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Abstract— This paper introduces a strategy planner for
nondeterministic hybrid systems with complex continuous dy-
namics. The planner uses sampling-based techniques and game-
theoretic approaches to generate a series of plans and decision
choices that increase the chances of success within a fixed time
budget. The planning algorithm consists of two phases: explo-
ration and strategy improvement. During the exploration phase,
a search tree is grown in the hybrid state space by sampling
state and control spaces for a fixed amount of time. An initial
strategy is then computed over the search tree using a game-
theoretic approach. To mitigate the effects of nondeterminism
in the initial strategy, the strategy improvement phase extends
new tree branches to the goal, using the data that is collected in
the first phase. The efficacy of this planner is demonstrated on
simulation of two hybrid and nondeterministic car-like robots
in various environments. The results show significant increases
in the likelihood of success for the strategies computed by the
two-phase algorithm over a simple exploration planner.

I. INTRODUCTION

Robot motion planning is generally a difficult task and
an active area of research. This is due to the large number
of variations in the systems’ dynamics, environments, task
specifications, and possible existence of uncertainties in each
category. There are a variety of techniques and algorithms
available, each of which is tailored to a particular class
of problems [1], [2]. Notably, the problem of planning for
complex and nondeterministic dynamical systems is of a great
interest. These systems are good representatives of real world
robots where complexity and uncertainty are unavoidable.

In this study, the planning problem of a class of robots,
whose dynamics are both complex and nondeterministic, is
considered. Specifically, the model of the robot’s evolution in
the environment is assumed to be given as a hybrid system
with nondeterministic discrete transitions [3]. Examples of
such robots include a car-like robot with faulty transmission
(gearbox) causing nondeterministic switching between gears.
Another example is a wheeled robot in a bumpy environment
where moving over a bump could damage the wheels. The
goal of this work is an algorithm that, given a finite planning
time, computes a plan that is near-optimal with respect to
chances of successfully completing a reachability task for
such robots.

Given our interest in motion planning for these robots,
a planning method that is capable of dealing with complex
dynamics needs to be employed. Among the existing planners,
sampling-based techniques (e.g., [4]–[6]), are specifically
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popular for planning for complex systems. These methods do
not necessarily require an analytical analysis of the system’s
dynamics or a closed form solution to their (partial) differen-
tial equations. All they typically need is a simulator for the
system to produce a path to the goal. This is usually achieved
by an extensive search of the state space of the system through
sampling. Some of the most popular sampling-based planners
are Probabilistic RoadMaps (PRM) [4], Rapidly-exploring
Random Trees (RRT) [5], and Expansive Space Trees (EST) [6].
The main difference between these methods is the sampling
technique they use to explore the system’s state space.

Most of the existing sampling-based planners assume
deterministic systems. In practice, however, robots suffer
from uncertainties in their actuation (e.g., noise in the applied
torque or slipping tires), observation (e.g., imperfect sensors),
or environment (e.g., moving obstacles) [7]. Hence, the execu-
tion of the path that the traditional planners generate are prone
to fail under uncertainty, making these planners undesirable
for nondeterministic systems. Planners for uncertain systems
must consider nondeterminism during the planning process,
and instead of a path, they need to find a motion strategy [8].

There are generally two approaches to planning for systems
with uncertainty in their actions, observations, or environ-
ments. One method is to assume that the uncertainty is
stochastic. Most of the existing works to these problems
are based on discrete Markov modeling of the evolution of
the system in the environment and generating a policy over
the approximating Markov states. Examples of such planners
include Stochastic Motion Roadmap (SMR) [9], incremental
Markov Decision Process (iMDP) [10], and belief space
planners [11]. These methods have shown to be effective;
however, they require the knowledge of the probability
distribution of the uncertainty, which is not always available.

Another approach to planning under uncertainty is to view
the uncertainty as bounded modeling errors or disturbances
to the system. Then, robust control techniques derived from
continuous control theory, such as `1 optimal control [12], can
be employed to generate control policies that are insensitive to
such disturbances. These techniques have also been extended
to discrete systems [13], [14]. Nevertheless, they are generally
effective for systems with simple dynamics. For complex (and
nonlinearizable) systems, the existing robust control methods
are not suitable.

In this work, we assume no knowledge of the uncertainty
distribution and focus on sampling techniques because of
our interest in complex dynamics. We introduce a two-phase
algorithm for planning under action (actuation) uncertainty.
In particular, we consider planning for a nondeterministic
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hybrid system as the model for the robot’s evolution in its
environment, where the uncertainty is captured as nondeter-
ministic transitions between the discrete modes of the hybrid
system. Such a framework allows modeling of robots with
several continuous dynamics with discrete switching between
them. Therefore, the effect of uncertainty on the robot can
be captured as a change in its continuous dynamics.

