using intuitive heuristics, giving them more control over which pathways
they see. Users also gain the flexibility to view a wide range of pathways without having to
decide on cutoff parameters before the search.

Methods
The hub pathway search meta-algorithm with atom tracking (HPAT) uses a graph-based
atom tracking search approach for finding metabolic pathways. HPAT consists of an offline
component, where paths between hub compounds are precomputed and stored in a hub ta-
ble, and an online component, where the hub table is utilized for pathway search. Subpaths
between hub compounds are assumed to appear frequently in pathway search results, since
hub compounds are the substrates or products of a large number of enzymatic reactions. By
precomputing and storing these subpaths, pathways between any pair of hub compounds
can be easily explored and added to a pathway search. These precomputed subpathways
are indexed by both the hub pair and the uniquely conserved carbon atom tuples for faster
look-up.

Offline Component: Precomputation of hub pathways

To construct the hub table, hub compounds must first be selected from the pool of known
metabolites. Hub compounds are defined as key metabolites found across multiple path-
ways, such that we would expect many pathways to contain subpaths between two or more
hub compounds. If the metabolic network is represented as a bipartite graph of compound
nodes and reaction nodes, hub compounds can be identified as compound nodes connected
with many reaction nodes. Three hub selections based on the in-degree, out-degree, and
combined degree of compounds were used to construct the O, I, and IO hub tables described
in the Results section. These hub selections were determined by ranking each KEGG com-
pound by the number of reactions that contained the compound as a reactant and/or product
(see Figure 11), then selecting the compounds that were involved in the largest number of
reactions.

Before hub compounds were selected, a set of KEGG compounds that would not make
good hub compounds were removed from consideration based on a list of pre-determined
rules (see Supplementary Table S1). These removed compounds include currency metabo-
lites and side compounds that are used to provide energy or to balance the reaction but do
not contribute any carbon atoms to the target compound.
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Figure 11: The number of reactions each compound in KEGG participates
in as (A) a reactant (out-degree, used for O tables), (B) a product (in-degree,
used for I tables), or (C) as a reactant or a product (total degree, used for IO
tables). As illustrated in all three of the graphs, there are a few compounds
that are involved in a large number of reactions, whereas the majority of
compounds take part in only a handful of reactions.
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Figure 12: The organization of the hub table for a pair of hubs. Hub 1
is the compound to the bottom left and hub 2 is the compound to the bot-
tom right. Each hub compound has numbered carbon atoms corresponding
to the mappings displayed in the hub table. Individual rows in the table rep-
resent a unique tuple of carbons conserved between hub 1 and hub 2, where
the carbon numbers of hub 1 in the first column correspond with the car-
bon numbers of hub 2 in the second column. The third column contains all
the subpaths between hub 1 and hub 2 that are grouped under this tuple of
conserved carbons.

Hub table construction

The hub table is constructed by running a linear pathway search between each possible pair
of hubs using the Linear Pathfinding with Atom Tracking algorithm (LPAT) from Heath et
al. [9]. All precomputed subpaths were required to conserve at least two carbon atoms (or at
least one carbon atom, if the start or end hub compound contain only one carbon). To limit
the size of the hub table, all paths stored in the hub table are ten or less reactions long, and
a conditional maximum of one hundred subpaths are stored per hub pair. The maximum of
one hundred subpaths may be exceeded only if all subpaths stored in the hub table conserve
a unique set of carbon atoms, to ensure that all possible variations of conserved carbon sets
are present in the hub table.

In addition to the start and target compound, LPAT also takes several adjustable input
parameters, including the minimum number of carbon atoms to conserve, the number of
shortest pathways to return (K), the maximum search depth, and whether or not to consider
all reactions as reversible. The values used for these parameters can be found in Supple-
mentary Table S2. Although LPAT is used in this study, the HPAT meta-algorithm can be
generalized to use any linear pathfinding method with atom tracking to find precomputed
pathways.

