
Low-Dimensional Projections for SyCLoP

Matthew R. Maly and Lydia E. Kavraki

Abstract— This paper presents an extension toSyCLoP, a
multilayered motion planning framework that has been shown
to successfully solve high-dimensional problems with differen-
tial constraints. SyCLoP combines traditional sampling-based
planning with a high-level decomposition of the workspace
through which it attempts to guide a low-level tree of motions.
We investigate a generalization ofSyCLoP in which the high-
level decomposition is defined over a given low-dimensional
projected subspace of the state space. We begin with a
manually-chosen projection to demonstrate that projections
other than the workspace can potentially work well. We then
evaluateSyCLoP’s performance with random projections and
projections determined from linear dimensionality reduction
over elements of the state space, for which the results are
mixed. As we will see, finding a useful projection is a difficult
problem, and we conclude this paper by discussing the merits
and drawbacks of various types of projections.

I. I NTRODUCTION

The classic motion planning problem for a robot requires
computing a trajectory that takes the robot from a start state
to a goal region and is free of collisions. Early work on
this problem includes a proof of PSPACE-completeness for
the motion planning problem with respect to the number of
degrees of freedom of the robot [1]. In response, much of
the motion planning research community shifted its focus
to sampling-based approaches, which trade completeness
guarantees for tractable time and space complexity [2], [3].
Sampling-based algorithms include the roadmap-basedPRM
planner [4], and the tree-basedRRT [5], EST [6], SBL
[7], PDST [8], and KPIECE [9] planners, among many
others. Such sampling-based algorithms offerprobabilistic
completeness, which means that the probability that such
an algorithm will find a solution (assuming one exists)
approaches1 as the algorithm spends more time on the prob-
lem. A probabilistically complete motion planning algorithm
cannot in general detect if a solution does not exist.

The success of sampling-based motion planning algo-
rithms has prompted researchers to apply them to increas-
ingly difficult problems. One class of such problems in-
cludes robotic systems with differential constraints. In these
systems, robots can only exhibit motions that are realized
by the application of a sequence of controls. The classic
motion planning problem can be generalized to incorporate
robotic dynamics by including the additional requirement
that the computed trajectory satisfies the differential con-
straints imposed by the robot’s equations of motion. Many
sampling-based planners can easily be generalized to solve
such problems, where a tree stateq not only holds a pointer
to its parent statep(q) but also stores the necessary controls
to realize a motion fromp(q) to q.

This paper investigates the use of low-dimensional pro-
jections for SyCLoP, a synergistic multilayered motion
planning framework that has been successfully used to solve
high-dimensional motion planning problems with differential
constraints [10].SyCLoP is a meta-planner that outper-
forms classic sampling-based planners for high-dimensional
problems with differential constraints by combining high-
level discrete search with a low-level sampling-based motion
planner. On the high-level side,SyCLoP uses a projection
(called theworkspace projection) that maps from the robot’s
state space into the robot’s workspace. Using this projection,
SyCLoP partitions the workspace into cells and creates an
adjacency graph of neighboring cells.SyCLoP then searches
this adjacency graph to determine a contiguous sequence of
regions (called alead) through which to guide a low-level
tree of motions defined in the state space. As the motions
in the tree are constrained by the dynamics of the robotic
system,SyCLoP cannot easily force the tree to grow exactly
through a given lead. Instead, information on where the tree
is able to grow is passed toSyCLoP’s high-level layer which
affects the generation of future leads, creating a two-way
channel of information between the layers, as illustrated
in Figure 1.SyCLoP has been shown to yield significant
speedups of up to two orders of magnitude when compared
to classic tree-based motion planners such asRRT andEST
[10].

Fig. 1. TheSyCLoP architecture.

We have reimplementedSyCLoP as part of the Open
Motion Planning Library (OMPL) [11]. In the process, we
have generalizedSyCLoP’s high-level layer to accept an
arbitrary linear projection as an additional input parameter.
As a result, the subspace in whichSyCLoP computes leads is
customizable, determined by the linear projection given asan
input parameter to our software. The original implementation
of SyCLoP computed leads exclusively in the workspace,
which is one example of such a subspace, determined by
the workspace projection which maps the robot’s state to its
(x, y) location.

