
This Time the Robot Settles for a Cost: A Quantitative Approach to
Temporal Logic Planning with Partial Satisfaction

Morteza Lahijanian1, Shaull Almagor2, Dror Fried1, Lydia E. Kavraki1, and Moshe Y. Vardi1
1 Department of Computer Science at Rice University, Houston, TX, 77005, USA

{morteza,dror.fried,kavraki,vardi}@rice.edu
2 School of Computer Science and Engineering at The Hebrew University of Jerusalem, Israel

shaull@cs.huji.ac.il

Abstract

The specification of complex motion goals through temporal
logics is increasingly favored in robotics to narrow the gap
between task and motion planning. A major limiting factor of
such logics, however, is their Boolean satisfaction condition.
To relax this limitation, we introduce a method for quantify-
ing the satisfaction of co-safe linear temporal logic specifica-
tions, and propose a planner that uses this method to synthe-
size robot trajectories with the optimal satisfaction value. The
method assigns costs to violations of specifications from user-
defined proposition costs. These violation costs define a dis-
tance to satisfaction and can be computed algorithmically us-
ing a weighted automaton. The planner utilizes this automa-
ton and an abstraction of the robotic system to construct a
product graph that captures all possible robot trajectories and
their distances to satisfaction. Then, a plan with the minimum
distance to satisfaction is generated by employing this graph
as the high-level planner in a synergistic planning framework.
The efficacy of the method is illustrated on a robot with un-
satisfiable specifications in an office environment.

1 Introduction
Robots are rapidly evolving from simple instruments for
repetitive tasks to increasingly sophisticated machines ca-
pable of performing challenging operations in our daily en-
vironment. As they make their way out of custom-made
workspaces in factories, algorithms that integrate task and
motion planning (ITMP) are needed to enable robots to au-
tonomously execute high-level tasks in unstructured envi-
ronments. Many works, e.g., (Dornhege et al. 2009; Srivas-
tava et al. 2013), approach ITMP by combining discrete plan-
ning in the task space with motion planning in the robot’s
continuous state space. Traditionally, classical AI planners
(Ghallab, Nau, and Traverso 2004) are employed at the
task level. In another line of ITMP research, temporal log-
ics, namely linear temporal logic (LTL) (Clarke, Grumberg,
and Peled 1999), has been suggested to remove ambigu-
ity from the specifications and formalize the planning pro-
cedure (Kress-Gazit, Fainekos, and Pappas 2007; Kloetzer
and Belta 2008; Wongpiromsarn, Topcu, and Murray 2010;
Bhatia et al. 2011). The power of these methods lie in the ex-
pressivity of LTL and the correctness and completeness guar-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

carpet

carpet

slippers

robot

Figure 1: A mobile robot in a room with the task specifica-
tion, “do not go on the carpets until the slippers are reached.”

antees provided by its synthesis algorithms (Bhatia, Kavraki,
and Vardi 2010a; 2010b; DeCastro and Kress-Gazit 2013).

A major barrier of utilizing the existing LTL planners in
realistic environments, however, is their Boolean satisfac-
tion condition. These frameworks output a plan only if the
plan fully satisfies the specification. Even though generating
a satisfying plan is ideal, there are scenarios where the full
realization of a task may not be possible; nevertheless, parts
of the specification may still be achievable and of interest
to the user. For example, consider the robotic scenario de-
picted in Fig. 1 with the user specification, “do not go on
the carpets until the slippers are reached.” Clearly, this spec-
ification is unsatisfiable as the robot must go on a carpet
first to reach the slippers. Now imagine that reaching slip-
pers is of a higher priority to the user than avoiding carpets.
With this information, the desired robot behavior is obvi-
ously to reach the slippers by violating the carpet constraint
only once. As robots enter unstructured environments, such
scenarios become more common. This paper introduces a
method for quantification of satisfaction of an LTL specifi-
cation and proposes a planner that handles such scenarios.

Quantification of the satisfaction condition of temporal
logic statements is an active area of research in theoret-
ical computer science and logic. Recent work (Almagor,
Boker, and Kupferman 2013) augments LTL with quantity-
operators to allow reasoning about the quality of satisfac-
tion. While this framework can be theoretically adapted to
plan synthesis settings, in practice, the method suffers from
overheads (constructing a large number of automata), which
makes it, as of yet, impractical. Simulation distances have
also been employed to define measures of correctness over
temporal logic specifications (Černỳ, Henzinger, and Rad-
hakrishna 2012). Their applicability in planning for robotic

To appear in the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015), Austin, TX

systems, however, is unclear and remains to be investigated.
Existing LTL planning frameworks with partial satisfac-

tion capabilities are still in their preliminary stages. The
planner introduced in (Tumova et al. 2013) allows for a
temporary violation of the specification for simple transi-
tion systems. That method decomposes the specification into
fragments and asks the user to prioritize them. Once the
specification is violated, the user-defined priority list is used
to synthesize the least-violating strategy. The works in (Kim
and Fainekos 2013; 2014) tackle the problem of minimal
revision of an unsatisfiable LTL specification for a transi-
tion system. These works propose several measures of dis-
tance between Büchi automata representing the specification
and introduce algorithms for specification revisions based
on these measures. These revision problems are generally,
however, NP-hard. The authors of (Maly et al. 2013) intro-
duce a method of partial satisfaction based on the notion of
graph distance in their LTL planner. Their method is conser-
vative and prevents a violation to the specification, making
the method suitable for only certain types of tasks. For the
cases that a violation of the specification is required to make
progress (e.g., example above), their method is undesirable.