All precomputed subpaths between hub compounds are stored in the hub table. The sub-
paths are indexed first by hub pair and then by the tuples of conserved carbons from the start
hub to the end hub (Figure 12), which were tracked by the LPAT algorithm. Indexing sub-
paths by hub pair enables the HPAT meta-algorithm to quickly access all possible subpaths
given a start hub and an end hub. The subpaths are further organized by tuples of carbon
atoms conserved so the HPAT meta-algorithm can look up subpaths that conserve the re-
quired number of carbon atoms during the online search step. Indexing subpaths by tuples
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of carbons conserved can condense a list of a hundred subpaths to two or three groups of
subpaths. For this study, the precomputation and organization of subpaths for all hub tables
were performed on a Rice cluster, with each hub table taking a few hours to compute.

Online Component: Pathway search

The online component of the hub search draws on both the linear pathway search and
the precomputed hub table. The hub search separately explores three types of pathways:
(1) pathways containing no hub compounds, (2) pathways containing one hub compound,
and (3) pathways containing at least two hub compounds (See Figure 1 in Results). These
pathways are found separately because for finding pathways containing one or no hub
compounds, the precomputed network is not used for the search, while for finding pathways
containing two or more hubs, the precomputed network is used.

A linear pathway search which excludes all hubs in the network is first run to find path-
ways with no hubs. Second, linear pathway searches which exclude all hubs except a single
hub compound are run to find pathways with only one hub. The single hub searches are
limited to only the n hubs that are closest to the start compound or to the target compound
based on chemical similarity. Similar to the hub table construction step, the hub pathway
search takes several input parameters to adjust the breadth of the search, including the max-
imum number of hubs in a hub pathway and the maximum number of reactions in a hub
to hub path. The values used for the input parameters are described in the Supplementary
Table S3.

First and Last Hubs Selection

Start and end hub compounds were identified using the KEGG SIMCOMP similarity mea-
sure [50]. SIMCOMP is a graph-based method for scoring the structural similarity between
compounds. The compound structure is represented by a graph with atoms represented as
nodes and bonds represented as edges. SIMCOMP identifies the maximal cliques between
compound graphs by comparing either the atom nodes or the bond edges, then calculat-
ing the similarity score as the number of nodes or edges matched between the compound
graphs divided by the total number of nodes or edges present in the smaller compound.
SIMCOMP also incorporates biochemical features (i.e., chirality) into the final similarity
score. We assume that hub compounds that are structurally similar to the start compound
or the target compound are more likely to be part of a feasible pathway connecting the
two compounds. SIMCOMP was used to rank the similarity of all hub compounds to the
start compound of the search, as well as the target compound. In this study, the three hub
compounds with the top SIMCOMP similarity scores to the start compound were selected
as the first hubs, and likewise, the three hub compounds with the top SIMCOMP similarity
scores to the target compounds were selected as the last hubs in the search. By limiting
the search to the top three scoring start hubs and last hubs, we can reduce the scope of
the search to completely explore all possible paths going through the selected first hubs
and last hubs instead of having to exhaustively search through all combinations of hubs.
However, the number of closest hub compounds can be raised to obtain more diverse result
pathways.

List of abbreviations
3-HP — 3-hydroxypropanoate
ATP — Adenosine triphosphate
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KEGG — Kyoto Encyclopedia of Genes and Genomes
HPAT — Hub Pathway Search with Atom Tracking
LPAT — Linear Pathway Search with Atom Tracking
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Table S1: A list of all the exclusion rules used to curate the hub compound
list. The left column provides the rule description, while the right column
provides a list of compounds (with KEGG ids) that were removed due to the
corresponding rule.