The first phase of the algorithm searches the hybrid
state space and computes an initial motion strategy for a
nondeterministic hybrid system to reach a goal. A motion
strategy is generated first by growing a search tree in the state
space of the system through sampling state and control spaces
and then finding a strategy over the tree. In the second phase,
the algorithm improves the initial strategy and increases the
chances of success. This is achieved by taking advantage
of the tree data structure that is collected in the first phase
and generating new tree branches to the goal. Since the state
space search is performed in a fixed amount of time, no
optimality guarantees can be catered for the attained strategy.

To the best of our knowledge, there is currently no existing
algorithm that allows for planning for nondeterministic hybrid
systems with complex continuous dynamics. The algorithm
that we present in this paper is the first attempt in this
direction. As that, this paper introduces a game-theoretic
approach to sampling-based motion planning. We evaluated
our algorithm in several case studies with different hybrid
robots in a variety of environments. In these case studies, the
algorithm was always able to find a motion strategy in the
first phase given enough time. The obtained results also show
that the second phase of the algorithm remarkably improves
the results of the first phase.

The remainder of the paper is organized as follows. In Sec.
II, we formally define nondeterministic hybrid systems and
give a background on game trees. We formulate the problem
and state our approach in Sec. III. In Sec. IV, we introduce
our planning algorithm. We present case studies and their
results in Sec. V. In Sec. VI, we conclude the paper with
final remarks and discuss possible future directions.

II. DEFINITIONS

A. Nondeterministic Hybrid Systems

In this study, we consider uncertain robots with complex
dynamics whose evolution in an environment can be described
as a nondeterministic hybrid system [3]. Hybrid systems
consist of both continuous and discrete dynamic behavior
and provide a modeling framework for the systems that
operate under different continuous dynamics and discrete
switching (transitioning) between them. The hybrid system
that we consider in this work allows the discrete transitions
to be nondeterministic but the continuous dynamics are
deterministic. A formal definition of this nondeterministic
hybrid system is given below.

Definition 1 (Nondeterministic Hybrid System):
A nondeterministic hybrid system is a tuple
H = (S, s0, I, E,G, J, U, F ), where
• S = Q×X is the hybrid state space that is a product

of a set of discrete modes, Q = {q1, q2, . . . , qm} for
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Fig. 1: A nondeterministic hybrid system of a car robot with
three gears. The system is subject to uncertainty because
when it needs to switch to gear three from gear two, it
could mistakenly shift to gear one. This is captured as the
nondeterministic transition enabled by guard Gq2{q1q3}.

some finite m ∈ N, by a set of continuous state spaces
X = {Xq ⊆ Rnq : q ∈ Q ∧ nq ∈ N};

• s0 ∈ S is the initial state;
• I = {Iq : q ∈ Q}, is the set of invariants, where
Iq : Xq → {>,⊥};

• E ⊆ Q×Q describes discrete transitions between modes
in Q;

• G = {GqQ′ : Q′ ⊆ Q ∧ (q, q′) ∈ E ∀q′ ∈ Q′},
where GqQ′ : Xq → {>,⊥} is a guard function
that enables a transition between mode q to a mode
in Q′ given the continuous state of the robot. The
transition is deterministic if |Q′| = 1; otherwise, it is a
nondeterministic transition;

• J = {J(q, q′) : (q, q′) ∈ E}, where J(q, q′) : Xq →
Xq′ is the jump function;

• U = {Uq ⊂ Rmq : q ∈ Q ∧ mq ∈ N} is the set of
control spaces;

• F = {Fq : q ∈ Q}, where Fq : Xq×Uq×R≥0 → Xq is
the flow function that describes the continuous dynamics
of the system through a set of differential equations in
each mode q.

A pair s = (q, x) ∈ S denotes a hybrid state of the system.
Fq(x, u, t) gives the continuous state of the system when the
control u is applied for t time units starting from state x.