Published in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 420-425, 2012

In this paper we will investigate the use of various
projections withSyCLoP and compare their performance
to the workspace projection that has been previously used.
First, we will show that some nonworkspace projections can
improve SyCLoP’s performance. Then we will investigate
the use of random projections and projections obtained by
linear dimensionality reduction. We will show that in general,
finding the best projection forSyCLoP is problem-specific
and often difficult.

Section II describes related approaches on guiding tree-
based motion planners through low-dimensional projections.
Section III formally introduces the motion-planning problem
with dynamics and the original formulation ofSyCLoP.
Section IV describes our extensions toSyCLoP. We have
tested our generalized reimplementation ofSyCLoP on mul-
tiple control-based robotic systems with various projections;
these experimental results are given in Section V. Finally,
concluding remarks and a discussion of future work are given
in Section VI.

II. RELATED WORK

The use of low-dimensional projections in sampling-based
motion planning is not new. As an example, tree-based
planners such asPDST and KPIECE use low-dimensional
projections to guide the tree of motions.PDST dynamically
subdivides a projected subspace of the state space in order to
estimate coverage without the use of a metric, and has been
shown to benefit from the use of a nonworkspace projection
[8]. KPIECE chooses where to expand its tree of motions
by considering the tree’s coverage of a space determined
by some low-dimensional projection [9].KPIECE has been
shown to benefit from random linear projections when plan-
ning for high-dimensional systems [12]. This motivates our
investigation of nonworkspace projections forSyCLoP.

III. F RAMEWORK

We first introduce the motion-planning problem with dy-
namics and then describeSyCLoP, a hybrid motion planner
designed to solve it.

A. Problem Statement

A motion-planning problem with dynamics consists of

1) Q ⊂ Rn, a boundedn-dimensional state space, an
element of which completely determines the system’s
state,

2) U ⊂ Rc, a boundedc-dimensional control space
consisting of control variables that can be applied to
the system to change its state,

3) ctrl : Q × U → Q̇, a differential equation that
captures the system’s constraints,

4) valid : Q → {0, 1}, a boolean function describing
whether a state is valid (used for collision avoidance),

5) qinit ∈ Q, a start state for the system, and
6) Qgoal ⊆ Q, a goal region in which the system should

achieve a state.

A solution to a given motion-planning problem with dynam-
ics is a control functionu : [0, T] → U that moves the

system from the start stateqinit to a stateq ∈ Qgoal, with the
requirement thatvalid(q) = 1 for all statesq along the
trajectory realized byu.

B. SyCLoP

The pseudocode forSyCLoP is given in Algorithm 1.
Lines 1 and 8-11 comprise the behavior ofSyCLoP’s low
level, in which the expansion of a tree is promoted within a
given decomposition region.SyCLoP’s high-level behavior
is seen in lines 3-6 and 12-15, in which high-level leads are
computed, and aggregate information regarding states and
decomposition regions is collected to affect the computation
of future leads. Lines 5 and 7 feature two ofSyCLoP’s
tunable parameters (“number of region expansions” and
“number of tree selections”), which in this work are set to
100 and 50, respectively. For complete details of theSyCLoP
algorithm, we refer the reader to [10].

Algorithm 1 SyCLoP
Input: A motion-planning problem with dynamics

(Q,U ,ctrl,valid, qinit , Qgoal),
a workspace decompositionD, and a time boundtmax.

