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There is an increasing number of proteins with known structure but unknown function. Determining their function

would have a significant impact on understanding diseases and designing new therapeutics. However, experimental

protein function determination is expensive and very time-consuming. Computational methods can facilitate function
determination by identifying proteins that have high structural and chemical similarity. Our focus is on methods

that determine binding site similarity. Although several such methods exist, it still remains a challenging problem

to quickly find all functionally-related matches for structural motifs in large data sets with high specificity. In this
context, a structural motif is a set of 3D points annotated with physicochemical information that characterize a

molecular function. We propose a new method called LabelHash that creates hash tables of n-tuples of residues

for a set of targets. Using these hash tables, we can quickly look up partial matches to a motif and expand those
matches to complete matches. We show that by applying only very mild geometric constraints we can find statistically

significant matches with extremely high specificity in very large data sets and for very general structural motifs. We
demonstrate that our method requires a reasonable amount of storage when employing a simple geometric filter and

further improves on the specificity of our previous work while maintaining very high sensitivity. Our algorithm is

evaluated on 20 homolog classes and a non-redundant version of the Protein Data Bank as our background data set.
We use cluster analysis to analyze why certain classes of homologs are more difficult to classify than others. The

LabelHash algorithm is implemented on a web server at http://kavrakilab.org/labelhash/.

1. INTRODUCTION

High-throughput methods for structure determina-
tion have greatly increased the number of proteins
with known structure in the Protein Data Bank1.
Determining the function of all these proteins would
greatly impact drug design. Unfortunately, func-
tional annotation has not kept up with the pace
of structure determination. Sequence-based meth-
ods are an established way for automated func-
tional annotation2–5, but sequence similarity does
not always imply functional similarity and vice versa.
Structural analysis allows for the discovery of simi-
lar function in proteins with very different sequences
and even different folds6. For an overview of current
approaches in sequence- and structure-based meth-
ods see Refs. 7 and 8.

Structure-based methods can be divided into
several categories, such as methods that compare
fold similarity9, 10, methods that model pockets and
clefts11–13, and search algorithms based on active
sites and templates (see section 2). The combina-
tion of structural and phylogenetic information can

be used to identify residues that are of structural or
functional importance14–16. Several web servers ex-
ist that use a combination of several sequence- and
structure-based methods17, 18 to provide an aggre-
gate of information.

The method in this paper falls in the template
search category. We will describe a new method for
partial structure comparison. In partial structure
comparison, the goal is to find the best geometric
and chemical similarity between a set of 3D points
called a motif and a subset of a set of 3D points
called the target. Both the motif and targets are
represented as sets of labeled 3D points. A motif
is ideally composed of the functionally most-relevant
residues in a binding site. The labels denote the type
of residue. Motif points can have multiple labels to
denote that substitutions are allowed. Any subset of
the target that has labels that are compatible with
the motif’s labels is called a match. The aim is to find
statistically significant matches to a structural motif.
Our method preprocesses, in a fashion that borrows
ideas from a well-known technique called geometric
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hashing19, a background database of targets such as
a non-redundant subset of the Protein Data Bank.
It does this in such a way that we can look up in
constant time partial matches to a motif. Using a
variant of the previously described match augmen-
tation algorithm20, we obtain complete matches to
our motif. The nonparametric statistical model de-
veloped in Refs. 21 and 22 corrects for any bias in-
troduced by our algorithm. This bias is introduced
by excluding matches that do not satisfy certain ge-
ometric constraints for efficiency reasons.

The contributions of this paper are as follows.
Our new method is based on hashing of residue labels
and geometric constraints, an approach that proves
to be efficient, highly sensitive, and highly specific.
It further improves the already high specificity of
our previous work. It removes the requirement of
needing an ordering of the importance of the points
of the motifs. Using cluster analysis, we provide a
more complete picture of match results and we il-
lustrate the difficulty of matching certain functional
homologs. Last but not least, our approach can be
easily adapted to use different motif types or incorpo-
rate different constraints. Although not discussed in
detail in this paper, we can optionally include partial
matches or multiple matches per target in the match
results. Before we will describe our method, we will
first give an overview of related methods.