The evolution of robot represented by the nondeterministic
system H is as follows. The robot starts evolving from
its initial state s(0) = s0 = (q, x0) according to the flow
function Fq(x, u, t) with control u ∈ Uq. Let τ denote the
time that the robot first hits the guard GqQ′ . Then, the
system makes a transition to mode q′ if Q′ = {q′}. If Q′ =
{q′, q′′, . . . , q(n)}, it makes a transition to one of the states in
Q′ nondeterministically, say q′. The robot dynamics change
to Fq′(x, u, t) at the continuous state x(τ) = J(q, q′), i.e.,
s(τ) = (q′, J(q, q′)). Thus, the robot now moves according
to Fq′ for control u ∈ Uq′ . This process goes on as long as
the invariant function remains true. As soon as the invariant
becomes false, the system terminates, and the robot stops
moving. In the physical world, this means the robot has either
collided with an obstacle or has reached a goal region.

To illustrate a nondeterministic hybrid system, consider
a car with three gears as shown in Fig. 1. When in gear
i ∈ {1, 2, 3}, the robot operates according to differential
equation function Fqi , which can be complex (e.g., a second-



order car). The robot switches gears when a guard is enabled.
The robot is susceptible to making a mistake when the guard
of gear two to gear three is enabled. In this case, the robot
could mistakenly shift to gear one instead of gear three.
This is captured as a nondeterministic transition triggered by
Gq2{q1q3} in the nondetereministic hybrid system in Fig. 1.

B. Game Trees, AND/OR Trees, and Strategies

The work presented in this paper also uses the concepts
and techniques of game trees. A game tree is a tree whose
nodes and edges represent board positions and moves of a
game, respectively [15]. At each node, a finite set of discrete
inputs (moves) is available. Each node-input pair results in a
set of children in the tree.

An AND/OR tree models a game tree as a two-person,
MIN-MAX, game with perfect information. It represents the
board positions resulting from MIN’s and MAX’s moves by
OR and AND nodes, respectively. Moves of the game proceed
in strict alternation between MIN and MAX until no further
moves are allowed by the rules of the game. After the last
move, MIN receives a penalty which is a function of the final
board position. The amount of penalty is defined by a cost
function. Thus, MIN always seeks to minimize the penalty,
while MAX does the converse.

Given an AND/OR tree representation of a problem, we can
identify its potential solutions, each represented by a strategy
tree. A strategy tree of AND/OR tree Ta is a subtree of Ta.
We formally define these notions below.

Definition 2 (Strategy): A strategy over a game tree is a
mapping from a node to an element of the input set available
at the node. A strategy can be represented as subtree of an
AND/OR tree.

Definition 3 (Optimal Strategy): An optimal strategy over
a game tree is the one whose AND/OR tree representation
minimizes the cost given by a cost function at the root of
the tree.

III. PROBLEM FORMULATION AND APPROACH

We are interested in motion planning for a robot with
complex dynamics, whose motion in its environment is
modeled as a nondeterministic hybrid system, to reach a
goal state while avoiding obstacles. Note that finding a path
from the initial state to the goal is not sufficient. Due the
existence of nondeterministic transitions between different
continuous dynamics, the robot is prone to diverge from the
desired path generated by the traditional motion planners.
Thus, an optimal strategy that maximizes the chances of
reaching the goal over all possible paths is desired.

There are immediate hurdles in approaching this problem
due to undecidability. In [16], it was shown that the problem
of reachability of even a simple deterministic hybrid system is
undecidable. Hence, in this work, we target a simpler version
of the above problem: computing an optimal strategy over
a subset of all possible paths. In this case, the strategy is
guaranteed to be globally optimal only when its chances of
failure is zero. Otherwise, it is suboptimal with respect to the

set of all paths. We refer to this strategy as a near-optimal
strategy. A formal statement of this problem follows.

Definition 4 (Strategy Planning Problem (SPP)): Given a
robot with complex dynamics whose motion in its environ-
ment is represented by a nondeterministic hybrid system H
with initial state s0, a set of goal states Sgoal ⊆ S, and a
maximum planning time TSPP, find a near-optimal strategy
for the robot that maximizes its chances of reaching a state
in Sgoal.

To approach this problem, we design a strategy planning
algorithm consisting of two phases. In the first phase, the
algorithm explores the state space of the hybrid system to find
as many paths to Sgoal as possible from initial state s0 within
a finite time. Then, a strategy that optimizes the chances of
success over these paths is computed. In the second phase,
the algorithm attempts to improve this initial strategy towards
a globally optimal strategy by generating new paths with a
bias towards the successful paths found in the first phase.