Output: A solution to the given problem, orNULL if one cannot
be found within timetmax

1: T ← INITIALIZE TREE(qinit)
2: while TIME ELAPSED< tmax do
3: (Ri1 , . . . , Rik)← COMPUTELEAD(D)
4: Ravail← COMPUTEAVAILABLE REGIONS((Ri1 , . . . , Rik))
5: for number of region expansionsdo
6: Rs ← SELECTREGION(Ravail)
7: for number of tree selectionsdo
8: SELECTANDEXTEND(T , Rs)
9: for each new states added toT in line 8 do

10: if s ∈ Qgoal then
11: return trajectory fromqinit to s
12: Rn ← LOCATEREGION(s)
13: if Rn 6∈ Ravail then
14: Ravail← Ravail ∪ {Rn}
15: UPDATEESTIMATES(Rn, s)
16: if no improvement to high-level estimatesthen
17: abandon current lead with probabilityp
18: return to line 3 to compute new lead
19: return NULL

SyCLoP is intended to be used with a low-level tree-
based planner. Notice that the low-level tree planner used
in SyCLoP is not specified. Any tree planner that supports
planning with differential constraints can be used as the low-
level tree planner forSyCLoP. In this work, we restrict our
attention toSyCLoP with RRT as its low-level tree planner,
which for simplicity we refer to asSyCLoP [10].

IV. GENERALIZING SYCLOP

We have generalized the discrete layer ofSyCLoP so that
high-level guides can be computed through any subspace
of the state spaceQ determined by some low-dimensional
projection. Specifically,SyCLoP has been extended to accept
as inputs a projection

PROJ : Q → Rk,

wherek ≤ dim(Q), a lift function

L IFT : Rk → Q
which approximates PROJ−1, and a decomposition

D = {R1, . . . , Rm},
where D is a geometric partition of the projectedk-
dimensional subspace PROJ(Q), so that∪m

i=1Ri = PROJ(Q)
andRa ∩ Rb = ∅ if a 6= b. For this work, we restrict our
attention to the case in which PROJ is a linear projection;
i.e., for each stateq ∈ Q,

PROJ(q) = Mq,

for some fixedk × n matrix M. Additionally, we restrict
our attention to two-dimensional decompositions (k = 2); in
general, some systems may benefit from a three-dimensional
decomposition.

Computing the bounds of a given decomposition and
sampling a full state from a decomposition region have
stood out as the most challenging changes toSyCLoP’s
generalization to accept arbitrary linear projections such as
the ones described above.

A. Computing Decomposition Bounds

Knowing the bounds of PROJ(Q) is necessary when sam-
pling states from a given decomposition region, a crucial step
in theSyCLoP algorithm. InSyCLoP’s original formulation,
computing the bounds of the decomposition and each of its
regions was trivial for vehicular exploration problems, asthe
decomposition space was equivalent to the two-dimensional
workspace, and the workspace could easily be extracted as
two dimensions of the state space.

When the decomposition space follows from an arbitrary
linear projection, its bounds must be computed differently.
Recall n = dim(Q), and letqj,low and qj,high denote the
lower and upper scalar bounds, respectively, of thejth di-
mensional axis of the state spaceQ for eachj ∈ {1, . . . , n}.
Further suppose that PROJ is a linear projection defined by
somek×n matrixM. For eachi ∈ {1, . . . , k}, we compute
the lower and upper scalar boundsdi,low anddi,high of each
ith dimensional axis of the decomposition space PROJ(Q)
as follows.

di,low =

n∑

j=1

min {Mi,j · qj,low,Mi,j · qj,high}

di,high =

n∑

j=1

max {Mi,j · qj,low,Mi,j · qj,high} .

The bounds of PROJ(Q) are used to sample states fromQ
whose projections reside in specific decomposition regions,
a process which we describe in the following section.

B. Sampling States from Regions

The SELECTANDEXTEND(T , Rs) step of theSyCLoP
algorithm, which extends the low-level tree planner within
a given nonempty regionRs, becomes more difficult to
implement given an arbitrary projection. Some planners,

such asRRT and its many variants, sample a random state
q ∈ Q and then attempt to grow the tree towardsq.
The SyCLoP-guided variant of such a planner should then
sample a random state from regionRs, i.e., a stateq ∈ Q
so that PROJ(q) ∈ Rs. In SyCLoP’s original formulation,
accomplishing this task was simple. For example, if we were
planning for a planar vehicle with stateq = (x, y, θ, v),
where (x, y) is the vehicle’s location,θ is its heading,
and v is its forward velocity, then an workspace projection
is defined so that PROJ(x, y, θ, v) = (x, y). To sample a
state q so that PROJ(q) ∈ Rs, we would sample a point
(xr, yr) ∈ Rs, and then return the stateqr = (xr, yr, θr, vr),
whereθr andvr are sampled at random.