Rule Compounds excluded

Avoid deoxynucleic acids dATP(C00131), dTDP(C00363), dADP(C00206)

Closely related to periphery compound (gernyl
diphosphate)

trans,trans-Farnesyl diphosphate(C00448)

Exclude generic compounds Fatty acid(C00162),Oxidized rubredoxin(C00435),
NDP(C00454),Phosphatidate(C00416),
Dolichyl phosphate(C00110),Hydroquinone(C15603),
1-Acyl-sn-glycero-3-phosphocholine(C04230),
2-Acyl-sn-glycero-3-phosphocholine(C04233),
tRNA(C00066),DNA(C00039),Halide(C00462),
Polyphosphate(C00404),Acceptor(C00028),
RNA(C00046),1,2-Diacyl-sn-glycerol(C00641),
2-Oxo acid(C00161),Phosphatidylcholine(C00157),
Protein(C00017),N-Acylsphingosine(C00195),
Protein N(pi)-phospho-L-histidine(C04261),
Phosphatidylethanolamine(C00350),
Alcohol(C00069),Aldehyde(C00071),
Nucleoside triphosphate(C00201),
Carboxylate(C00060),Thioredoxin(C00342),
Protein histidine(C00615),L-Amino acid(C00151),
Reduced acceptor(C00030)

Exclude intermediately phosphorylated nucleotides GDP(C00035), GTP(C00044), CTP(C00063),
UTP(C00075), ITP(C00081), UDP(C00015),
IDP(C00104), CDP(C00112)

Must contain carbon H2O(C00001), Oxygen(C00007), H+(C00080),
Orthophosphate(C00009), Ammonia(C00014),
Diphosphate(C00013),Nitrite(C00088),
Hydrogen peroxide(C00027),Nitrate(C00244),
Sulfate(C00059),e-(C05359),hn(C00205),
Sulfite(C00094),Hydrogen sulfide(C00283),
Hydrochloric acid(C01327),Cl-(C00698)

No activated sugars/polymeric carbohydrates UDP-N-acetyl-alpha-D-glucosamine(C00043),
CMP-N-acetylneuraminate(C00128),
UDP-alpha-D-galactose(C00052),
GDP-L-fucose(C00325),GDP-mannose(C00096),
UDP-glucuronate(C00167),UDP-glucose(C00029),
dTDP-L-oleandrose(C11921),
UDP-N-acetyl-D-galactosamine(C00203),
UDP-L-rhamnose(C02199),Amylose(C00718)

No coenzymes/cofactors/redox carriers that don’t
transfer carbon

NADPH(C00005),NADP+(C00006),
NADH(C00004),NAD+(C00003),FMN(C00061),
ATP(C00002),ADP(C00008),CoA(C00010),
3’-Phosphoadenylyl sulfate(C00053),
FADH2(C01352),FAD(C00016),
Reduced FMN(C01847),Ascorbate(C00072),
Tetrahydrobiopterin(C00272),
Adenosine 3’,5’-bisphosphate(C00054),
Ferrocytochrome c(C00126),
Pyridoxal phosphate(C00018),
Reduced ferredoxin(C00138),
Reduced flavoprotein(C03024)

No enzymes/proteins Reduced adrenal ferredoxin(C00662),
Enzyme N6-(lipoyl)lysine(C15972),
Reduced rubredoxin(C00340),
Thioredoxin disulfide(C00343),
Ferricytochrome c(C00125),
Oxidized ferredoxin(C00139),
Acyl-carrier protein(C00229),
Malonyl-[acyl-carrier protein](C01209),
Oxidized flavoprotein(C03161),
Oxidized adrenal ferredoxin(C00667)

No xenobiotics Trichloroethene(C06790)
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Table S2: Hub table construction parameters. Values of the input parame-
ters used for precomputing subpaths for all the hub tables in this paper.
*: Note that the maximum number of paths to store between hub pairs may be exceeded when

all subpaths conserve a unique set of carbons.

Parameter Value

Max number of reactions between hubs 10
Max number of paths between hubs to store 100*

K shortest paths 1,000,000
All reactions treated as reversible No

Search depth 100,000
Min carbons conserved 2

Table S3: Hub pathway search parameters. Values of the input parameters
used for the hub search. These values can be adjusted to increase the number
and diversity of pathways found.
*: The number of reactions in a hub to hub path is calculated based on the shortest possible

precomputed subpaths between each pair of hub compounds. As such, the hub search can still

find pathways that have more reactions than the specified max limit as long as those pathways

are variants of a hub pathway that meets the specified reaction limit.

