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Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion
planning algorithms perform a search in the high-dimensional continuous space of robot configurations and
exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion
planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the
subtleties and complexities of the underlying problem. We have developed software for Project-Based Learning
of motion planning that enables deep learning. The projects that we have developed allow advanced under-
graduate students and graduate students to reflect on the performance of existing textbook algorithms and
their own variations on such algorithms. Formative assessment has been conducted at three institutions. The
core of the software used for this teaching module is also used within the Robot Operating System (ros), a
widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills
to robotics research projects involving a large variety robot hardware platforms.
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1 Introduction

Motion planning is a key part of robotics: it is concerned with the problem of finding a feasible
path for a given robot between a start and goal location. The feasibility of a path is often
defined by requiring that the robot not collide with any obstacles, but it can be generalized
to include any constraints such as force limits, velocity limits, etc. Two examples are shown
in Fig. 1. In introductory robotics classes, motion planning is often simplified to a discrete
grid search or reactive navigation strategies that sacrifice completeness and optimality. The
state of the art in motion planning has strong algorithmic underpinnings and fits well in a CS
curriculum. It requires an understanding of search algorithms for high-dimensional continuous
spaces, computational geometry, and some basic topology. Robotics makes abstract concepts
in these areas very concrete and makes them easier to visualize. The focus of our project is to
provide an intermediate-level curriculum that supports the acquisition of concepts in algorithmic
robotics through motion planning projects.

Many practical motion planning algorithms have been proposed that rely on random sampling
of robot configurations, but still provide strong theoretical guarantees. Although most of the
concepts used in these algorithms can be taught at an abstract level, evidence emerging in
engineering educational research indicates that diverse students achieve a deeper understanding
when theories and concepts are inferred from particular problems (Barron et al., 1998; Prince
& Felder, 2006; Graham & Crawley, 2010). Specifically, research on project-based learning and
problem-based learning suggests that assigning a series of projects designed to help students infer
motion-planning concepts may promote skill development, conceptual knowledge, knowledge
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Figure 1. Two sample motion planning problems. (a) The alpha puzzle: the red alpha shape needs to be moved from its
initial interlocked pose to a pose where it is separated from the yellow alpha shape. Here the yellow alpha shape can be
regarded as an obstacle. (b) A solution path for a car-like robot in a maze. The “car” (modeled by a red box) cannot move
sideways and has a bounded turning radius.

transfer, and metacognitive reasoning (Kay et al., 2000; Gijbels et al., 2005; Chung & Chow,
2004; Galand & Frenay, 2005).

We have adopted a project-based learning (pbl)1 approach to our curriculum using a widely-
accepted definition of pbl provided by Prince & Felder (2006):

Project-based learning begins with an assignment to carry out one or more tasks that lead to the
production of a final product—a design, a model, a device or a compute simulation. The culmination
of the project is normally a written and/or oral report summarizing the procedure used to produce
the product and then presenting the outcome.

Problem-based and project-based learning are very similar, but in project-based learning the
instructional designer exerts great control over the choice of projects. Using a project-based ap-
proach helps maintain a focus on the course objectives, while allowing students enough autonomy
to formulate their own strategies and solutions (Prince & Felder, 2006).

Motion planning is an ideal candidate for pbl. Many variations of the basic motion problem
exist that can provide challenges to students at any level. Also, the complexity of search in high-
dimensional continuous spaces is hard to convey verbally in lectures. This is difficult because it
involves a search over all the degrees of freedom of a robot (that is, the set of all parameters
needed to specify a configuration of a robot) and the students often lack good visual intuition
for search in high-dimensional spaces. However, a solution to a motion planning problem can be
visualized by having a robot move through a 2D or 3D workspace and having students inspect
the path for correctness. This visualization process is highly intuitive (mostly without conscious
reasoning).