With an arbitrary projection, we must do some extra work
to accomplish this task. This is where the input LIFT comes
into play. To obtain a random stateq so that PROJ(q) ∈ Rs,
we uniformly sample a random pointp ∈ Rs and use the
state LIFT(p) ∈ Q. In general,p ∈ Rs does not necessarily
imply that PROJ(L IFT(p)) ∈ Rs. In addition, following a
L IFT operation to obtain a stateq, it is possible thatq is
outside of the bounds ofQ. Hence we follow each LIFT

operation with an operation to bring the obtained state within
the bounds of the state space. Specifically, if LIFT returns a
stateq = (q1, . . . , qn) whoseith dimensional componentqi
is outside of the bounds of theith dimensional component
Qi of the state spaceQ, then the value ofqi is set to the
lower or upper bound ofQi, whichever is closer. As long as
the returned stateq is within the bounds of the state space,
it is acceptable ifq is in collision. This is analogous to the
sampling step in theRRT algorithm, in which the sampled
state toward which the tree is expanded does not need to
be collision-free [5]. Hence we do not follow this step with
collision checking.

V. EXPERIMENTS

A. Dynamic Vehicles Used

Our experiments involve second-order models of two
dynamic vehicles, the car and the tractor-trailer.

1) Car (adapted from [10]):A dynamic car has stateq =
(x, y, θ, v, ψ), consisting of the planar position(x, y) ∈ R2,
planar orientationθ ∈ [−π, π], forward velocityv ∈ R, and
steering angleψ ∈ [−π, π]. We include the bounds|x|, |y| ≤
55m, |v| ≤ 1m/s, and|ψ| ≤ 30◦. The car is controlled with
the accelerationu0 and the steering angle velocityu1, with
the bounds|u0| ≤ 5 m/s2 and |u1| ≤ 2◦/s. The motions
of the car are constrained by the differential equationsẋ =
v cos(θ), ẏ = v sin(θ), θ̇ = v tan(ψ), v̇ = u0, andψ̇ = u1.

2) Tractor-Trailer (adapted from [10]): A dynamic
tractor-trailer is modeled as a car that pulls behind it
some numbert of trailers. A tractor-trailer has stateq =
(x, y, θ0, v, ψ, θ1, . . . , θt), where (x, y, θ0, v, ψ) are con-
strained the same as with the dynamic car in Section V-
A.1. Each traileri has planar orientationθi ∈ [−π, π]. The
equations of motion for the tractor-trailer include those for

the car as well as

θ̇i =
v

d

i−1∏

j=1

cos(θj−1 − θj)

 (sin(θi−1 − θi))

for eachi ∈ {1, . . . , t}.

B. Projections Used

We restrict our attention to three types of two-dimensional
linear projections. Letn = dim(Q).

1) Velocity Projection: Under the assumption thatQ
contains dimensions corresponding to a planar(x, y) location
and a forward velocityv, we define a two-dimensional
velocity projectionso that for each stateq ∈ Q,

PROJ(q) = (x+ cv, y + cv),

wherec is the velocity coefficient. Notice that whenc = 0,
PROJ is simply the workspace projection, used by the original
SyCLoP algorithm.

We pair with the velocity projection the same LIFT op-
eration that was described for the workspace projection in
Section IV-B. This will be a reasonable approximation in
our experiments, as we will keep both the velocity bounds
and the coefficientc much smaller than the bounds onx and
y.

2) Random Projections:We define a two-dimensional
random projection as the matrix

R =

[
a1,1 . . . a1,n
a2,n . . . a2,n

]
,

where each entryai,j is sampled from a Gaussian distribution
with mean 0 and variance 1, and the rows ofR are made or-
thonormal. We define a two-dimensional random projection
so that for each stateq ∈ Q,

PROJ(q) = Rq.