To explore the hybrid state space of H , we grow a
search tree rooted at s0 using a sampling-based algorithm
for duration Texp ≤ TSPP. Due to nondeterminism, this tree
includes node-action pairs with multiple children, making it
a game tree. We need to find a strategy to the goal leaves
over this tree. Search trees are typically large and dense, and
computing strategies over them is expensive. However, we
are only interested in the portion of the tree that leads to
Sgoal. Thus, we prune the search tree to the branches whose
leaves are in the goal set. We refer to the resulting tree as the
solution tree. We model this tree as an AND/OR tree, where
MIN player gets to choose a sampled control at each of the
solution tree nodes first, and then MAX (the adversary) picks
a child of the corresponding node-control pairs. Recall that
MIN always seeks to minimize the total cost. By assigning the
cost of each node-control pair in accordance with the number
of resulting children that do not belong to the solution tree,
MIN’s strategy becomes to select the controls that minimizes
the chances of failure. MAX’s strategy is to choose the child
that maximizes the chances of failure (see Sec. IV-A.2). As a
result, the strategy tree that maximizes the chances of success
over the search tree can be obtained. Recall that this strategy
is optimal with respect to the search tree, but globally it is
near-optimal. In the case that the total cost at root is zero,
then this strategy is globally optimal.

The second phase of the algorithm is prompted only if the
obtained strategy does not guarantee global optimality, i.e.,
there exists a path that does not end in a goal state under
the computed strategy. The algorithm begins by finding the
children of the node-control pairs of the strategy tree that
belong to the search tree but not the strategy tree. We refer
to these children as the set of failing nodes and denote them
by Sfail. Then, for each of these nodes, the algorithm tries to
generate a new branch (path) to goal by using solution tree
branches as guides. These paths are achieved by sampling
controls and selecting the one that maximizes a progress
function. The progress function measures distance towards
the solution tree branches (see Sec. IV-B.1). The result of
the second phase of the algorithm is an improved strategy.



IV. STRATEGY PLANNING ALGORITHM

As mentioned above, our strategy planning algorithm
consists of two phases, exploration and strategy improvement.
In this section, we describe these phases in detail.

A. Phase I - Exploration

1) State Space Search: As the first step to approach SPP,
we explore the state space of the system for a fixed amount
of time. The search is performed by growing a search tree
rooted at initial state s0 by sampling the control space and
using the system’s dynamics. The nodes of the tree are hybrid
states. If the system is in mode q, controls are sampled from
Uq , and the dynamics used to extend a trajectory are given by
Fq . During the extension of the tree, the invariant function Iq
checks whether the generated paths between two nodes are
valid (i.e., the path is collision free). Iq also labels a node
as a goal if the node is in Sgoal. The guard Gq{·} checks
whether a transition in the robot dynamics needs to take place.
Once a guard is enabled during the execution of sampled
control u at node s, the child (children) of the pair (s, u) is
given by jump function(s) J(q, ·).

Recall that there are guards that enable nondeterministic
transitions. Even though the system is actually given one of
the possible outcomes of this transition during its execution, in
the search-tree expansion, we include all possible outcomes of
the nondeterministic transitions. This information is important
to keep because we are in fact constructing a game tree, and
each outcome of the nondeterministic transition corresponds
to a child of the node-input pair of the game tree. This data
is critical in correct computation of a strategy. Therefore,
once GqiQ′ , where |Q′| = nQ′ > 1, is enabled during the
execution of u at s, the node-control pair (s, u) has nQ′

children, each of which is given by J(q, q′) for each q′ ∈ Q′.
There are many sampling-based tree expansion techniques

(e.g., RRT [5] and EST [6]). Our framework is not limited
to a particular technique, and each of these methods can
be employed in the exploration step. One can choose the
sampling-based planner that deemed to work well for the
system under the consideration without the nondeterminism.
This selection can be based on benchmarking facilities of
OMPL [17] or any others.

2) Pruning and Initial Strategy Computation: Recall that
the obtained search tree is, in fact, a game tree, over which
we would like to find a strategy that maximizes the chances
of reaching goal leaves. Since no distribution is assumed for
the system’s uncertainty, we define the maximization of the
chances of success to be equivalent to the minimization of
the number of paths that do not lead to a goal leaf. In the
MIN-MAX formulation of the game, MIN desires to pick the
controls that lead the system to a goal leaf (minimizing failure)
while MAX tries to choose the children that prevent the system
from reaching goal. In the AND/OR tree representation of the
game, hence, SPP is reduced to finding the subtree (optimal
strategy) that minimizes the total number of failing nodes.
We stress that this strategy is only optimal with respect to
the search tree and guaranteed to be globally optimal if there

Algorithm 1 Pruning and Near-Optimal Strategy
Input: search tree data structure and queue of goal leaves Sg
Output: solution tree Csol, optimal cost c∗, optimal strategy u∗