Our general interest is in robotics education embedded within a CS curriculum. In introductory
robotics classes, motion planning is often simplified to a discrete grid search or reactive navigation
strategies that sacrifice completeness. As David Touretzky observed (Touretzky, 2010), robotics
in the CS context is not about building robots and should not be limited to programming simple
reactive behaviors. While great strides have been made in creating affordable hardware platforms
to teach students about robotics (Balch et al., 2008), cost is still an issue for many institutions
and the algorithmic complexity of the problems that can be investigated is often limited. In
recent years, though, many robotics algorithms have been implemented and integrated in large
systems that can run both on real hardware and in simulation. The Robotics Operating System
(ros) (Quigley et al., 2009) is a prime example. Robots ranging from simple mobile platforms

1Both problem-based and project-based learning are abbreviated as pbl in the literature. In this article pbl will refer to
project-based learning.
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to full humanoids can now be studied within the same software framework and in physically
realistic simulations. Our Open Motion Planning Library (ompl) software can be used with
or without ros, and the teaching module we have designed focuses on algorithmic aspects of
robot motion planning. As a result, our educational software provides the CS curriculum with
an attractive alternative to software created solely for educational purposes. The ompl software
can also be used for educational purposes, but is is advanced enough to be used, maintained,
and sustained in the long run by robotics researchers through open source efforts. This dynamic
relationship will keep our project-based learning curriculum current, adaptable (depending on
hardware availability at an institution) and motivating to students.

1.1 Motion Planning Concepts

Motion planning is a mature field covered extensively in several robotics textbooks (Choset
et al., 2005; Latombe, 1991; LaValle, 2006). Two of these textbooks concentrated entirely on
motion planning (LaValle, 2006; Latombe, 1991), while in the third it occupies almost half the
book (Choset et al., 2005). One of the authors (Kavraki) has taught an algorithmic robotics class
for many years and is a co-author of one of the main robotics textbooks (Choset et al., 2005).
The basic problem of finding collision-free paths for polyhedral robots operating in a polyhe-
dral workspace is already pspace-complete (Canny, 1988). Complete planning algorithms are
difficult to implement and computationally intractable. Research efforts have therefore shifted
to algorithms that provide weaker completeness guarantees. Sampling-based algorithms in par-
ticular have emerged as a practical approach to many hard motion planning problems (Choset
et al., 2005; Tsianos et al., 2008). The fundamental idea of sampling-based motion planning is
to approximate the connectivity of the (continuous) search space with a graph structure. The
search space is sampled in a variety of ways, and selected samples end up as the vertices of
the approximating graph. Edges in the approximating graph denote valid path segments. Many
different sampling-based planners have been proposed, but they all operate using similar con-
cepts (for a survey look at recent papers such as (Şucan & Kavraki, 2012)). The isolation of the
relevant concepts is important for educational purposes as it teaches students good algorithmic
design and good software engineering practices. The most important concepts are listed below:

• State space Points in the state space fully describe the state of the system being planned for.
For a free-flying rigid body, for instance, the state space consists of the space of all translations
and rotations. Here, topology is very important. For example, in 2D orientations, the points
0 and 2π are identified so that the distance between them is 0.

• Sampler A sampler is responsible for producing different states from the state space. While
sampling uniformly works well in many cases, one can often do better by recognizing that fewer
samples are needed in wide open free spaces than in narrow passages. Here, the topology of the
underlying state space is also important. For instance, it is not completely trivial to sample
uniformly over the space of 3D rotations.

• State validity checker A state validity checker is a function that computes whether a
sampled state is valid. For example, it can determine whether the state is collision-free and
whether velocities and accelerations are within bounds.

• Local planner The local planner usually performs some kind of interpolation in the state
space between two different states and checks whether intermediate states are valid.

• State propagator For systems with differential constraints such as the car-like robot in
Fig. 1(b) there is a function called a state propagator that computes the trajectory when a
control is applied for some period of time starting from some initial state. Using numerical
integration, a state propagator function can automatically be constructed from a set of Or-
dinary Differential Equations (ode) of the form q̇ = f(q, u), where q is a vector describing a
robot’s configuration and u is a control input vector. A planner can use a state propagator
to find a trajectory between a start and goal state that consists of a sequence of controls and
corresponding durations.
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Figure 2. The OMPL.app GUI showing a path for an L-shaped robot in an office-like environment with two floors and a
staircase joining them.