Parameter Value

Max number of hubs in pathway 10
Max number of reactions in a hub to hub path 10*

Number of closest start and end hubs 3
K shortest paths 1,000,000

All reactions treated as reversible Yes
Search depth 10,000

Min carbons conserved 2

Table S4: LPAT search parameters. Values of the input parameters used for
the LPAT search as a comparison to HPAT. These values were chosen to be
comparable to the parameters used in the HPAT search.

Parameter Value

K shortest paths 1,000,000
All reactions treated as reversible Yes

Search Depth 10,000
Min carbons conserved 2
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Table S5: An illustration of which steps of hub search (as shown in Figure 1)
would find the canonical pathway for each of the pathway test cases using
the different hub tables. For combinations marked with an “A,” the canoni-
cal pathway is found by the no-hub search. For combinations marked with a
“B,” the single hub search is required to find the canonical pathway, and for
combinations marked with a “C,” the canonical pathway would be found by
the hub-to-hub search. Combinations that are also marked with a * indicate
that the hub search failed to find the canonical pathway in this case. Hub
tables constructed with more hubs must more frequently use the hub to hub
search to find canonical pathways, while the hub tables constructed with a
random selection of hubs do not use the hub to hub search to find the canon-
ical pathways. The different suffixes in column names indicate how hubs
were selected: IO, sum of in- and out-degree; A, from Araki et al. 2015; O,
out-degree; I, in-degree; Rn, randomly.

Hub table used to find canonical pathway
20 (O) 50 (O) 80 (O) 139 (A) 50 (IO) 50 (I) 50 (R1) 50 (R2)

Pyruvate → Lysine I C C C C C C* A* A*
Pyruvate → Lysine II C C C C C C* A* A*
Pyruvate → Lysine III C C C C C C* A A
Pyruvate → Lysine IV C C C C C C* A* A*
Pyruvate → Lysine V C C C C C C* A* A*
Glutamate → Proline A A C A A A A A
UDP-Galactose → Stachyose A A A A A A A A
alpha-D-glucose → Phenylpyruvate A* B* B* C* C* C* A* A*
alpha-D-glucose → Dopamine B* C* C* C* C* C* A* A*
Pyruvate → 3-HP, I A A A A A A A A
Pyruvate → 3-HP, II C* C* C* C* C* C* A* A*
Pyruvate → 3-HP, III C* C* C C C* C A* A*
Pyruvate → 3-HP, IV C* C* C* C* C* C A* A*
Pyruvate → 3-HP, V A* C* C* C* C* C* A* A*
Pyruvate → 3-HP, VI A* C* C* C* C* C* A* A*
Pyruvate → 3-HP, VII A* C* C* C* C* C* A* A*
Glucose → Glucaric acid A A C* C* C* C A A
alpha-D-glucose → 1,3-propanediol A B C* C* C C A A
Tryptophan → Melatonin A A A A A A B A
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Table S6: The percentage of the forty eight KEGG pathway modules cor-
responding to the reaction modules identified by [29] that had all of their
reactions, at least half of their reaction, and none of their reactions con-
tained by hub tables constructed with varying numbers and selections of hub
compounds. The different suffixes in column names indicate how hubs were
selected: IO, sum of in- and out-degree; A, from Araki et al. 2015; O, out-
degree; I, in-degree; Rn, randomly.

Different hub tables
20 (O) 50 (O) 80 (O) 139 (A) 50 (IO) 50 (I) 50 (R1) 50 (R2)

All 22.92 33.33 37.50 39.58 29.17 25.00 14.58 12.50
At least half 35.42 41.67 47.92 56.25 37.50 37.50 29.17 35.42
None 47.92 45.83 41.67 14.58 45.83 47.92 45.83 47.92

Table S7: Total time of searches using hub tables of different sizes and hub
selections for the known pathway test set, run on an Intel Core i7-4790 with
16 GB RAM. The different suffixes in column names indicate how hubs
were selected: IO, sum of in- and out-degree; A, from Araki et al. 2015; O,
out-degree; I, in-degree; Rn, randomly.