Planning with partial satisfaction has also been studied
in the AI discrete-planning community under the notion
of preference-based planning, e.g., (Boutilier et al. 2004;
Baier et al. 2008; Coles and Coles 2011). These works in-
troduce various models of reasoning about conditional pref-
erences such as CP-nets (Boutilier et al. 2004). One of such
planners is LPP (Baier et al. 2008), which allows the spec-
ification of preference over plans using preference formulas.
The planner requires explicit ranking by the user, and al-
though complex preference structures can be implied by the
formulas, every preference order has to be specified.

Although several works (Bacchus and Kabanza 1998;
De Giacomo and Vardi 1999; Kvarnström and Doherty
2000; Calvanese, Giacomo, and Vardi 2002) in AI plan-
ning use LTL for task specification, the main approach to
using temporal reasoning in addition to preferences uses the
PDDL3 framework (Gerevini et al. 2009), e.g., HTNPLAN-P
(Sohrabi, Baier, and McIlraith 2009), LPRPG-P (Coles and
Coles 2011), and MaxSat (Juma, Hsu, and McIlraith 2012)).
PDDL3 is a specification language which enables the use of
basic temporal operators in expressing (hard and soft) con-
straints and uses quantitative preferences to rank the soft
constraints (Gerevini et al. 2009). Unlike LTL, the syntax of
PDDL3 does not support arbitrary nesting of temporal opera-
tors; the next operator is also disallowed. Thus, the temporal
expressivity of the language is limited.

This work proposes a quantitative approach to LTL plan-
ning. The approach views atomic propositions in an LTL
specification as tasks, for which the user can assign pri-
orities. These proposition priorities are then translated to
costs of violations of the specification. These costs define
a distance between system trajectories with respect to the
satisfaction of the specification. Given a robotic system, a
specification in a fragment of LTL, and costs over propo-
sitions, the planning framework automatically synthesizes
a continuous plan with the minimum distance to satisfac-
tion of the specification. Technically, the planner first con-

structs a weighted automaton by combining the proposition
costs with the automaton that represents the specification.
Next, the framework computes a discrete abstraction for the
continuous system and composes the abstraction with the
weighted automaton. The result is a weighted graph, which
is employed to generate high-level plans in the multi-layered
planning framework in (Maly et al. 2013). These high-level
plans, through a synergy layer, guide a low-level planner to
explore the state space of the robotic system to generate a
system trajectory with the minimum distance to satisfaction.

The main contribution of this work is a quantitative
method to LTL planning, which allows quantitative reason-
ing over the trajectories of a continuous robotic system with
respect to the specification. The use of LTL enables more ex-
pressive and complex temporal specifications than PDDL3.
Unlike the works in (Baier et al. 2008; Tumova et al. 2013),
the costs in our work are defined over atomic propositions
(rather than specification segments), and unlike the discrete
planner in (Kim and Fainekos 2013; 2014), the complexity
of our high-level planner is PTIME. Furthermore, this work
extends (Maly et al. 2013) by enabling the planner to gen-
erate trajectories that violate the specification while main-
taining the same planning efficiency. Hence, the proposed
framework also allows for online planning and can be em-
ployed in partially known environments. The power of our
method is illustrated through case studies in which robot tra-
jectories were synthesized in seconds from rich specifica-
tions in both fully and partially known environments.

2 Preliminaries
We use syntactically co-safe LTL (Kupferman and Vardi
2001) to write the specifications of robotic tasks.

Definition 1 (syntax) Let Π = {p1, p2, . . . , pN} be a set
of Boolean atomic propositions. A syntactically co-safe LTL
formula over Π is inductively defined as following:

ϕ := p | ¬p |ϕ ∨ ϕ |ϕ ∧ ϕ | Xϕ |ϕUϕ | Fϕ
where p ∈ Π, ¬ (negation), ∨ (disjunction), and ∧ (conjunc-
tion) are Boolean operators, and X (“next”), U (“until”),
and F (“eventually”) are temporal operators.

Definition 2 (Semantics) The semantics of syntactically
co-safe LTL formulas are defined over infinite traces over
2Π. Let w = {wi}∞i=1 with wi ∈ 2Π be an infinite trace and
wi = wiwi+1 . . . be the i-th suffix. w |= ϕ indicates that w
satisfies formula ϕ and is recursively defined as following:
• w |= p if p ∈ w1;
• w |= ¬p if p /∈ w1;
• w |= ϕ1 ∨ ϕ2 if w |= ϕ1 or w |= ϕ2;
• w |= ϕ1 ∧ ϕ2 if w |= ϕ1 and w |= ϕ2;
• w |= Xϕ if w1 |= ϕ;
• w |= ϕ1Uϕ2 if ∃k ≥ 0, wk |= ϕ2, and ∀i ∈ [0, k), wi |= ϕ1;
• w |= Fϕ if ∃k ≥ 0, wk |= ϕ.

A computation w satisfies a co-safe LTL formula ϕ iff there
exists a “good” finite prefix w of w such that ww satisfies
ϕ for every suffix w. Thus, we can restrict to analyzing the
language of good prefixes, which consists of finite traces.

Given a co-safe LTL formula ϕ, a deterministic finite au-
tomaton (DFA) that precisely accepts all the good prefixes
that satisfy ϕ can be constructed (Kupferman and Vardi
2001).