The motion planning curriculum we have developed enhances deep understanding of these con-
cepts as well as several state-of-the art motion planning algorithms that build on these concepts.
The software component of the curriculum encourages good software engineering practices.

1.2 Software Overview

The concepts described above have been implemented in a software package called the Open
Motion Planning Library (ompl, Şucan et al. 2012), which we released in 2010 under the bsd
license (one of the most permissive Open Source licenses). The software is available from http:
//ompl.kavrakilab.org. The core library is written in C++ with a clear mapping between the
object-oriented class hierarchy and the concepts used in the motion planning literature. Almost
all the functionality is also accessible through Python bindings. Many institutions use Python for
introductory programming classes, so Python bindings are important to reach a large audience.
At the same time, for performance reasons we could not implement all low-level functionality in
Python. The software can be installed through standard package managers for Linux and OS X,
but can also be built from source on MS Windows, OS X, and Linux. In 2012, ompl won the
Grand Prize in the Open Source Software World Challenge, a yearly competition organized by the
South Korean government intended to promote student involvement in open source software. In
2013, we are participating for the first time in the Google Summer of Code, a very competitive
program that pairs students from around the world with mentors from different open source
projects.

We have built an application on top of ompl called ompl.app, which adds integration with a
collision checking library for checking the the validity of states and paths, a library for loading
geometric meshes that describe robots and environments, and an easy-to-use gui. The software
comes with many example robot models and environments. Students are able to solve motion
problems without writing any code through the gui (shown in Fig. 2). A student can load a file
that defines a motion planning problem, choose a planning algorithm, and simply click on the
“Solve” button to obtain a solution. If a solution is found, it is played back by animating the
robot along the found path. It is also possible to visualize a projection of the graph of valid states
and valid transitions between states as constructed by the planning algorithm. This visualization
makes it clear that different planning algorithms explore the search space in a qualitatively very
different manner. It can also be used to gain some understanding of where a planning algorithm
gets stuck. By default the gui assumes the robot is a free flying rigid body, but this can be
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changed to give the robot the dynamics of a car, a quadrotor, or a blimp. In each case several
algorithms can be selected and for each planner some parameters can be changed (although the
default settings work well in most scenarios).

2 Motion Planning Project Design

Course outcome criteria were formulated to evaluate whether students learned to model and solve
realistic introductory and intermediate-level motion planning problems. Self-evaluative criteria
were included to improve transfer of motion planning concepts and skills to more challenging
problems. After completing the course students must be able to:

(1) Evaluate basic performance of several motion planning algorithms.
(2) Model motion planning problems.
(3) Solve motion planning problems with geometric constraints.
(4) Model and solve motion planning problems with differential constraints.
(5) Demonstrate good practices in software engineering when designing own algorithms.
(6) Demonstrate good practices in evaluating own algorithms.
(7) Highlight major results in graphs and figures.
(8) Write an organized and well-structured project report.

Based on these criteria we designed a series of four, increasingly difficult projects to introduce
and then build the conceptual base, higher-order reasoning and technical skills needed to produce
the motion planning solutions described below. Projects 1 and 2 are designed to teach outcomes
1–3, project 3 is used to teach outcomes criteria 4–6, and project 4 is used to teach outcomes
5–8. At Rice University all four modules are used, but it is also possible to use only selected
projects in courses that need to cover a broader area of robotics. This was done at some of the
partner institutions described in section 3.

Projects 1 and 2. The first two projects can be completed without any programming, yet instill
a deep understanding of motion planning that is hard to convey through lectures alone. In the
first project students are, among other things, asked to use the gui to solve a number of motion
planning problems with several different planners and make a qualitative assessment of what
makes a motion planning problem “hard” and which planner is “best” at solving each problem.
The motion planning problems are provided and are similar to the one shown in Fig. 2. The
hardness of these problems is typically difficult to characterize and does not immediately follow
from the theoretical complexity of motion planning. Sampling-based motion planning often uses
randomization (and in the ompl implementation all planners do), which also makes it harder to
judge which algorithm is better at solving a particular problem.