2. RELATED WORK

Over the years several algorithms have been pro-
posed for the motif matching problem. In its gen-
erality, this problem has a chemical, a geometric,
and a statistical component. First, points in our
motif need to be matched with chemically compat-
ible points. This can translate into simply match-
ing the same residue types, but can also be defined
in terms of a more general classification of physico-
chemical properties23, 24. Geometrically, we want to
solve the partial structure comparison problem: find
all correspondences between a motif and groups of
points in the targets that are chemically compatible.
Solving issues associated with the high complexity
of the problem are discussed in Ref. 25. Most exist-
ing methods employ heuristics to find only matches
that are close under the Least Root Mean Square
Deviation (LRMSD) metric, since these matches are

most likely functionally related to the motif. This
brings us to the statistical component of the prob-
lem: there is no universal LRMSD threshold that can
be used to separate functional homologs from other
matches, and thus statistical analysis is needed to
decide whether a match is functionally related to a
motif and unlikely to occur due to chance.

In table 1 we have summarized some selected re-
lated work that we will discuss in more detail below.
A direct comparison of our work with other meth-
ods is challenging for several reasons: (1) there are
several ways to represent structural motifs, (2) most
of the methods included in the table solve a slightly
different version of the problem discussed in this pa-
per, and (3) for most systems there is no freely avail-
able or web-accessible implementation with which we
could perform experiments similar to our own.

Geometric hashing19, 31, 32 is a technique to pre-
process the targets that will be used for matching
and create index tables that facilitate fast matching.
These tables only need to be computed once for a
set of targets. They are based on geometric char-
acteristics. One has to carefully pick the geometric
constraints to balance the potentially enormous stor-
age requirements with completeness of the matching
phase. The application of geometric hashing to motif
matching was first introduced in Ref. 19 and has been
refined in subsequent years. TESS27 is an algorithm
that uses geometric hashing to match structural mo-
tifs. By focusing on a specific class of motifs (cat-
alytic triads), TESS can create space-efficient hash-
ing tables. More recent work on geometric hashing31

uses several “pseudo-centers” per residue to repre-
sent physicochemical properties to achieve more ac-
curate matching.

In Ref. 23 a graph-based approach is used.
Residues are represented by a pair of pseudo-atoms.
The pseudo-atoms are the vertices of the graph, and
edges are defined by the distances between them.
The matching is then solved by solving the subgraph
isomorphism problem33. In Ref. 34 distance con-
straints on Cα and Cβ atoms are used to guide a
depth-first search for matches. Unlike much of the
previous work, this paper also introduced a statisti-
cal model to determine the significance of a match.
Matching results were fitted to an extreme value dis-
tribution and allowed for matching of catalytic triads
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Table 1. Overview of selected related work.

Name Physicochemical
information

Geometric algorithm Statistical model Demonstrated
application

ASSAM23 pairs of pseudo-atoms

per residue

subgraph isomorphism — catalytic triads

FEATURE26 supervised learning of many physicochemical and

geometric features

nonparametric model,

Bayesian scoring

ATP-binding, S-S sites,

Mg2+ binding sites in
RNA

TESS27 all atoms of selected
residues

geometric hashing — His-based catalytic
triads

Jess28 user-defined constraints

on atoms

constraint satisfaction +

match augmentation

mixture of two

Gaussians

HTH motifs

PINTS29 reduced # res.,

1 pseudocenter per res.

depth-first search

w/distance constraints

extreme value dist. on

weighted RMSD

catalytic triads, salt

bridges, S-S sites

DRESPAT30 Cα’s, Cβ ’s, and

functional atoms

graph based on distance

constraints, max. com-
plete subgraph detection

significance estimated

from algorithm
parameters & output

detection of many

motifs (e.g., catalytic
triads, EF-hand)

SiteEngine31 pseudocenters geometric hashing — finding and comparing

functional sites

MASH20 evolutionary

importance,

residue-labeled Cα’s

match augmentation nonparametric model matching motifs of

~5–15 residues against

large data sets

LabelHash
[this paper]

residue-labeled Cα’s hash tables of res. labels +
match augmentation

nonparametric model matching motifs of
~5–15 residues against

large data sets

and zinc fingers29. More recently, in Ref. 30 a graph-
based method was described that automatically de-
tects repeating patterns in subgraphs of graph rep-
resentations of proteins. This is reduced to a graph
clique enumeration problem, a well-known, very dif-
ficult problem in general, but by taking advantage
of the structure of the underlying data, this method
can avoid the worst-case complexity.