Time (s)
20 (O) 50 (O) 80 (O) 139 (A) 50 (IO) 50 (I) 50 (R1) 50 (R2)

Pyruvate → Lysine 10 16 38 42 153 20 146 811
Glutamate → Proline 54 46 14 35 55 40 231 250
UDP-Galactose → Stachyose 461 794 188 120 140 191 476 167
alpha-D-glucose → Phenylpyruvate 461 637 231 74 129 95 850 339
alpha-D-glucose → Dopamine 468 65 61 19 106 129 8152 461
Pyruvate → 3-HP 76 54 128 116 73 60 150 1286
Glucose → Glucaric acid 60 88 68 131 115 644 104 620
alpha-D-glucose → 1,3-propanediol 698 486 235 59 142 60 924 172
Tryptophan → Melatonin 1124 96 59 77 182 865 1175 211

Average 379 254 114 75 122 234 1357 480
Median 461 88 68 74 129 95 476 339

Table S8: Times for the hub-to-hub part of the hub search, using hub tables
of different sizes and hub selections for the known pathway test set. The
different suffixes in column names indicate how hubs were selected: IO, sum
of in- and out-degree; A, from Araki et al. 2015; O, out-degree; I, in-degree;
Rn, randomly.

Time (s)
20 (O) 50 (O) 80 (O) 139 (A) 50 (IO) 50 (I) 50 (R1) 50 (R2)

Pyruvate → Lysine 1 9 30 37 31 12 0 1
Glutamate → Proline 2 11 10 24 7 10 0 1
UDP-Galactose → Stachyose 7 4 46 41 20 17 0 1
alpha-D-glucose → Phenylpyruvate 0 20 84 49 19 17 0 2
alpha-D-glucose → Dopamine 1 9 34 17 21 20 0 1
Pyruvate → 3-HP 2 18 75 107 28 26 0 2
Glucose → Glucaric acid 1 9 43 57 23 21 0 3
alpha-D-glucose → 1,3-propanediol 1 14 77 50 16 12 0 1
Tryptophan → Melatonin 6 13 41 70 29 26 0 1

Average 2 12 49 50 22 18 0 1
Median 1 11 43 49 21 17 0 1
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Table S9: Number of pathways found for the (1) no hub / single hub part
of the search and (2) the hub-to-hub part of the search, using hub tables of
different sizes and hub selections for 19 pathway test set. For the hub-to-hub
pathways, unique combinations of hub pairs that conserve different sets of
carbons are counted as individual pathways; however, the different combi-
nations of subpaths between hub pairs are not counted as separate pathways.
For example, given hub compounds H1, H2, and H3, (1) H1 →H2 and H1
→H3 are counted as separate pathways, (2) H1→H2 conserving two car-
bon atoms and H1→H2 conserving a different set of two carbon atoms are
counted as separate pathways, but (3) any subpath variations between H1
and H2 (i.e., H1 →N1 →H2 and H1 →N2 →H2, where N1 and N2 are
non-hub compounds) are not counted as separate pathways, given that they
conserve the same carbon atoms from H1 to H2. The different suffixes in col-
umn names indicate how hubs were selected: IO, sum of in- and out-degree;
A, from Araki et al. 2015; O, out-degree; I, in-degree.

Number of pathways
No hub / Start Hub to Hub to

single hub to hub hub target

Pyruvate → Lysine 5 0 49 0
Glutamate → Proline 98 0 1265 18
UDP-Galactose → Stachyose 15715 30437 268 18449
alpha-D-glucose → Phenylpyruvate 44929 9734 281 672

20 (O) alpha-D-glucose → Dopamine 17055 9599 146 36
Pyruvate → 3-HP 49 0 254 226
Glucose → Glucaric acid 4530 0 259 82
alpha-D-glucose → 1,3-propanediol 69377 9689 170 60
Tryptophan → Melatonin 1 0 0 0