SinceR is a real-valued matrix with orthonormal rows, its
pseudoinverse is equivalent to its transposeRT . Hence we
pair with each random projection the LIFT operation defined
so that for eachp ∈ Rk,

L IFT(p) = RT p+ (I −RTR)w,

wherew is a randomly sampled vector. This is to capture all
possible solutions to the equation PROJ(q) = p.

3) PCA-induced Projections:We also consider projec-
tions taken from applying linear dimensionality reductionto
elements of a given state space. Specifically, we use principal
component analysis (PCA) with two approaches:

1) Run a sampling-based tree planner until a sample
solution path is found. Output just the states from this
path to PCA.

2) Run a sampling-based tree planner for 30 s to cover
the state space. Output all states to PCA.

Following each of the above two approaches, we take
the first two principal components (in descending order of
variance) from PCA to obtain a two-dimensional projec-
tion, the rows of which are normalized. We call these two

TABLE I

DYNAMIC CAR EXPERIMENTSUSING VELOCITY PROJECTIONS

Environment Vel. Coef. Solved % Avg. Soln. Time

Free 0.0 100% 15.88 s

0.2 100% 14.1 s

0.4 100% 15.12 s

0.6 100% 14.8 s

0.8 100% 13.54 s

1.0 100% 13.01 s

Maze 0.0 100% 31.59 s

0.2 100% 30.5 s

0.4 100% 28.88 s

0.6 100% 29.5 s

0.8 100% 28.81 s

1.0 100% 29.27 s

projections thepath-inducedandspace-inducedprojections,
respectively. Similar to the case of the random projections,
we use the transpose matrices to define LIFT operations.

C. Results

Fig. 2. A maze environment with a second-order car: the startstate is
located at the bottom-left of the environment, and the goal region is located
at the top-right of the environment.

We have run our generalized version ofSyCLoP on a
second-order car model and a tractor-trailer model with 3
trailers. For the car, we consider a free space environment
(no obstacles) and a maze environment, which is pictured in
Figure 2. For the tractor-trailer model, we consider only the
maze environment. We have tested these models and environ-
ments with all of the projections described in Section V-B.
All experiments were written in C++ usingOMPL [11] and
were run on an Intel Core 2 Quad machine running at 2.83
GHz with 8 GB of RAM.

Table I contains planner performance data for a car travel-
ing through free space and a maze environment using veloc-
ity projections. Each experiment ran 50 times per velocity
projection. Notice that when the velocity coefficient is0, the
velocity projection is equivalent to the workspace projection,