Project 1 helps students understand that evaluating an algorithm’s performance on specific
examples is complex. This project prepares them for project 2 where the students are provided
with a benchmarking tool to systematically compare performance of different algorithms. The
benchmark runs planners several times on a given motion planning problem, collects a large
number of performance characteristics, and aggregates the results in a summary report with bar
graphs (for binary-valued variables), stacked bar graphs (for categorical performance variables)
and box plots (for integer-valued and continuously-valued variables). Fig. 3 shows two example
plots. The best planner can now be more precisely defined as, e.g., the planner with the lowest
median, mean, or worst-case solve time. At the same time, this interpretation needs to be nuanced
with the fact that some planners may not always find exact solutions (i.e., paths that reach the
goal exactly), but are often able to find approximate solutions: paths that almost reach the goal.
The same benchmarking framework can be used by students in later projects to evaluate their
own algorithms.
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Figure 3. Sample out of OMPL’s benchmarking tool. Both plots are based on 50 runs of each algorithm. (a) A box
plot of run time for different algorithms whose names are indicated on the x-axis. (b) A stacked bar chart of planner status
distributions. Other possible status values that did not occur in this case include crash and invalid start/goal state, which
can provide useful diagnostic information.

Project 3. The third project is significantly more challenging and is typically done in pairs. It
requires students to solve motion planning problems for systems that are described by ordinary
differential equations (odes), specifically, a pendulum with bounded torque and a simple car-
like robot. The equations of motion are provided in the form q̇ = f(q, u) for these systems. The
students are asked to write an function that implements f , create a state propagation function,
create a state validation function, and use different planning algorithms to solve motion planning
queries for the two systems. For the pendulum, the objective is to swing the pendulum up to a
vertical position. This is challenging due to torque limits: the pendulum has to swing back and
forth a number of times to gain enough momentum to swing up. The simplicity of the problem
description on the one hand and the complexity of the solution helps students appreciate the
power of the underlying planning algorithms. The answer cannot easily be guessed or derived
by hand. Solving the car-like system is done analogously. The main difference is that it includes
a few obstacles that the car needs to avoid, which translates to a bit of extra code in the state
validity checker. In the initial version of the assignment students were asked to implement their
own numerical integration, but this turned out to be more time-consuming for students than
anticipated. As a result, we added ode solvers (i.e., numerical integration routines) to ompl
as well as convenience functions that turn an ode function into a state propagator. After the
students solve these problems with the built-in planning algorithms of ompl, they are asked to
implement a variant of one of those motion planning algorithms.

Project 4. The fourth and final project is typically also done in pairs. Students can choose one
from a list of projects. They cover various advanced topics in motion planning such as path
clustering, path optimization, planning for a robot arm with second-order dynamics, a compari-
son of centralized and decentralized multi-robot planning, elastic kinematic chains, and anytime
planning. While some projects have been part of the teaching module since the beginning, we
keep adding new projects, some of which are based on very recent conference and journal papers.
This reinforces the relevance of what the students have learned in the class to real robotics appli-
cations. At this point students should be able to understand these papers, implement algorithms
described in them, and evaluate their algorithm’s performance. As part of the project, students
are asked to write a report and give a presentation.

To make the material more accessible to students with diverse backgrounds, we recommend
including a “warm-up” project to ease the transition between projects 2 and 3. At Rice we used
an ungraded project between project 2 and 3 that prepares them for writing code using ompl. In
this project, students are asked to implement a new planner that randomly explores the search
space and compare this to existing planning algorithms in the ompl library. Random exploration
does not make for a particularly good planning strategy, but it prepares students for projects
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Figure 4. Reported ease of use and time spent on components of projects 1, 2, and 3 at Rice University.

3 and 4 as follows. First, it encourages the students to become familiar with the code and with
navigating the documentation. Second, it exposes the students to the benchmarking facilities at
the code level. Last but not least, students learn that the heuristics employed by the planning
algorithms covered in class and provided by ompl result in significantly improved performance
over the “näıve” random exploration, even though the algorithms in ompl also rely on random
sampling.