1: K = Sg
2: while K 6= ∅ do
3: k = K.DEQUEUE()
4: if k 6= root then
5: K.ENQUEUE(PARENT(k))
6: add k to Csol(PARENT(k), u(PARENT(k), k))
7: if k ∈ Sg then
8: c∗(k) = 0; u∗(k) = 0
9: else

10: for all u ∈ u(k) do
11: c(k, u) = COST(k, u) +

∑
s∈Csol(k,u) c

∗(s)
12: c∗(k) = minu∈u(k) c(k, u)
13: u∗(k) = argminu∈u(k) c(k, u)
14: return Csol, c∗, u∗

are no failing nodes in the strategy tree. The computation of
this initial near-optimal strategy is explained below.

Since search trees are usually large, and computing
strategies is generally expensive, we first prune the tree to
the branches that end in a goal leaf. This is the portion of the
tree that we are interested in and refer to it as the solution
tree. During the process of pruning, we also assign a cost to
each node-control pair that belongs to the solution tree. We
define the cost of control u at node s to be:

COST(s, u) = |Csea(s, u)| − |Csol(s, u)|, (1)

where Csol(s, u) and Csea(s, u) are the set of children of (s, u)
in the solution tree and search tree, respectively. In words,
the cost of choosing control u at node s is the number of
children that do not lead to a goal. Therefore, by minimizing
the total cost of the node-control pairs in the solution tree,
we favor the selection of the actions that increase the chances
of success.

We perform the solution tree construction (pruning), cost
assignment, and optimal strategy computation in one bottom-
up breadth-first search algorithm. Pseudocode is shown in
Algorithm 1. In this algorithm, u(k, k′) represents the control
that enables a transition from node k to its child k′, u(k) is
the set of available sampled controls at node k, c(k, u) is
the total cost from node k to a goal leaf under the choice
of control u, and c∗(k) and u∗(k) are the optimal total cost
and optimal control at node k, respectively.

Algorithm 1 first iterates through the set of goal leaves
and labels them as nodes of the solution tree (line 6). It then
assigns optimal total cost of zero to each of them in line 8.
Next, the set of the parents of the goal leaves are considered.
For each of these nodes, the total cost of the node paired
with each of its controls to a goal leaf is computed (lines
10 and 11). Then, the minimum total cost and the control
that gives rise to it are found in lines 12 and 13. Next, the
algorithm considers the parents of these nodes and performs
these operations on each of them. These steps are repeated
until the root of the tree is reached. In addition to computing
optimal total cost c∗ and optimal strategy u∗ over the tree, this



Algorithm 2 Guided Path-Generation
Input: solution tree, failing nodes Sfail, max time Timp, max path

length L̂path, number of controls Nu, number of look-ahead
nodes Nl, weights w, goal set Sgoal, goal leaves Sg

Output: a new set of goal leaves

1: while (Sfail 6= ∅ and time < Timp) do
2: sf ← Sfail.DEQUEUE()
3: L← 0
4: while (sf 6∈ Sgoal and L ≤ L̂path) do
5: sn ← NEARESTSOLTREENODE(sf )
6: prog ← −∞
7: for i = 1 to Nu do
8: usmp ← SAMPLECONTROL(sf )
9: Sext ← EXTEND(sf , usmp)

10: ptemp ← PROGRESS(sf ,Sext, sn, Nl, w)
11: if ptemp < prog then
12: prog ← ptemp; S∗ ← Sext; u(s)← usmp

13: for all s∗ ∈ S∗ do
14: PARENT(s∗)← sf
15: add s∗ to children of (sf , usmp)
16: if s∗ ∈ Sgoal then
17: add s∗ to Sg
18: s∗ ← S∗.DEQUEUE()
19: add S∗ to Sfail
20: L← L+ DIST(sf , s

∗)
21: sf ← s∗

22: if sf 6∈ Sgoal then
23: Sfail.ENQUEUE(sf )
24: return Sg

algorithm implicitly generates the solution tree by returning
the relation Csol in “one pass” of the tree.

B. Phase II - Strategy Improvement

In the second phase of the planning algorithm, we focus on
improving strategy u∗ obtained in the first phase if c∗(root) >
0. We propose a sampling-based path generator that uses the
solution-tree branches as a guide since all of the branches of
this tree end in Sgoal.