The FEATURE algorithm26 takes a radically
different approach to matching. It uses supervised
learning to characterize the active sites of proteins.
Many attributes can be defined and the learning al-
gorithm will automatically learn the salient features.
More recently, this algorithm has been applied to
ATP-binding and disulfide bond-forming sites35 and
magnesium binding sites in RNA36. Although in is
original form the FEATURE algorithm worked di-
rectly on structural data, later work showed that it
is able to construct structural motifs from sequence-
based motifs37. The FEATURE algorithm is acces-
sible through a public web server38. The represen-
tation of motifs is very different, making comparison
with other methods challenging.

In Ref. 39 a parametrized statistical model
is proposed to determine the significance of the

LRMSD of a match. The model parameters are ob-
tained by fitting the model to the data. This model
is part of the PINTS server29, which uses a distance
constraint-based matching algorithm similar to the
one described in Ref. 34. The PINTS server used
to allow matching against a non-redundant subset of
the PDB, but at the time of writing this option was
no longer available, making a comparison with our
method difficult. In Ref. 28 a more general match-
ing framework is proposed, where user-defined con-
straints can be associated with a number of residues.
The residues and constraints together form a tem-
plate. A mixture of two Gaussians is used to model
the distribution of the LRMSD’s of matches. The
same template-based approach was successfully ap-
plied to finding DNA-binding proteins that contain
the helix-turn-helix (HTH) motif40. This last work
also showed that for finding HTH matches, 3D tem-
plates could be used to detect similarity between
many different HTH motifs, while a sequence-based
approach based on Hidden Markov Models could not.

Recent work on template matching41 argues in
favor of using a heuristic similarity measure rather
than LRMSD to rank matches. This similarity mea-
sure is a function of the number of overlapping atoms
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and a residue mutation score. It is shown to elimi-
nate many false positives in certain cases. This pa-
per introduces so-called reverse templates, which are
conceptually similar to geometric hashing’s notion of
reference sets.

In Ref. 20 the MASH matching algorithm is in-
troduced. It is based on a depth-first search that
finds matches to motif points in order of decreasing
importance ranking. Our approach is most compati-
ble with this algorithm. In our algorithm we prepro-
cess the targets to speed up matching, remove the
need for importance ranking, and improve specificity.
Further improvements can be made to the MASH al-
gorithm by explicitly representing cavities42 and by
creating composite motifs in case several instances of
a functional site are known43.

3. METHODS

We are interested in matching a structural motif
against a set of targets. The structural motif is de-
fined by the backbone Cα coordinates of a number
of residues and (optionally) allowed residue substitu-
tions for each motif residue which are encoded as la-
bels. Previous work44, 39, 20, 14 has established that
this is a feasible approach. There is no fundamental
reason why other points cannot be used as well.

The method presented below is called Label-
Hash. It builds hash tables for n-tuples of residues
that occur in a set of targets. In spirit the method
is reminiscent of the geometric hashing technique19,
but the particulars of the approach are different. The
n-tuples are hashed based on the residues’ labels.
Each n-tuple has to satisfy certain geometric con-
straints. Using this table we can look up partial
matches of size n in constant time. These partial
matches are augmented to full matches with an al-
gorithm similar to MASH20. Compared to geomet-
ric hashing19, our method significantly reduces the
storage requirements. Relative to MASH, we further
improve the specificity. Also, in the LabelHash algo-
rithm it is no longer required to use importance rank-
ing of residues to guide the matching. In our previous
work, this ranking was obtained using Evolutionary
Trace (ET) information45. The LabelHash algorithm
was designed to improve the (already high) accuracy
of MASH and push the envelope of matching with
only very few geometric constraints. For this work

we wanted motifs to be as general as possible to al-
low for future extensions and to facilitate motif de-
sign through a variety of methods. The input should
be easy to generate from “raw data” such as PDB
files, and the output should be easy to post-process
and visualize. Although the ideal of functional anno-
tation is full automation, an exploratory process of
iterative and near-interactive motif design and refine-
ment will be extremely valuable. Our simple-to-use
and extensible LabelHash algorithm can be a criti-
cal component of this process. The LabelHash algo-
rithm consists of two stages: a preprocessing stage
and a stage where matches are computed from the
preprocessed data.