Definition 3 (DFA) A deterministic finite automaton is
given by a tuple A = (Z,Σ, δ, z0, F), where
• Z is a finite set of states;
• Σ is the input alphabet;
• δ : Z × Σ→ Z is the transition function;
• z0 ∈ Z is the initial state;
• F ⊆ Z is the set of accepting states.
The transition function δ can be also viewed as a relation
δ ⊆ Z×Σ×Z, where every transition is a tuple (z1, σ, z2) ∈
δ iff z2 = δ(z1, σ) (with abuse of notation). A finite run of
A on a word w = w1 · · ·wn is a sequence of states µ =
µ0µ1 . . . µn, where µ0 = z0 and (µi−1, wi, µi) ∈ δ for i =
1, . . . , n. µ is called an accepting run if µn ∈ F .

We denote the DFA that is constructed from a formula ϕ
by Aϕ. An input word w that induces an accepting run µ in
Aϕ is called ϕ-satisfying. To reason quantitatively over the
satisfaction of ϕ, we employ weighted DFA defined below.

Definition 4 (WDFA) A weighted DFA (WDFA) is a tuple
Aρ = (A, ρ), where A is a DFA, and ρ : δ → R as-
signs a weight for every transition in δ. Consider a word
w = w1, ..., wn, and let µ = µ0µ1 . . . µn be the run of
Aρ on w, i.e., (µi−1, wi, µi) ∈ δ for all i ∈ {1, . . . , n}.
We define the weight of w, with an abuse of notation, to be
ρ(w) =

∑n
i=1 ρ(µi−1, wi, µi). Thus, the weight of a word

is the sum of weights along the run of A on it. Therefore, a
WDFA defines a function hAρ : Σ∗ → R.

3 Problem Formulation
Consider a robotic system with the following dynamics:

ẋ = f(x, u), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, (1)

where X and U are compact sets representing state and in-
put spaces, respectively, and f : X × U → X is an in-
tegrable and possibly nonlinear function. We assume that
state x is fully observable at all times. The robot moves in
a 2-dimensional static environment W (i.e., W is the pro-
jection of X onto R2). It consists of a finite set of polytopic
obstacles and a finite set of (possibly intersecting) polytopic
regions of interest R = {r0, . . . , rl}, where l ∈ N. Each re-
gion ri is labeled with an atomic proposition that becomes
true when the robot visits ri. Let Π = {p0, . . . , pN} denote
the set of all atomic propositions.

Robot’s high-level task specification is given as a co-safe
LTL formula ϕ defined over Π. Furthermore, each proposi-
tion pj is assigned a non-negative cost in accordance with

Figure 2: A DFA for ϕ = (¬carpet U slippers).

DFA

Dynamical
System

Specification

Propositional
costs

Environment

WDFA

Abstraction

Low-Level Planner

Synergy Layer

High-Level Planner

Synergistic Planner

Continuous
Trajectory

Figure 3: A block diagram representation of the approach.

its importance in ϕ. Let c : Π→ R≥0 denote this cost func-
tion. Conceptually, pj represents a task in ϕ, and c(pj) is the
penalty that the robot has to endure if it violates (fails to per-
form) task pj during the execution of ϕ. We define a robot
trajectory’s “distance to satisfaction” of ϕ to be the summed
cost of the violations of the tasks in ϕ (formal definition in
Sec. 4). If the trajectory fulfills all of the specified tasks in
ϕ, the distance to satisfaction of ϕ by the robot is zero.

To illustrate this setting, consider again the robot sce-
nario depicted in Fig. 1. The regions of interest in this en-
vironment are the gray rectangles with the atomic proposi-
tions Π = {carpet, slippers}. The robot’s mission trans-
lates to the co-safe LTL formula ϕ = (¬carpet U slippers).
The DFA Aϕ is shown in Fig. 2. Since the user considers
slippers being of higher priority than the carpet, she as-
signs the following proposition costs: c(carpet) = 1 and
c(slippers) = 10. There are many ways for the robot to
partially satisfy the specifications. One way is to respect the
carpet constraint and avoid going on it by remaining in its
initial position. With this behavior, the robot never reaches
slippers and endures a cost of 10. Another possible way to
partially satisfy the specification is to reach slippers by vio-
lating the carpet constraint only once, i.e., only crossing over
the first carpet. The cost of this behavior is 1. Obviously, the
robot chooses the latter behavior to endure a smaller cost,
which is of course in-line with the user’s preference.

We are interested in computing a robot plan with the least
distance to satisfaction of ϕ according to the user’s prefer-
ence. The formal statement of this problem follows.

Problem 1 Given a robot that evolves in environment W
according to System (1), a high-level task specification given
as a co-safe LTL formula ϕ, and an atomic proposition cost
function c, compute a continuous trajectory for the robot
that minimizes the distance to satisfaction of ϕ.

To approach Problem 1, we first design a planner that is
capable of producing discrete plans with minimum distance
to satisfaction of ϕ, and then use it as the high-level planner
in the multi-layer planning framework proposed in (Maly et
al. 2013) to generate continuous robot trajectories. To con-
struct the discrete planner, we augment the DFA representing
ϕ with a cost function to capture the distance to satisfac-
tion over the runs of the DFA. The resulting structure is a
WDFA. We compose this WDFA with a geometric abstrac-
tion of System (1) to construct high-level plans (sequence
of abstraction states). This composition is in the form of a

Cartesian product and captures both the specification objec-
tives and the environment constraints. High-level paths over
the abstraction with minimum distance to satisfaction of ϕ
are suggested to the low-level planner by the synergy layer
to construct a continuous trajectory for System (1) that min-
imizes the distance to satisfaction of ϕ. Fig. 3 illustrates a
block digram representation of this approach.