1) Guided Path-Generation: Recall that Sfail is the set of
children of the strategy tree node-control pair (s, u∗(s)) that
put the robot on a failing path. The guided path-generator
portion of the algorithm iteratively extends a path from
each sf ∈ Sfail by maximizing the progress of following
the nearest solution tree branch. This progress is measured
through distance-based function PROGRESS which rewards
the nodes that closely follow a successful path of the solution
tree and penalizes the controls that result in nondeterministic
transitions. The pseudocode of the guided path-generation
algorithm is shown in Algorithm 2.

Algorithm 2 first picks a node sf ∈ Sfail and finds the
nearest solution tree node to it. The algorithm then samples
Nu controls at sf and extends new nodes Sext from sf
for each sampled control. Next, it measures the progress of
the newly extended nodes toward the nearest solution-tree
path using PROGRESS function. Nodes with best progress
are selected as the children of sf (lines 7-15). Next, one of
the extended nodes in Sext is picked for the next iteration
of the node extension portion of the algorithm, and the rest
of the extended nodes are added to Sfail. Once the extended

Algorithm 3 Progress Function PROGRESS

Input: solution tree, current node sc, new nodes Sext, nearest sol.
tree node sn, number of look-ahead nodes Nl, weights w

Output: progress for Sext with respect to the subtree rooted at sn

1: for all se ∈ Sext do
2: if se ∈ Sgoal then
3: Sext ← Sext − {se}
4: if Sext = ∅ then
5: return ∞
6: dc ← PROGRESSDIST(s, sn,Sg, Nl)
7: i← 1
8: for all se ∈ Sext do
9: dei ← PROGRESSDIST(se, sn,Sg, |dc|)

10: i← i+ 1

11: return
∑|dc|

i=0 w(sn)
dci−

∑
d∈dei

d

dc

node is in Sgoal, the path generation from sf is complete,
and the algorithm starts a new round of path generation by
picking another state from Sfail. If the length of the generated
path from sf exceeds L̂path without reaching the goal, the
algorithm moves on to the next state in Sfail and inserts sf
to the back of Sfail to revisit later. Algorithm 2 terminates
if it runs out of time Timp, or Sfail is empty (i.e., a global
optimal strategy is obtained).

2) Progress Function: The success of the guided path-
generation algorithm highly depends on PROGRESS. This
function determines how closely the generated path follows
an existing successful path by assigning a reward to the
extended nodes. The pseudocode of the progress function
that we propose is shown in Algorithm 3. It considers the
current node sc, the nearest solution-tree node sn, and Nl
nodes down from sn, which are referred to as the look-
ahead nodes. Let Ssol denote the set of considered nodes
from the solution tree (i.e., sn and Nl look-ahead nodes).
PROGRESS measures progress as weighted percent decrease
in the distance from the extended nodes to each of the nodes
in Ssol. The general form of this function is

∑

s∈Ssol
w(s)

DIST(sc, s)−
∑
se∈Sext DIST(se, s)

DIST(sc, s)
, (2)

where w(s) is a given weight on the progress towards node
s. Function DIST(s, s′) computes the distance between s =
(q, x) and s′ = (q′, x′) over the projection of x and x′ onto
the space that they share. Note that the smallest dimension of
this space is two for a robot operating in a two-dimensional
workspace (i.e., x1 and x2). PROGRESS penalizes the controls
that result in nondeterministic transitions by considering the
sum of the distances of the extended notes in Sext to s as
the distance of Sext to the solution tree.

The parameters w(·) and Nl provide the necessary tools
for a user to tune the progress function for different settings.
For instance, by assigning large weights to the immediate
nodes and small weights to the farther look-ahead nodes,
PROGRESS favors the extended nodes that are closer to the
solution tree path over those that are farther, including the
ones that are closer to the gaol set. This results in generating
conservative paths that spend more time to stay close to
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Fig. 2: Four environments of the case studies. Initial position and goal region are shown as blue and green circles, respectively.

the solution tree path than to make progress towards goal.
Such a progress function is well-suited for the environments
with narrow passages for instance. On the contrary, for the
environments with open spaces, one would favor fast progress
towards goal over staying tightly close to the solution tree
path by assigning larger weights to the farther away look-
ahead nodes. The number of look-ahead nodes Nl can be
viewed as the horizon parameter of the path generator of the
solution-tree path. By selecting large Nl, one gives the path
generator more information on its guide. This results in a node
selection process that takes future steps into consideration.