3 Assessment

3.1 Formative Assessment

Over the last three years, a usability survey has been conducted on an ongoing basis throughout
the course to obtain student feedback that has helped us adjust the degree of challenge projects
pose for undergraduates in an intermediate level course and to improve the technology and its
documentation. As a result ompl students can complete significantly more projects of greater
challenge than before the technology and the current projects were introduced. Before, students
could not implement a single sampling-based planner in a semester. This was due in part to the
amount of programming involved but mainly to the sophistication of the programming required
for the correct implementation of advanced algorithmic concepts. Moreover, since students strug-
gled all semester to implement one planner, that left no time to learn how various factors affected
algorithmic performance. Now that the technology provides a class hierarchy to work with and
students no longer need to implement many of the low-level data structures, they can explore,
compare and evaluate different algorithms. Basic algorithmic performance is now explored in the
first two projects, and students can evaluate performance for multiple sampling-based planners.
In addition, despite the increased difficulty of the work, 81% of the students report that they
would recommend the class to their peers (79% (15/19) in the 2010 offering of the class and 85%
(11/13) in 2011).

Rice students voluntarily provided feedback after each project during the first three years
of the project. The number of students participating over three years ranged from 14 to 21
students a year. Student surveys were also collected at the Worcester Polytechnic Institute
(wpi; 18 participants) and the National University of Singapore (nus; 16 participants) this past
year. At Rice University a majority of the students were undergraduates, while at wpi and nus
undergraduates formed about a quarter of the students. At the us institutions (i.e., Rice and
wpi) 22% of students were female and 8% of students came from underrepresented minorities.
While at Rice University most students were cs majors, the students at wpi and nus had a more
diverse background in engineering disciplines. As a result the students at wpi and nus may have
been less knowledgeable about algorithms and less experienced in programming. Two measures
of effort—the ease of completing project components and the amount of time they spent on
each component—indicate that Rice students perceive the revised projects as easier to complete
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Figure 5. Ease of use and time spent on components of projects 1, 2, and 3 at three schools.

and requiring less time with software and project improvements over the years (see Fig. 4). At
wpi a few components were optional (e.g., part 4 of project 3). Most likely only the stronger
students opted to do those, so we would expect these components to be perceived as relatively
easy to complete. Also, at nus some project components were omitted by the instructor, thus
no measures are available for them. Still, wpi and to some extent nus students reported that
a few components were more difficult to complete and required more time than Rice students
(see Fig. 5). Students at wpi and nus also reported more issues with software installation of the
software and the documentation of a few specific topics. At Rice University, these issues were
mitigated by direct access to ompl developers as well as teaching assistants who were intimately
familiar with ompl. Steps will be taken this summer to improve ompl’s ease of installation and
documentation. The numbers in Figures 4 and 5 refer to the component numbers in the list
below.

Project 1 (1) Getting started on a computer cluster with ompl pre-installed, (2) downloading
and installing ompl on student’s own computer, (3) creating an environment to compile
programs that link against ompl, and (4) using different planning algorithms in the gui for
different motion planning problems.
Project 2 (1) Running the benchmark program, and (2) modifying the sampling strategy
used by a motion planning algorithm.
Project 3 Understanding the (1) pendulum system and (2) car-like system, use the provided
(3) rrt and (4) kpiece planners for these systems, (5) visualize the solution paths, and (6)
modify the rrt planner to create the Reachability-Guided rrt planner.

3.2 Can students produce competent solutions to motion planning problems?

We created an analytic rubric to assess whether students completing the course acquired the
conceptual base, higher-order reasoning, and technical skill needed to solve introductory motion
planning problems (see Table 1). Performance achievements were identified that specifically
defined and discriminated each of three broad levels of competency (Developing, Competent,
Accomplished) for each of the outcome criteria. A 6-point scale was used to further discriminate
performance within a level (0 = Little or no knowledge or skill, 1 = Developing competence,
2 = Competent, 3 = Highly competent, 4 = Accomplished, 5 = Highly accomplished). The
rubric contains very specific information to help raters discriminate performance levels. Projects
1–4 from the Rice fall 2012 semester were scored using this rubric by the course’s graduate
teaching assistant, a Ph.D. student working on the topic of motion planning. See Fig. 6 for the
results from this summative assessment. 90% or more of the students exhibited competent or
exemplary achievement levels on 6 of the 8 outcomes. Specifically, 100% of the students could
evaluate basic performance of motion planning algorithms, 94% could model motion planning
problems, 100% could solve motion planning problems with geometric constraints, 95% could
demonstrate good practices in evaluating their own algorithms, 100% could highlight major
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Table 1. Rubric for assessing motion planning knowledge and skills.