4 Distance to Satisfaction
This section formalizes the notion of distance to satisfaction.

4.1 Weighted Skipping
Recall that for a co-safe LTL formula ϕ over the atomic
propositions in Π, there exists a DFA Aϕ that accepts word
w ∈ (2Π)∗ iff w satisfies ϕ. We refer to an accepting word
as a logical word and denote it by wϕ. The set of all logical
words constitutes the language of Aϕ, which is denoted by
L(Aϕ). Recall that propositions in Π correspond to the re-
gions of interest in environment W . Thus, by visiting these
regions, the robot generates words also in (2Π)∗. We refer to
each of these words as a physical word and denote it by wR.
Specifically, a physical word is the sequence of letters of the
regions that the robot visits, where a letter is appended to the
word only if it differs from the previous letter. The language
of the robot, denoted byL(R), is the set of all possible phys-
ical words that the robot can generate in W . Therefore, the
specification ϕ is said to be unsatisfiable by the robot inW if
there does not exist a physical word that is accepted by Aϕ,
i.e., L(R)∩L(Aϕ) = ∅. In such a case, we are interested in
generating a robot trajectory with a wR ∈ L(R) that has the
minimum distance to the language of Aϕ. We call the dis-
tance of a physical word to L(Aϕ) distance to satisfaction
(of wR to ϕ). To properly define this distance, we employ
the concept of weighted skipping, which we explain through
the following example.

Consider again the robotic scenario in Fig. 1 with the
specification DFA Aϕ shown in Fig. 2. Given that ϕ is un-
satisfiable, the preferred robot behavior is to reach the slip-
pers by going only over the first carpet, corresponding to the
physical word wR = ∅{carpet}∅{slippers} (∅ is the obser-
vation letter of the regions with no proposition). To construct
this word from Aϕ, the robot can utilize the logical word
wϕ = ∅∅∅{slippers} as a guide, and substitute the phys-
ically unachievable letter wϕ2 = ∅ with the accessible one
wR2 = {carpet} at a certain cost. With this behavior, the
robot essentially skips over a logical letter (i.e., a transition
in Aϕ) by reading a different physical letter. We name this
method weighted skipping. Another possible behavior of the
robot is to avoid the carpet by remaining in its initial posi-
tion. The physical word of this behavior is wR = ∅, which
can be generated by following wϕ = {slippers} and endur-
ing the cost of skipping letter wϕ0 = {slippers}. Recall that
this robot behavior, however, is not preferred by the user.

To generate the motion plans that do meet the user’s pref-
erences, we derive the cost of weighted skipping from the
user-defined proposition cost function c. Let η : 2Π× 2Π →
R≥0 be a function that measures the cost of skipping a let-
ter τ in wϕ using letter σ in wR. Thus, η(σ, τ) = 0 when

σ = τ . For σ 6= τ , the value of η(σ, τ) can be derived from
c in several ways. We advocate the following two methods:
• max semantics: η(σ, τ) = maxp∈σ∆τ {c(p)},
• sum semantics: η(σ, τ) =

∑
p∈σ∆τ {c(p)},

where ∆ is the symmetric difference. The two semantics of η
capture different relationships between the atomic proposi-
tions in Π. In the max semantics, we essentially consider de-
pendent tasks, where skipping over several tasks is no worse
than skipping over the most important one. The sum seman-
tics correspond to independent tasks, where the cost of skip-
ping several tasks is the accumulation of their costs. There-
fore, the user should choose the applicable η semantic based
on her intuition of the problem.

Using the function η, we define the notion of distance to
satisfaction. Let the distance between physical wordwR and
logical word wϕ be:

DIST(wR, wϕ) =

{∑|wϕ|
i=1 η(wRi , w

ϕ
i) if |wR| = |wϕ|

∞ if |wR| 6= |wϕ|
where |w| denotes the number of letters in w. Then, the dis-
tance to satisfaction of wR to ϕ is:

DISTTOSAT(wR, ϕ) = min
wϕ∈L(Aϕ)

DIST(wR, wϕ). (2)

Conceptually, DISTTOSAT(wR, ϕ) is the minimum total
cost of the weighted skips that the robot has to perform for
the trajectory with wR. Therefore, we are interested in com-
puting a trajectory whose wR minimizes (2).

To illustrate these concepts, consider again the two robot
behaviors described above. In the first behavior, the dis-
tance between wR = ∅{carpet}∅{slippers} and wϕ =
∅∅∅{slippers} is essentially the distance between the letters
{carpet} and ∅. Since letter {carpet} is a singleton, and
c(carpet) = 1, then DIST(wR, wϕ) = η({carpet}, ∅) = 1
using either max or sum semantics. In the second behavior,
the distance between words wR = ∅ and wϕ = {slippers}
is 10 since c(slippers) = 10. Therefore, between these
two behaviors, the robot chooses the first one, which has a
smaller distance to satisfaction of ϕ.

4.2 Co-safe LTL to WDFA
In order to algorithmically compute (2), we incorporate the
idea of weighted skipping along with the proposition cost
function c into the specification DFA. The result is a WDFA
with a pair of labels in 2Π× 2Π on every edge; the first label
is a physical letter that is used to skip the logical letter (sec-
ond label) inherited from the DFA. The transition weights of
the WDFA are given by η.

Formally, let Σ = 2Π, Aϕ = (Z,Σ, δ, z0, F) be the spec-
ification DFA, and η : Σ × Σ → R≥0. From Aϕ, we con-
struct the WDFA Aρϕ = (Z,Σ× Σ, δρ, z0, F, ρ), where for
every state z ∈ Z and letter (σ, τ) ∈ Σ × Σ, the transi-
tion function is δρ(z, (σ, τ)) = δ(z, τ). Moreover, for every
transition (z, (σ, τ), z′) ∈ δρ, the weight is defined to be
ρ((z, (σ, τ), z′)) = η(σ, τ).