TABLE II

DYNAMIC CAR EXPERIMENTSUSING RANDOM PROJECTIONS

Environment Random Proj. # Solved % Avg. Soln. Time

Free 1 93% 34.17 s

2 77% 63.81 s

3 100% 21.94 s

4 100% 20.23 s

5 100% 34.59 s

Maze 6 73% 90.04 s

7 20% 115.44 s

8 27% 112.27 s

9 0% 120 s

10 67% 87.82 s

TABLE III

DYNAMIC CAR EXPERIMENTSUSING PCA PROJECTIONS

Environment Projection Solved % Avg. Soln. Time

Free Path-induced 98% 27.66 s

Space-induced 100% 13.89 s

Maze Path-induced 100% 28.45 s

Space-induced 100% 31.58 s

TABLE IV

TRACTOR-TRAILER EXPERIMENTSUSING VELOCITY PROJECTIONS

Environment Vel. Coef. Solved % Avg. Soln. Time

Maze 0.0 97% 73.93 s

0.2 100% 62.1 s

0.4 100% 72.78 s

0.6 100% 61.82 s

0.8 100% 55.38 s

1.0 100% 53.39 s

TABLE V

TRACTOR-TRAILER EXPERIMENTSUSING RANDOM PROJECTIONS

Environment Random Proj. # Solved % Avg. Soln. Time

Maze 1 13% 228.87 s

2 30% 216.35 s

3 37% 210.84 s

4 20% 221.04 s

5 53% 185.05 s

TABLE VI

TRACTOR-TRAILER EXPERIMENTSUSING PCA PROJECTIONS

Environment Projection Solved % Avg. Soln. Time

Maze Path-induced 100% 74.95 s

Space-induced 100% 74.02 s

TABLE VII

EXPERIMENTSUSINGRRT

Vehicle Environment Solved % Avg. Soln. Time

Car Free 100% 19.15 s

Maze 24% 112.73 s

Tractor Maze 23% 195.35 s

which is our baseline of comparison (the original version of
SyCLoP). Table II contains planner performance data for
a car traveling through free space and a maze environment
using random projections. For each environment, five random
projections were used, with averages taken over 30 runs. Ta-
ble III contains planner performance data for a car traveling
through free space and a maze environment using the path-
induced and space-induced PCA projections, with averages
taken over 50 runs. For each run of each car experiment, a
120 s timeout is enforced.

Table IV contains performance data for the tractor-trailer
model using velocity projections, with averages taken over
30 runs. As with the car, our baseline of comparison is
the velocity projection with coefficient0. Table V contains
performance data for the tractor-trailer model using random
projections, and Table VI contains performance data for
the tractor-trailer model using the path-induced and space-
induced PCA projections, with averages taken over 30 runs.
For each run of each tractor-trailer experiment, a 240 s
timeout is enforced.

Table VII contains performance data for the car and
tractor-trailer models usingRRT. Although the focus of
our work is an optimization withinSyCLoP, this table
is meant as a brief demonstration ofSyCLoP’s superior
performance over other sampling-based planning techniques.
For a detailed comparison ofSyCLoP to other methods, we
refer the reader to [10].

D. Analysis

The velocity projection has improved performance of
SyCLoP. This is likely due to the fact that when we
incorporate velocity into the projection, the same physical
region in the workspace is potentially mapped to multiple
decomposition regions, differentiated by the velocity of states
that exist within that physical workspace region. This enables
SyCLoP’s high-level layer to compare the successes of dif-
ferent velocities in the same region of the workspace, which
allows it to value paths of higher velocity in open regions
of the workspace and similarly paths of lower velocity in
cluttered regions of the workspace. The moreSyCLoP can
take advantage of high velocity paths, the faster the simulated
paths in its tree of motions will be, leading more quickly to
a solution path.

In Tables III and VI, we see that the projections generated
from PCA yield mixed results. For the car, PCA projections
slightly improve performance compared to the workspace
projection. For the tractor-trailer, PCA projections slightly
degrade performance.

Random projections degrade performance ofSyCLoP in
all experiments, and they become almost unusable in the case
of the maze environment.

There are many ways in which a complex linear pro-
jection (such as a random projection or PCA projection)
can potentially degradeSyCLoP’s performance. For one,
SyCLoP requires the ability to sample a state from a given
decomposition region by sampling a pointp from the region
and then computing LIFT(p) as defined in Section IV. Given

a sufficiently complex projection PROJ, for a stateq sampled
by SyCLoP given a decomposition regionRi, linearity
ensures thatq ∈ L IFT(Ri). However, by the definition of
L IFT, the stateq may not even be within bounds ofQ.
In such cases, our algorithm bringsq within the bounds
of Q. SyCLoP will attempt to grow its low-level tree
toward q, likely at the edge ofQ, where further collision-
free operations may be impossible. This issue distorts the
information passed betweenSyCLoP’s high-level and low-
level layers:SyCLoP’s high-level reacts to the failure to
promote low-level tree expansion in regionRi as if the
failure was due to differential constraints or obstacles inthe
environment. Instead, it is likely that the true culprit wasthat
inaccuracies with LIFT caused the low-level layer to attempt
expansion from some other regionRj , and the high-level
layer was not aware of this issue.