Outcome
Criteria

Levels of Achievement
Developing Competent Accomplished

Students can:
1. Evaluate
basic
performance of
motion
planning
algorithms

• Was able to run several
planners on several problems
and create plots of perfor-
mance metrics

• Was able to run several
planners on several problems
and create plots of perfor-
mance metrics
• Compared performance
across different planning
instances and with different
samplers
• Provided plausible reasons
for the performance of plan-
ners based on acquired results

• Was able to run several planners on
several problems and create plots of
performance metrics
• Compared performance across differ-
ent planning instances and with differ-
ent samplers
• Provided plausible reasons for the
performance of planners based on ac-
quired results
• Was able to synthesize and summa-
rize results and explain conditional na-
ture of performance

2. Model
motion
planning
problems

• Slight modeling errors, but
solved motion planning prob-
lems

• Modeled configuration
spaces and state validity
checkers correctly
• Reasonable implementation
of model

• Modeled configuration spaces and
state validity checkers correctly
• Simple, but no simpler than needed,
implementation of model

3. Solve motion
planning
problems with
geometric
constraints

• Can solve geometric mo-
tion planning problems with
at least one planner

• Can solve geometric motion
planning problems with sev-
eral planners

• Can solve geometric motion planning
problems with several planners
• Changed planner parameters to im-
prove performance

4. Model and
solve motion
planning
problems with
differential
constraints

• Mostly correct implemen-
tation of state propagation
function
• Created and used own
numerical integration rou-
tines or loosely used ompl-
provided ode solvers
• Obtained very approximate
solutions to motion planning
problems

• Correct implementation of
propagation
• Correct use of an ompl-
provided ode solver
• Obtained close to exact so-
lutions to motion planning
problems

• Correct implementation of propaga-
tion
• Correct use of an ompl-provided ode
solver
• Obtained close to exact solutions to
motion planning problems
• Changed planner parameters to im-
prove performance

5. Demonstrate
good practices
in software
engineering
when designing
own algorithms

• Submitted code that com-
piles and runs

• Submitted code that com-
piles and runs
• Code documentation in-
cludes input/output and cor-
rect description of functions

• Submitted code that compiles and
runs
• Code was well-documented
• Classes and files were conceptually
well-organized

6. Demonstrate
good practices
in evaluating
own algorithms

• Chooses an appropriate per-
formance metric

• Chooses one or more appro-
priate performance metrics
• Evaluates performance us-
ing a number of different pa-
rameter settings

• Chooses one or more appropriate
performance metrics
• Evaluates performance using a num-
ber of different parameter settings
• Interprets the results

7. Highlight
major results in
graphs and
figures

• Used appropriate type of il-
lustration or chart for data
• Legible labels, titles, legend
and chart or figure elements
• Reasonable content in la-
bels, titles and legend

• Used appropriate type of il-
lustration or chart for data
• Legible labels, titles, legend
and chart elements
• Reasonable content in la-
bels, titles and legend
• Graphs show relationships
and significant results

• Used appropriate type of illustration
or chart for data
• Legible labels, titles, legend and
chart elements
• Strong content in labels, titles and
legend
• Graphs emphasize relationships and
significant results

8. Write
organized and
well-structured
project reports

• One or more parts of the re-
port are missing: problem de-
scription, explanation of solu-
tion, results, and interpreta-
tion of results

• Report contains enough in-
formation about the problem,
solution, results, and discus-
sion of results so that another
student who takes the class
can understand the report

• Report contains enough information
about the problem, solution, results,
and discussion of results so that an-
other student who takes the class can
understand the report
• Report is distinguished by one or
more: effective descriptions, complete
and well-justified explanations, clear
results, and strong concluding argu-
ments in the discussion
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Figure 6. Competency of students at Rice during the Fall 2012 semester.

results in graphs and figures, and 90% could write organized and well-structured project reports.
However, two outcomes were more challenging. Only 83% of the students could model and solve
motion planning problems with differential constrains or demonstrate good practices in software
engineering when designing their own algorithms.