Note that the transition functions δρ of Aρϕ and δ of Aϕ
are the same with respect to the logical letter τ . The dif-
ference is that δρ reads an additional (physical) letter σ, by

which δρ allows skipping τ . Intuitively,Aρϕ uses δ ofAϕ and
τ to determine the output state of a transition once a physi-
cal letter σ is read, and assigns the cost (weight) of η(σ, τ)
to this transition. Therefore, a word w ∈ (Σ × Σ)∗ is ac-
cepted by Aρϕ iff the projection of w on its logical labels is
accepted byAϕ. The projection of an accepting word ofAρϕ
on its physical labels, however, may not be accepted by Aϕ.

The construction of the WDFA Aρϕ holds no significant
blowup. The states of Aρϕ are the same as the states of the
DFA Aϕ. The number of edges of Aρϕ is at most quadratic
in the number of edges of Aϕ since there are |Σ| outgoing
edges from each state of Aϕ. Furthermore, the explicit con-
struction of Aρϕ is not even required for the implementation
purposes as it can be simulated on-the-fly using Aϕ (for the
state to transition to) and η (for the cost of the transition).

5 Planning Framework
Our planning framework is based on the synergistic planner
proposed in (Maly et al. 2013), which consists of three main
layers: a high-level planner, a low-level search layer, and a
synergy layer. We replace the high-level planner with a new
one to allow quantitative partial satisfaction. This high-level
planner generates a discrete path that best satisfies the spec-
ification (in the sense of Sec. 4) by searching over a product
graph that combines a discrete abstraction of the robotic sys-
tem with the WDFA. This path is suggested to the low-level
planner which uses the dynamics of the system to extend
a sampling-based tree in the direction of the path. During
the tree expansion, the synergy layer collects data to learn
the relationship between the abstraction and the dynamics
of the system. This information is continually updated and
passed to the high-level planner to generate informed paths.
The synergy of these planing layers results in a trajectory for
System (1) that minimizes distance to satisfaction of ϕ.

5.1 Abstraction
To construct high-level plans, an abstraction of System (1)
is first generated. This abstraction is denoted by R =
(D, d0,→D,Π, L), where D is a set of discrete states, d0 ∈
D is the initial state,→D⊆ D×D is the transition relation,
and L : D → 2Π is a labeling function.

To obtain R, environment W is decomposed into a set of
discrete regions that respects the regions of interests in R
and the boundaries of the obstacles (Maly et al. 2013). This
decomposition of W induces a discretization in state space
X of System (1) since the projection ofX onto R2 (the x and
y components of X) is W . Each of these discrete regions
is represented as a discrete state d ∈ D in the abstraction
R. The transition →D captures the adjacency relationship
between the discrete regions, i.e., (d, d′) ∈→D for d, d′ ∈ D
iff the corresponding regions in X share a facet. Finally, the
labeling function L assigns to each discrete region in X its
corresponding environment atomic proposition.

5.2 Product Graph
High-level plans are computed over the product graph P =
R × Aρϕ. Recall that the input consists of a specification ϕ
over the atomic propositions Π, and a cost function c : Π→

R≥0. From these, WDFA Aρϕ = (Z, 2Π × 2Π, δρ, z0, F, ρ) is
constructed per Sec. 4. ThenR is composed with Aρϕ to ob-
tain a labeled weighted graph P = (Q, q0, E, T, Cϕ, CR),
where

• Q = D × Z is a set of high-level states,

• q0 = (d0, z0) is the initial high-level state,

• E ⊆ Q×Q is a set of edges,

• T = D × F is a set of terminal states,

• Cϕ : E → R is the logical weight function which assigns
to each edge e ∈ E its corresponding weight in Aρϕ as
explained below,

• CR : E → R is the abstraction weight function which
assigns to each edge e ∈ E a weight representing the
“difficulty” of realizing e by the dynamics of System (1).

The construction of E and Cϕ are as follows. From high-
level states q = (z, d) to q′ = (z′, d′), there exists an edge
e = (q, q′) ∈ E if,

• (d, d′) ∈→D, L(d′) = ∅ and z′ = z, then Cϕ(e) = 0, or

• (d, d′) ∈→D, L(d′) = σ and z′ = δρ(z, (σ, τ)) where
τ ∈ 2Π, then Cϕ(e) = ρ(z, (σ, τ), z′).

The abstraction weight CR(e) = 1/γ(q)γ(q′), where
γ(q) is the level of difficulty for System (1) to navigate in
the region corresponding to q = (d, z). The value of γ(q)
is estimated by the volume of d, the number of tree vertices
generated by the low-level planner in (d, z), and the number
of attempts to expand the tree in (d, z). The exact form of
γ is given in (Maly et al. 2013). As the planning framework
progresses, the abstraction weights are continually updated.