3.1. Preprocessing Stage

The preprocessing stage has to be performed only
once for a given set of targets. Every motif can be
matched against the same preprocessed data. Dur-
ing the preprocessing stage we aim to find possible
candidate partial matches. This is done by finding
all n-tuples of residues that satisfy certain geomet-
ric constraints. We will call these n-tuples reference
sets. All valid reference sets for all targets are stored
in a hash map, a data structure for key/value pairs
that allows for constant time insertions and lookups
(on average). In our case, each key is a sorted n-
tuple of residue labels, and the value is a list of ref-
erence sets that contain residues with these labels in
any order. So for any reference set in a motif we
can instantly find all occurrences in all targets. No-
tice that in contrast to geometric hashing19 we do
not store copies of the targets for each reference set,
which allows us to store many more reference sets in
the same amount of memory.

In our current implementation the geometric
constraints apply to the Cα coordinates of each
residue, but there is no fundamental reason prevent-
ing other control points from being used instead. We
have defined the following four constraints:

• Each Cα in a reference set has to be within a dis-
tance dmaxmindist from its nearest neighboring Cα.

• The maximum distance between any two Cα’s
within a reference set is restricted to be less than
ddiameter.

• Each residue has to be within distance dmaxdepth
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from the molecular surface. The distance is mea-
sured from the atom closest to the surface.

• At least one residue has to be within distance
dmaxmindepth from the surface.

The first pair of constraints requires points in refer-
ence sets to be within close proximity of each other,
and the second pair requires them to be within close
proximity of the surface. The distance parameters
that define these constraints should be picked large
enough to allow for at least one reference set for
each motif that one is willing to consider, but small
enough to restrict the number of seed matches in the
targets. One would perhaps expect that the storage
requirements would be prohibitively expensive, but,
in fact, in the experiments described in section 4 we
used very generous settings, and the storage used was
still very reasonable.

3.2. Matching Stage

For a valid reference set in a motif, we look up the
matching reference sets in the hash table. Next, we
run a variant of the match augmentation algorithm20

that consists of the following steps. First, it solves
the residue label correspondence between a motif ref-
erence set and the matching reference sets stored in
the hash map. (If more than one correspondence ex-
ists, we will consider all of them.) Next, we augment
the match one residue at a time, each time updating
the optimal alignment that minimizes the LRMSD.
If a partial match has an LRMSD greater than some
threshold ε, it is rejected. For a given motif point,
we find all residues in a target that are within some
threshold distance (after alignment). This threshold
is for simplicity usually set to ε. The ε is set to be
sufficiently large (7Å in our experiments) so that no
interesting matches are missed. The value ε also af-
fects the computation of the statistical significance
of a match. It can be shown that for a motif of n
residues our statistical model computes the exact p-
value of matches with LRMSD less than ε/

√
n, i.e.,

their p-value would not change if no ε threshold was
used 22, 21. For example, for a 6-residue motif and
ε = 7Å, the p-values of all matches within 2.3Å of
the motif are exact.

The algorithm recursively augments each partial
match with the addition of each candidate target

residue. The residues added to a match during match
augmentation are not subject to the geometric con-
straints of reference sets. In other words, residues
that are not part of a reference set are allowed to be
further from each other and more deeply buried in
the core. For small-size reference sets, the require-
ment that a motif contains at least one reference set
is therefore only a very mild constraint. Neverthe-
less, as we will see in the next section, our approach
is still highly sensitive and specific.

For a given motif, we generate all the valid ref-
erence sets for that motif. Any of these reference
sets can be used as a starting point for matching.
However, those reference sets that have the smallest
number of matching reference sets in the hash map
may be more indicative of a unique function. Refer-
ence sets with a large number of matches are more
likely to be common structural elements or due to
chance. We could exhaustively try all possible refer-
ence sets, but for efficiency reasons we only process
a fixed number of least common reference sets. Note
that the selection of reference sets as seed matches is
based only on frequency. In contrast, in our previous
work, only one seed match was selected based on im-
portance ordering frequently based on evolutionary
importance20. Because of the preprocessing stage it
now becomes feasible to expand matches from many
different reference sets. The hash map files have em-
bedded within them a “table of contents,” so that
during matching only the relevant parts of the hash
map need to be read from disk.