Pyruvate → Lysine 5 0 79 0
Glutamate → Proline 10 0 1576 2
UDP-Galactose → Stachyose 694 3271 1316 5109
alpha-D-glucose → Phenylpyruvate 12760 1720 5294 96

50 (O) alpha-D-glucose → Dopamine 0 3313 226 0
Pyruvate → 3-HP 18 0 1421 9
Glucose → Glucaric acid 1787 0 1296 98
alpha-D-glucose → 1,3-propanediol 47259 5815 2221 481
Tryptophan → Melatonin 1 0 0 0

Pyruvate → Lysine 4 0 110 0
Glutamate → Proline 10 0 87 0
UDP-Galactose → Stachyose 725 7721 5437 861
alpha-D-glucose → Phenylpyruvate 2548 1133 12315 60

80 (O) alpha-D-glucose → Dopamine 0 1547 637 0
Pyruvate → 3-HP 11 0 2602 1
Glucose → Glucaric acid 1634 0 3315 72
alpha-D-glucose → 1,3-propanediol 1929 2101 3353 1
Tryptophan → Melatonin 1 0 0 0

Pyruvate → Lysine 4 0 131 0
Glutamate → Proline 3 0 280 2
UDP-Galactose → Stachyose 3138 40 4375 333
alpha-D-glucose → Phenylpyruvate 0 0 2146 5

139 (A) alpha-D-glucose → Dopamine 0 0 384 0
Pyruvate → 3-HP 2 0 4871 1
Glucose → Glucaric acid 1032 603 1363 18
alpha-D-glucose → 1,3-propanediol 0 0 5627 1
Tryptophan → Melatonin 1 0 0 0
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Table S9: (Continued)

Number of pathways
No hub / Start Hub to Hub to

single hub to hub hub target

Pyruvate → Lysine 5 0 2207 66
Glutamate → Proline 100 0 1151 10
UDP-Galactose → Stachyose 1958 7628 4591 819
alpha-D-glucose → Phenylpyruvate 2921 0 3350 301

50 (I) alpha-D-glucose → Dopamine 4477 0 142 219
Pyruvate → 3-HP 20 0 2703 25
Glucose → Glucaric acid 911 0 1080 32
alpha-D-glucose → 1,3-propanediol 0 0 1727 1
Tryptophan → Melatonin 1 0 0 0

Pyruvate → Lysine 5 0 93 0
Glutamate → Proline 97 0 1732 10
UDP-Galactose → Stachyose 2085 7656 3748 819
alpha-D-glucose → Phenylpyruvate 667 0 5569 408

50 (IO) alpha-D-glucose → Dopamine 0 0 1969 36
Pyruvate → 3-HP 18 0 2244 4
Glucose → Glucaric acid 1325 0 2657 68
alpha-D-glucose → 1,3-propanediol 1693 0 3057 216
Tryptophan → Melatonin 1 0 0 0

Pyruvate → Lysine 76 0 0 0
Glutamate → Proline 100 0 0 0
UDP-Galactose → Stachyose 24907 37167 20 2
alpha-D-glucose → Phenylpyruvate 37675 90 5 44

R1 alpha-D-glucose → Dopamine 40776 90 5 32
Pyruvate → 3-HP 209 0 0 0
Glucose → Glucaric acid 6411 0 0 0
alpha-D-glucose → 1,3-propanediol 107261 0 0 0
Tryptophan → Melatonin 1 4 20 1

Pyruvate → Lysine 78 188 36 66
Glutamate → Proline 100 7 24 892
UDP-Galactose → Stachyose 25536 36290 26 7130
alpha-D-glucose → Phenylpyruvate 57912 7533 56 3997

R2 alpha-D-glucose → Dopamine 67765 7533 56 2969
Pyruvate → 3-HP 207 3137 44 6573
Glucose → Glucaric acid 6281 5404 120 1289
alpha-D-glucose → 1,3-propanediol 121561 9143 46 663
Tryptophan → Melatonin 1 0 0 0