Recall that the goal of the high-level planner is to sug-
gest paths over P to the low-level planner that are mini-
mal with respect to the distance to satisfaction of ϕ and are
easy to navigate by System (1). Let µ = (d0, z0) . . . (dk, zk)
with (dk, zk) ∈ T be a path over P . The projection of µ
onto Aϕ is an accepting run with the logical word wϕ =
τ1 . . . τk. The projection of µ on R realizes physical word
wR = σ1 . . . σk and is, in fact, the actual word that System
(1) achieves in the environment. As defined in Sec. 4, the
distance to satisfaction of ϕ for the high-level path µ is the
distance between words wϕ and wR. This distance to satis-
faction can be computed by

k−1∑

i=0

Cϕ ((µi, µi+1)) . (3)

Furthermore, the difficulty of generating a continuous tra-
jectory in the direction of path µ for System (1) is

k−1∑

i=0

CR ((µi, µi+1)) . (4)

Therefore, a path that minimizes both (3) and (4) is sought
by the high-level planner. To compute this path, we treat the
minimization of the distance to satisfaction in (3) as a hard
constraint and the minimization of the abstraction weights
in (4) as a soft constraint. Thus, this path can be found by a
lexicographic order on P .

p
0

p
1

p
2

p
3

p
4

(a) Specification 1

p
0

p
1

p
2

p
3

p
4

(b) Specification 2

p
0

p
1

p
2

p
3

p
4

(c) Specification 3

Figure 4: Sample trajectories for the case study 1. The robot is shown as a small burgundy rectangle, and its initial position was
on the lower left of the environment. The large black rectangles in (c) represent obstacles.

5.3 Continuous Planning
Once the optimal high-level path µ is computed, µ is sug-
gested to the low-level search layer. This planning layer ex-
tends a sampling-based motion tree in the high-level states
in µ. If parts of µ are already explored, state q ∈ µ is picked
for tree expansion with probability γ(q)/

∑
q′∈µ γ(q′). Then

one iteration of the low-level tree planner is performed to
extend the set of tree vertices associated with the high-level
state q. This process repeats until a terminal high-level state
in T is reached (Maly et al. 2013).

6 Case Studies
We evaluated the performance of the proposed planner by
conducting simulation experiments on a car-like robot in an
indoor environment. We employed the robot used in (Maly
et al. 2013), which had rectangle geometry with the length of
lr = 0.2 and width of 0.1. The dynamics were ẋ = v cos θ,
ẏ = v sin θ, θ̇ = v

lr
tanψ, v̇ = u1, ψ̇ = u2, where x ∈

[0, 12] and y ∈ [0, 6] indicate the location of the rear axle
of the robot, v ∈ [− 1

2 ,
1
2] is the linear velocity, θ ∈ [−π4 , π4]

is the heading angle, and ψ ∈ [−π6 , π6] is the steering angle.
The control inputs were u1 ∈ [− 1

2 ,
1
2] and u2 ∈ [− π

18 ,
π
18].

The indoor environment consisted of corridors and five
rooms, four offices and a large conference room, with doors
(see Fig. 4). The regions of interest in this environment are
represented as gray rectangles with labels p0, . . . , p3 in the
offices and p4 in the conference room. Two variations of this
environment were considered for experiments. In the first
environment, the corridors were obstacle free as shown in
Fig. 4a and 4b. In the second environment, the corridors
were blocked by two obstacles as shown in Fig. 4c. In both
environments, the office doors to p0 and p1 were closed.

Robot’s task specifications in the first environment were:
Specification 1 Visit regions p0, . . . , p4 in that order.
Specification 2 Either visit region p1 followed by p3 or visit
region p0 followed by p4.
Robot’s task specification in the second environment was,
Specification 3 Without passing over p3 and p4, first visit
p2 and then either visit p1 followed by p3 or visit p0.
Setting Π = {p0, . . . , p4}, these specifications translate to:
ϕ1 = F(p0 ∧ XF(p1 ∧ XF(p2 ∧ XF(p3 ∧ XFp4)))),

ϕ2 = F(p1 ∧ XFp3) ∨ F(p0 ∧ XFp4),

ϕ3 = ¬(p3 ∨ p4)U (p2 ∧ X (F(p1 ∧ XFp3) ∨ Fp0)) ,

where ϕ1, ϕ2, and ϕ3 correspond to Specifications 1, 2, and
3, respectively. Furthermore, the propositional costs were:
c(p0) = c(p2) = c(p4) = 1, c(p1) = 3, c(p3) = 2. From c,
we constructed η per Sec. 4. Note that η returns the same val-
ues using either methods of max and sum since the regions
of interest are non-intersecting in the environments.

The implementation of our algorithm is in C++ using
OMPL (Şucan, Moll, and Kavraki 2012). All of the case stud-
ies were run on an AMD FX-4100 Quad-Core machine with
16 GB RAM.

6.1 Case Study 1: Fully Known Environments
In the first set of experiments, the robot was given the full
knowledge of the environments. It is clear that all three spec-
ifications are unsatisfiable in these environments due to the
closed doors. To partially satisfy the specifications accord-
ing to the user’s preference, motion plans were computed
with the least distances to satisfaction of ϕ1, ϕ2, and ϕ3 us-
ing the proposed planning framework. Samples of the com-
puted plans for the robot are shown in Fig. 4, and the plan-
ning data for 50 runs are shown in Table 1.

For Specification 1, which requires a sequential visit to
all of the proposition regions, the computed motion plan
took the robot to p2, p3, and p4 by skipping the unaccessi-
ble propositions p0 and p1 as shown in Fig 4a. The distance
to satisfaction of this trajectory is 4. As shown in Fig. 4b,
the sample trajectory with the least distance to satisfaction
of Specification 2 only visited p4. Recall that Specification
2 mandated the robot to visit either “p1 followed by p3” or
“p0 and then p4.” Given that both p0 and p1 were unacces-
sible, the robot chose the latter because violating p0 is less
costly than violating p1. The distance to satisfaction of this
trajectory was 1. The trajectory with minimum distance to
satisfaction of Specification 3 is shown in Fig. 4c. Recall that
this specification required the robot to avoid p3 and p4 until
p2 and then either p1 and then p3 or p0 are visited. Since the
corridors are blocked in this environment, the robot had to
pass through either p3 or p4 to visit p2. It decided to violate
p4, which has a lower violation cost than p3, and terminated
in p2 because skipping p0 is less costly than violating p1.
The distance to satisfaction of this trajectory was 2. All these
robot behaviors are in-line with the user’s preferences.