The matching algorithm is flexible enough to
give users full control over the kind of matches that
are returned. It is possible to keep partial matches
that match at least a certain minimum number of
residues. This can be an interesting option for larger
motifs where the functional significance of each motif
point is not certain. In such a case, a 0.5Å LRSMD
partial match of, say, 9 residues, might be preferable
over a 2Å complete match of 10 residues. With par-
tial matches, the matches can be ranked by a scoring
function that balances the importance of LRMSD,
and the number of residues matched. One can also
choose between keeping only the LRMSD match per
target or all matches for a target, which may be desir-
able if the top-ranked matches for targets have very
similar LRMSD’s. Keeping partial matches or multi-
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ple matches per target complicates the determination
of the statistical significance of each match. This is
an issue we plan to investigate in future work. Fi-
nally, the number of motif reference sets that the
algorithm uses for match augmentation can also be
varied. Usually most matches are found with the
first couple reference sets, but occasionally a large
number of reference sets need to be tried before the
LRMSD match for each target is found.

4. RESULTS

4.1. Data sets

LabelHash was tested on a diverse set of previously
identified motifs. The motifs we used in our experi-
ments are listed in table 2. Some were determined ex-
perimentally, others were determined using the Evo-
lutionary Trace (ET) method45. More information
on the function of these motifs and how they were
obtained can be found in Refs. 20 and 42. Although
the performance of the matching algorithm depends
critically on the motif, the focus in this paper is on
the motif matching method and not on motif de-
sign. Any motif of a similar type can be used by our
method. For each motif we have listed the residue
sequence numbers, followed by the 1-letter residue
name and possible substitutions. The substitutions

Table 2. Motifs used in experiments

PDB ID Residue ID’s with alternate labels

1acb 42GSN , 57, 58SKV , 102, 194QE , 195, 214AT

1ady 81D, 83, 112S , 130D, 264L, 311NKQ

1ani 51A, 101E , 102, 166CS , 331G, 412NQ

1ayl 249, 250, 251, 253, 254, 255

1b7y 149GA, 178Q, 180T , 206ER, 218, 258NY , 260Y

1czf 178, 180, 201, 256H , 258, 291
1did 25, 53, 56, 93, 136, 182

1dww 194, 346, 363, 366, 367F , 371, 376D

1ep0 53TA, 61A, 64, 73, 90, 172

1ggm 188T , 239T , 341, 311L, 359S , 361A

1jg1 97DNQ, 99, 101AL, 160NS , 179V I , 183NE

1juk 53, 89, 91, 233, 182, 110

1kp3 106, 139, 202S , 286, 288, 331

1kpg 17, 72, 74, 75, 76, 200
1lbf 51, 56, 57, 89, 91, 112, 159, 180, 211, 233

1nsk 12RL, 13, 52HL, 105H , 115, 118P

1ucn 12, 13, 92, 105, 115, 118
2ahj 53, 120, 127, 190, 193, 196

7mht 80, 81, 85T , 119L, 163, 165

8tln 120WL, 143A, 144V I , 157SL, 231L

were in some cases determined using ET, but any
reasonable set is accepted (sometimes experiments
or intuition give the substitutions). It is important
to note that our algorithm is “neutral” with respect
to how a motif is obtained; importance ranking or
other very specific information on the motif is not
required.

The targets consisted of a non-redundant snap-
shot of the Protein Database (PDB), taken on Febru-
ary 21, 2008. We used the automatically generated
95% sequence identity filtered version of the PDB.
Each chain was inserted separately in the hash map.
This resulted in roughly 18,000 targets. Molecular
surfaces were computed with the MSMS software46.
We chose to use reference sets of size 3. The following
parameter values were used for the reference sets:

dmaxmindist = 16Å, ddiameter = 25Å,

dmaxmindepth = 1.6Å, dmaxdepth = 3.1Å.