4 A Bridge to Research and Industrial Applications

In addition to helping students achieve the course’s short-term learning outcomes, the project-
based approach to the algorithmic robotics curriculum appears to be inspiring undergraduates
to choose research careers in robotics. The last teaching module (Project 4) introduces students
to topics in motion planning in which researchers are still producing new discoveries. At Rice
University, where over 60% of the undergraduates participate in research projects, it is not
uncommon for students in the course to become so excited about motion-planning research that
they subsequently complete a motion planning research project for course credit. Since this course
allows them to acquire enough depth in the specific modeling and good practices motion planning
requires using the same technology used by researchers, they are well-prepared to begin research
in the field. By then completing research projects students have the opportunity to acquire
theoretical knowledge as well as more practical software engineering skills. For example, they
learn how to work with several others on a large code base using a distributed version control
system, and they learn good practices for testing and documenting code. As a result, these
undergraduate projects are often a stepping stone to graduate school. Several undergraduates
who have taken the class at Rice have gone to graduate school to study robotics.

Independently of work done in our research group, a growing number of graduate students
conducting research in motion planning are using ompl, including several doctoral students and
post-doctoral fellows, who have published papers using ompl (Marble & Bekris, 2013; Barry
et al., 2013). In short, the use of ompl is now growing rapidly in the robotics community
outside of our research group. Moreover, robotics researchers have started to contribute ompl-
based implementations of new algorithms for inclusion in future releases.

Part of ompl’s appeal to researchers is that it is has been integrated with the widely-used
Robot Operating System (ros) (Quigley et al., 2009), an Open Source software environment
that runs on top of Linux (and to some extent on OS X and MS Windows). Within ros ompl
is used to, e.g., plan motions for the arms of the PR2, a mobile manipulator with 7 joints in
each arm (see Fig. 7). Our pbl teaching module thus exposes students to software that has



11

(a) (b)

Figure 7. (a) A PR2 robot from Willow Garage performing manipulation tasks using OMPL. (b) The sensed model of the
world used for planning.

been adopted by the robotics community for research purposes. Knowing that the same software
can be used for difficult real-world problems is motivating for the students. Since many robot
hardware platforms use the ros system, any new motion planning algorithm that is added to
ompl that conforms to the abstract planner api can immediately be used on a wide variety of
hardware platforms.

5 Discussion

We have described our software for Project-Based Learning of robot motion planning. We have
developed a teaching module consisting of a number of projects that scaffold learning of key
concepts in robot motion planning. The module is currently targeted at advanced undergraduate
students and graduate students, but our long-term goal is to make the module more accessible
earlier in a CS curriculum so that student are inspired and prepared to succeed in research careers
in robotics. Selected parts of the teaching module may eventually also be used in an algorithm
class to illustrate search algorithms in high-dimensional spaces, randomized algorithms, and
computational geometry algorithms for, e.g., collision checking and nearest-neighbor queries.

Our experience so far indicates that it is possible to create software for pbl that is accessible to
diverse learners, yet still powerful enough to run on real robots. This software is of great interest
to the robotics community, which is actively sustaining it. In future work we will explore the
extent that real robot hardware and physically realistic robot models can be made part of our
teaching module. Recently released software (Chitta et al., 2012) that builds on ompl and the
rest of the ros software ecosystem has made it significantly easier to apply ompl’s algorithms to
both real and simulated robots of very diverse types. At institutions that offer several robotics
classes a common hardware platform and software infrastructure, which can be used for motion
planning, computer vision, control, and other related robotics areas can provide a compelling
environment for an integrated robotics education.
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