Algorithm 3 provides the pseudocode of PROGRESS. It
only considers the extended nodes in Sext that are not in
goal. Hence, it starts by checking if the extended nodes are
in Sgoal. If they all have reached goal, then the largest reward
(infinity) is returned to force the selection of these nodes by
the path generator (lines 1-5). Next, the algorithm considers
the look-ahead information. The selection of the look-ahead
nodes and the computation of the distances to them are done
by PROGRESSDIST(s, s′,Sg, Nl). This function selects the
look-ahead nodes for s iteratively. In the first iteration, the
closest child of the solution tree node s′ to s is picked as
the first look-ahead node and is assigned to s′ for the next
iteration. PROGRESSDIST repeats this step for Nl iterations
or until the look-ahead node is a goal leaf. PROGRESSDIST
returns a list of distances from s to these look-ahead nodes.
By allowing the selection of the look-ahead nodes to be
a function of the considered extended node, the algorithm
ensures an accurate measurement of the progress. The value
of the progress is then computed according to (2).

In the implementation of Algorithms 2 and 3, some
heuristics can be taken into consideration to improve the
performance of the algorithms. For instance, note that larger
number of branches in the solution tree provides more guides
for the path generator. Thus, one can sort the nodes in Sfail
with respect to their locations in the tree. By giving priority
to the nodes in the bottom of the tree for path generation, not
only shorter time is required to generate a successful path,
but also as the algorithm proceeds to the farther away nodes,
more options are available for the path generator to follow.

V. CASE STUDIES

We evaluated our strategy planning algorithm for complex
robot dynamics with different number of nondeterministic

0

5

10

15

20

25

N
um

be
r 

of
 F

ai
lin

g 
N

od
es

60 30
0

60
+2

40 60 30
0

60
+2

40 60 30
0

60
+2

40 60 30
0

60
+2

40

cluttered narrow very narrow maze

(a) Number of failing nodes

50

100

150

200

250

300

P
la

nn
in

g 
T

im
e

60 30
0

60
+2

40 60 30
0

60
+2

40 60 30
0

60
+2

40 60 30
0

60
+2

40

cluttered narrow very narrow maze

(b) Planning time

Fig. 3: Box plots of strategy data obtained from different
planning methods for a the second-order car with one
nondeterministic transition in the environments in Fig. 2
over 50 runs. The planning methods were: 60 seconds of
exploration, 300 seconds of exploration, and 60 seconds of
exploration followed by 240 seconds of strategy improvement.

transitions in the environments shown in Fig. 2. In these case
studies, we used an RRT-like planner to extend the search tree.
The obtained results suggest that the near-optimal strategies
generated in the first phase of the algorithm generally have
large chances of failure, and the guided path-generator can
significantly improve these strategies.

The implementation of our algorithm is in C++ using OMPL
[17]. All of the case studies were run on a AMD FX-4100
Quad-Core machine with 16 GB RAM. We used the progress
function parameters Nl = 3 and w(s) = DIST(sc, s) in (2).



(a) Solution tree (b) Initial strategy tree (c) Improved strategy tree

Fig. 4: Samples of planning trees for the system described in Sec. V-A. (a) Solution tree obtained from pruning the search
tree. (b) Initial strategy tree over the solution tree in (a). (c) Improved strategy tree computed by the guide path-generator.
Diamond indicates that the node has at least one child that is not in the solution tree. The nondeterministic transitions are
shown in red.

A. Case Study I

In this case study, we considered a three-gear second-order
car robot which is subject to nondeterminism when it has
to shift from gear two to three. In this case, the robot could
mistakenly change to gear one instead of three. The graph
representation of the hybrid model of this car is shown in
Fig. 1. Geometrically, the robot is modeled as a rectangle
with length rl = 0.2 and width rw = 0.1. The continuous
dynamics of the robot is given by ẋ1 = v cos(θ), ẋ2 =
v sin(θ), θ̇ = v, v̇ = u1, ψ̇ = u2, where heading angle
θ ∈ [−π, π], velocity v ∈ [− 1

6 ,
1
2 ], and steering angle ψ ∈

[−π6 , π6 ]. There are two control inputs to the system: linear
acceleration u1 ∈ [− 1

6 ,
g
6 ] and steering angle acceleration

u2 ∈ [−π6 , π6 ], where g is the gear number.
As shown in Fig. 1, we model each gear as a separate

discrete mode of the hybrid system. The switching conditions
(guards) of gears is as follows. When in g < 3, the car
achieves velocity v > g

6 , then the car switches to gear g + 1.
When in gear g > 1, the car achieves velocity v < g−1

6 , then
the car switches to gear g − 1. Immediately following a gear
switch, the acceleration input bounds are updated accordingly.
For the nondeterministic transition from gear two to gear
one, the jump function assigns values to the states according
to the above dynamics except for the value of v. It sets
v = 1