6.2 Case Study 2: Partially Known Environments
In the second set of experiments, the robot was not provided
the knowledge of the status of the doors in the environments.

p
0

p
1

p
2

p
3

p
4

(a) Specification 1

p
0

p
1

p
2

p
3

p
4

(b) Specification 2

p
0

p
1

p
2

p
3

p
4

(c) Specification 3

Figure 5: Sample trajectories for case study 2. The arcs in the figures indicate the moment the closed doors were detected.

Case Study 1 Case Study 2

Spec. Tplan (s) NplannerCalls Tplan (s)

ϕ1 4.13 4.0 23.17
ϕ2 2.36 4.0 9.69
ϕ3 2.66 4.0 7.69

Table 1: Planning data for ϕ1, ϕ2, and ϕ3 in case studies 1
and 2. NplannerCalls and Tplan are the average number of plan-
ner calls and planning times, respectively, over 50 runs.

The robot, instead, was equipped with a range sensor that
could detect closed doors as it came within a unit distance
from them. To achieve each specification, the robot’s strat-
egy was iterative planning (Maly et al. 2013). The robot first
computed a trajectory with minimum distance to satisfaction
using the current knowledge of the environment. During the
execution of the trajectory, if the robot encountered a closed
door, it updated its knowledge of the environment, and re-
planned with the new information. Samples of the trajecto-
ries for ϕ1, ϕ2, and ϕ3 are shown in Fig. 5.

In these figures, the locations at which the robot sensed
the closed doors are indicated by a burgundy rectangle with
a gray arc which represent the robot and its sensor readings,
respectively. After the discovery of each closed door, the
robot applied a braking operation to avoid a collision with
the door. Replanning was performed after the robot came to
a complete stop. We note that the variability and curviness
of the computed trajectories are due to the dynamics of the
robot and the use of sampling-based motion planners.

For Specification 1, the robot’s initial plan was fully sat-
isfying. During the execution of this plan, the robot discov-
ered that the bottom door to the office containing p0 was
closed as shown in Fig. 5a. At that point, the robot performed
a braking operation and computed another fully satisfying
plan. This plan instructed the robot to visit p0 through the
top door. As the robot was following these instructions, it
discovered the top door was also closed, making p0 unac-
cessible. A new plan with distance to satisfaction of 1 was
generated at the spot, which required the robot to skip p0 and
visit p1, . . . , p4. During the execution of this plan, the robot
discovered the door to p1 to be also closed. At this point, the
robot obtained the full knowledge of the environment and
generated a plan, following which the robot visited all the
accessible propositions in the correct order. The final plan
had a distance to satisfaction of 4.

The initial motion plan that the robot computed for Spec-
ification 2 was also fully satisfying. After discovering that
the bottom door to p0 was closed, the robot generated a mo-
tion plan to satisfy ϕ2 by visiting p1 and then p3. Once p1

was found unaccessible, another fully satisfying plan was
computed requiring a visit to p0 through the top entrance
followed by a visit to p4. During the execution of this plan,
the robot discovered the top door was also closed. At this
point, no other fully satisfying plans existed. Thus, the robot
computed a trajectory that skipped p0 and visited p4 with the
distance to satisfaction of 1 as shown in Fig. 5b.

Similarly, the robot’s initial plan for Specification 3 was
also fully satisfying. It required the robot to visit p2 by go-
ing through the office containing p0. However, during the
execution of this plan, the robot discovered the closed door
that made the office unaccessible from the bottom corridor
(see Fig. 5c). At this point, the specification could not be
fully satisfied. The robot computed a new plan with mini-
mum distance to satisfaction of 1, which visited p2 by the
violation of passing over p4 and then visiting p0. During the
execution of this plan, the robot discovered the closed door
to p1. The robot replanned a new trajectory which followed a
similar path as the previous one. After visiting p2 and while
on its way to p0, the robot discovered the top door to p0 was
also closed. The new plan for the robot was to skip p0 and
terminate at this point. The traveled trajectory of the robot
violated p4 and p0 and had the distance to satisfaction of 2.

For each specification, 50 motion plans were computed.
The planning data is shown in Table 1. Note that the to-
tal planning times are larger for case study 2 than those
for case study 1. That is because the robot had to perform
(re)planning at every instance of discovery of an obstacle (4
instances) in case study 2, whereas in case study 1 the plan-
ner was called only once.

7 Conclusion
By deploying methods for quantification of satisfaction of
an LTL specification, we have constructed a planning frame-
work that can handle complicated specifications that may
not be satisfiable by the robot in the environment. Our
framework is designed to require from the designer only a
co-safe LTL formula along with the cost function over the
proposition. Indeed, this framework can be easily modified
so that the designer can define her own weighted skipping
function or even the weighted automaton representing the
specification and weighted skipping. This allows to fine-tune

WDFA to the specific needs of the user. Furthermore, in this
work, we did not allow the proposition costs nor the status
of the obstacles to change over time. An interesting scenario
to consider, for instance, is the case that cost/importance of
propositions drop as time passes and doors alternate between
open/close. These challenges require a more sophisticated
method of quantification and are a prospect of future work.