A second issue with complex linear projections is that they
challenge one ofSyCLoP’s core tasks, which is to create
high-level sequences of adjacent workspace regions through
which to guide a tree of motions. Under the workspace
projection, adjacency of decomposition regions corresponds
to physical adjacency of regions in the robot’s environment.
Given the vehicular models used in these experiments, mo-
tions between adjacent environment regions are typically
realizable as long as enough free space exists in which to
move. Under other low-dimensional projections, we cannot
guarantee correspondence between decomposition regions
and environment regions, and motions between adjacent
decomposition regions (without first traveling through other
decomposition regions) may often be impossible. Ultimately,
low-dimensional projections can fundamentally alter the
topology of the state space. This issue challenges the mo-
tivating feature ofSyCLoP, which is to create a sequence
of adjacent regions as a helpful lead to guide the low-level
planner. Given these potential drawbacks combined with the
merely slight performance advantages obtained from using
some non-workspace projections, we advocate the use of the
original workspace projection forSyCLoP in general.

VI. CONCLUSION AND FUTURE WORK

We have presented a generalization of theSyCLoP plan-
ner to accept any arbitrary linear projection through which
it guides the low-level tree planner. With algorithms such as
SyCLoP that guide a low-level tree planner through a low-
dimensional projection and make assumptions based on the
planner’s ability to explore certain areas of that projection,
the projection used should likely be closely tied to the
dynamics of both the robot and its environment.

For future work, we hope to improveSyCLoP’s handling

of high-dimensional goals and obstacles. All of the exper-
imental setups presented in this paper use two-dimensional
goal regions which are defined in terms of the workspace.
More realistic motion planning problems require goals of
high dimension, and it may prove advantageous to incorpo-
rate goal information into a low-dimensional projection for
SyCLoP, in a similar approach to the velocity projection.
The problem of how to manage high-dimensional goals and

obstacles is not unique toSyCLoP but instead could have
applications to motion planning in general.

ACKNOWLEDGEMENTS

Work on this paper has been supported in part by NSF
CCF 1018798, NSF Expeditions 1139011 and U. S. Army
Research Laboratory and the U. S. Army Research Office
under grant number W911NF-09-1-0383.

In addition, the authors would like to thank the members
of the Kavraki group at Rice University for their helpful
comments and suggestions.

REFERENCES

[1] J. Canny, “Some algebraic and geometric computations inPSPACE,”
in Annual ACM Symposium on Theory of Computing. Chicago,
Illinois, United States: ACM Press, 1988, pp. 460–469.

[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun,Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[3] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006. [Online]. Available: http://msl.cs.uiuc.edu/planning/

[4] L. E. Kavraki, P.Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,”IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp.
566–580, Aug. 1996.

[5] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamicplanning,”
Intl. J. of Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001.

[6] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expan-
sive configuration spaces,”Intl. J. of Computational Geometry and
Applications, vol. 9, no. 4-5, pp. 495–512, 1999.

[7] G. Sánchez and J.-C. Latombe, “On delaying collision checking in
PRM planning: Application to multi-robot coordination,”Intl. J. of
Robotics Research, vol. 21, no. 1, pp. 5–26, Jan. 2002.

[8] A. M. Ladd and L. E. Kavraki, “Fast tree-based exploration of
state space for robots with dynamics,” inAlgorithmic Foundations of
Robotics VI, M. Erdmann, D. Hsu, M. Overmars, and A. F. van der
Stappen, Eds. Springer, STAR 17, 2005, pp. 297–312.

[9] I. A. Şucan and L. E. Kavraki, “A sampling-based tree planner for
systems with complex dynamics,”IEEE Trans. on Robotics, vol. 28,
no. 1, pp. 116–131, 2012.

[10] E. Plaku, L. Kavraki, and M. Vardi, “Motion planning with dynamics
by a synergistic combination of layers of planning,”IEEE Trans. on
Robotics, vol. 26, no. 3, pp. 469–482, jun. 2010.

[11] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open MotionPlanning
Library,” IEEE Robotics & Automation Magazine, 2012, to appear.
[Online]. Available: http://ompl.kavrakilab.org

[12] I. A. Şucan and L. E. Kavraki, “On the performance of random linear
projections for sampling-based motion planning,” inIEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, Oct. 2009, pp. 2434–2439.