6 − 10−3 to avoid an immediate triggering of Gg1g2 .
We used our strategy planning algorithm to plan for this

robot in the environments shown in Fig. 2. The black regions
are the obstacles, and the green circle is the goal region. The
initial state of the robot was at x1 = x2 = 0.2, v = 0, θ =
ψ = 0. The invariant function returns true if the robot collides
with an obstacle or visits the goal region in gear one. To show
the efficacy of our two-phase algorithm, we compared the
strategies obtained by the two-phase planner (exploration and
strategy improvement) with the ones from just the exploration
phase (search tree expansion) over 50 rounds of planning.
We set the total planning time to 300 seconds, 60 seconds of
which was spent on exploration Texp = 60 and 240 seconds

on path generation Timp = 240. We compared these results
with planning with search tree expansion for durations of 60
seconds and 300 seconds. These times were chosen arbitrarily.

Fig. 3a shows the box plots of the total number of failing
nodes (nodes that do not lead to a goal) of the obtained
strategy tree in each environment. They show that there are
not a lot of differences between the number of failing nodes
of the strategies based on the 60 second and 300 seconds of
phase I. On the contrary, if the extra 240 seconds is spent
on generating new paths (phase II), the number of failing
nodes can be significantly reduced. For the cluttered, narrow-
passage, and very narrow-passage environments, the guided
path-generator brought down the median of the number of the
failing nodes to zero (hence, globally optimal strategies) from
6, 7, and 8, respectively. In the maze environment, the median
was reduced to 1 from 14. Moreover, as the planning time
plots in Fig. 3b illustrates, the two-phase planner terminated
(found a global optimal strategy) way before the allowed
maximum planning time. These results suggest that it is
preferable to allocate more time to path generation than the
exploration stage.

Fig. 4 illustrates a sample of the various trees attained
in each phase of planning in the cluttered environment. Fig.
4a shows the solution tree that is obtained after pruning the
search tree in the first phase of planning. Even though, this
tree includes many branches to goal, the optimal strategy over
it has 9 failing nodes with two branches to goal as shown
in Fig. 4b. The diamonds denote the nodes with at least one
child out of the solution tree. The nondeterministic transitions
are shown in red color. In the second phase, the guided path-
generator successfully computed a path from each of the
failing nodes to the goal by using the solution tree in Fig. 4a
as a guide. In other words, phase II of the algorithm improved
a near-optimal strategy to a global optimal strategy, Fig. 4c.

B. Case Study II

In this case study, we show that the proposed planning
framework is effective for the hybrid systems with larger
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Fig. 5: Nondeterministic hybrid system model of the second-order
car described in Sec. V-B.
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Fig. 6: Box plots of the number of failing nodes in the
strategies obtained from different planning methods for a
second-order car with two nondeterministic transitions (Fig.
5) in the environments in Fig. 2 over 50 runs. The planning
methods were: 60 seconds of exploration, 300 seconds of
exploration, and 60 seconds of exploration followed by 240
seconds of strategy improvement.

number of nondeterministic guards than one. We considered
the same second-order car as described in Sec. V-A and added
more nondeterminism to it. Here, in addition to gear two to
three, the robot is also uncertain when it has to shift from
gear three to one. The graph representation of this hybrid
system is shown in Fig. 5.

We used the same planning criterion, number of planning
runs, and environments as in Case Study I. The box plots of
the number of failing nodes are shown in Fig 6. Despite the
increase in the number of nondeterministic transitions, the
two-phase planner still performs well. Specifically, the guided
path-generator reduced the median of the failing nodes to
zero from 10, 11, and 11 in the cluttered, narrow-passage,
and very narrow-passage environments, respectively. It also
lowered the median of the number of these nodes by 15 (from
20 to 5) in the maze environment.

VI. DISCUSSION AND FUTURE WORK

In this paper, we have presented a novel motion strategy
planner for nondeterministic hybrid systems. Our algorithm
combines sampling-based techniques with game-theoretic
methods to compute a strategy that maximizes the chances
of the robot getting to the goal over a tree of motion
computed in a user-specified time. The planner first explores
the hybrid state space and generates an initial strategy. Next,

the planner improves this strategy toward a global optimal
one by generating new paths to the goal.

For future work, we plan to develop a sampling technique
to grow the search tree in such a way that better initial
strategies can be obtained in the first phase of the planner.
We also would like to improve the performance of the guided
path-generator by not only using the search tree data, but
also by the failed attempts of its own.
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