8 Acknowledgments
The authors would like to thank Professor Orna Kupfer-
man from Hebrew University for her valuable comments.
Work on this paper by the authors has been supported by
NSF grants 1317849, 1139011, and 1018798 and BSF grant
9800096.

References
Almagor, S.; Boker, U.; and Kupferman, O. 2013. Formal-
izing and reasoning about quality. In Automata, Languages,
and Programming. Springer. 15–27.
Bacchus, F., and Kabanza, F. 1998. Planning for temporally
extended goals. Ann. of Math. and Artif. Intell. 22:5–27.
Baier, J. A.; Fritz, C.; Bienvenu, M.; and McIlraith, S. 2008.
Beyond classical planning: Procedural control knowledge
and preferences in state-of-the-art planners. In AAAI Con-
ference on Artificial Intelligence, 1509–1512.
Bhatia, A.; Maly, M.; Kavraki, L. E.; and Vardi, M. Y. 2011.
Motion planning with complex goals. Robotics Automation
Magazine, IEEE 18(3):55–64.
Bhatia, A.; Kavraki, L. E.; and Vardi, M. Y. 2010a. Motion
planning with hybrid dynamics and temporal goals. In Conf.
on Decision and Control, 1108–1115. IEEE.
Bhatia, A.; Kavraki, L. E.; and Vardi, M. Y. 2010b.
Sampling-based motion planning with temporal goals. In
Int. Conf. on Robotics and Automation, 2689–2696. IEEE.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. Cp-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Intell. Res.(JAIR) 21:135–191.
Calvanese, D.; Giacomo, G. D.; and Vardi, M. 2002. Rea-
soning about actions and planning in LTL action theories.
In Int. Conf. on the Principles of Knowledge Representation
and Reasoning, 593–602. Morgan Kaufmann.
Černỳ, P.; Henzinger, T. A.; and Radhakrishna, A. 2012.
Simulation distances. Theo. Comp. Science 413(1):21–35.
Clarke, E. M.; Grumberg, O.; and Peled, D. 1999. Model
checking. MIT Press.
Coles, A. J., and Coles, A. 2011. LPRPG-P: Relaxed plan
heuristics for planning with preferences. In Int. Conf. on
Automated Planning and Scheduling, 26–33.
Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine 19(4):72–82.
De Giacomo, G., and Vardi, M. 1999. Automata-theoretic
approach to planning for temporally extended goals. In
Proc. European Conf. on Planning, Lecture Notes in AI
1809, 226–238. Springer.

DeCastro, J. A., and Kress-Gazit, H. 2013. Guaranteeing re-
active high-level behaviors for robots with complex dynam-
ics. In Int. Conf. on Intell. Rob. and Sys., 749–756. IEEE.
Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B.
2009. Integrating symbolic and geometric planning for mo-
bile manipulation. In Safety, Security & Rescue Robotics,
Int. Workshop on, 1–6. IEEE.
Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth inter-
national planning competition: Pddl3 and experimental eval-
uation of the planners. Artif. Intell. 173(5):619–668.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning: theory & practice. Elsevier.
Juma, F.; Hsu, E. I.; and McIlraith, S. A. 2012. Preference-
based planning via MaxSAT. In Advances in Artificial Intel-
ligence. Springer. 109–120.
Kim, K., and Fainekos, G. 2013. Minimal specification
revision for weighted transition systems. In Int. Conf. on
Robotics and Automation, 4068–4074. IEEE.
Kim, K., and Fainekos, G. 2014. Revision of specification
automata under quantitative preferences. In Int. Conf. on
Robotics and Automation, 5339–5344. IEEE.
Kloetzer, M., and Belta, C. 2008. A fully automated frame-
work for control of linear systems from temporal logic spec-
ifications. IEEE Trans. on Auto. Control 53(1):287–297.
Kress-Gazit, H.; Fainekos, G.; and Pappas, G. J. 2007.
Where’s waldo? sensor-based temporal logic motion plan-
ning. In Int. Conf. on Robotics and Auto., 3116–3121. IEEE.
Kupferman, O., and Vardi, M. Y. 2001. Model check-
ing of safety properties. Formal Methods in System Design
19:291–314.
Kvarnström, J., and Doherty, P. 2000. Talplanner: A tempo-
ral logic based forward chaining planner. Annals of Mathe-
matics and Artificial Intelligence 30(1-4):119–169.
Maly, M. R.; Lahijanian, M.; Kavraki, L. E.; Kress-Gazit,
H.; and Vardi, M. Y. 2013. Iterative temporal motion plan-
ning for hybrid systems in partially unknown environments.
In Int. Conf. on Hybrid Systems: Computation and Control,
353–362. ACM.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2009. HTN
planning with preferences. In Int. Joint Conf. on Artificial
Intelligence, 1790–1797.
Srivastava, S.; Riano, L.; Russell, S.; and Abbeel, P. 2013.
Using classical planners for tasks with continuous opera-
tors in robotics. In Intl. Conf. on Automated Planning and
Scheduling, 27–35.
Tumova, J.; Hall, G. C.; Karaman, S.; Frazzoli, E.; and Rus,
D. 2013. Least-violating control strategy synthesis with
safety rules. In Int. Conf. on Hybrid systems: computation
and control, 1–10. ACM.
Wongpiromsarn, T.; Topcu, U.; and Murray, R. M. 2010.
Receding horizon control for temporal logic specifications.
In Int. Conf. on Hybrid Systems: Computation and Control,
101–110. ACM.