These values were chosen such that the motifs in ta-
ble 2 contained at least one reference set of size 3.
They are very generous in the sense that most motifs
contain many reference sets. If reference sets of more
than 3 residues are used, the values of the distance
parameters need to be increased to guarantee that
each motif contains at least one reference set. The
advantage of larger reference sets is that we instantly
match a larger part of a motif. However, increas-
ing these values also quickly increases the number of
reference sets in the targets. So the number of refer-
ence sets to perform match augmentation on will also
quickly increase. Finally, the storage required for the
hash tables grows rapidly with reference set size. Af-
ter the preprocessing phase the total hash map size
given the settings described above was 32GB (split
into several files).

4.2. Matching results

The results of matching the motifs from table 2
against the targets is shown in table 3. We evalu-
ated the performance using the PDB entries with the
corresponding Enzyme Classification (EC) code or
corresponding Gene Ontology (GO) molecular func-
tion term as the set of positive matches. Typically,
there is more than one GO molecular function term
associated with one PDB entry. We picked the most
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Table 3. Matching results with a p-value of 0.001.

Enzyme classification Gene Ontology

PDB ID TP FP TP FP time (s)

1acb 87.50% (28) 0.08% (13) — — 27541
1ady 100.00% (22) 0.07% (13) 68.00% (17) 0.08% (14) 10268

1ani 75.61% (62) 0.06% (11) — — 12673

1ayl 100.00% (19) 0.07% (12) — — 3006
1b7y 40.00% (8) 0.07% (12) 40.00% (4) 0.07% (12) 15744

1czf 100.00% (21) 0.04% (7) 100.00% (13) 0.06% (9) 1078

1did 100.00% (152) 0.02% (2) 100.00% (108) 0.02% (2) 181
1dww 88.94% (209) 0.04% (5) 95.31% (183) 0.04% (5) 1635

1ep0 100.00% (39) 0.05% (8) 100.00% (21) 0.05% (8) 2308
1ggm 81.82% (9) 0.07% (12) 33.33% (5) 0.07% (13) 12620

1jg1 100.00% (17) 0.06% (11) 100.00% (13) 0.07% (13) 44982

1juk 100.00% (12) 0.06% (10) — — 1211
1kp3 100.00% (36) 0.06% (10) 100.00% (35) 0.07% (11) 637

1kpg 84.62% (11) 0.06% (8) 84.62% (11) 0.06% (8) 126

1lbf 100.00% (12) 0.05% (8) 77.78% (7) 0.06% (9) 2650
1nsk 72.91% (148) 0.00% (0) — — 7128

1ucn 81.77% (166) 0.01% (2) — — 851

2ahj 35.90% (14) 0.06% (10) 33.33% (11) 0.07% (12) 420
7mht 90.91% (10) 0.08% (10) — — 2130

8tln 95.08% (58) 0.08% (14) — — 1989

specific term (i.e., the one with the fewest PDB en-
tries). For some motifs no GO annotation for molec-
ular function is available, which is indicated by a ‘—’.
The true and false positives are given as percentages
followed by the absolute number of matches between
parentheses. In most cases our method finds close
to 100% of all known true positives with a p-value
of 0.001, and only very few false positives. Even in
absolute terms the number of false positives is very
small. For the 1acb motif, which represents the cat-
alytic triad, we only counted α-chymotrypsin as a
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Fig. 1. ROC curve. The true positive rate and false positive

rate are averaged over all motifs at a given p-value. The inset
plot shows the performance for very small false positive rates.

true positive. This excludes several other members of
the corresponding EC class. An additional complica-
tion for this motif is that it sometimes spans several
(but not all) chains in a complex. In this case we
manually separated chymotrypsin from its inhibitor.

Figure 1 shows the false positive rate and true
positive rate as we vary the p-value. The true posi-
tive rate and false positive rate are averaged over all
motifs at a given p-value. With MASH, our previous
algorithm, we could achieve on average a 83.7% true
positive rate at a 0.98% false positive rate. Now,
at the same false positive rate, we achieve 90% sen-
sitivity. Or, alternatively, at the same true positive
rate, we now achieve a 0.04% false positive rate. The
improvement in false positive rate is especially sig-
nificant. Since in our case the number of targets is
so much larger than the number of homologs, a small
false positive rate can still mean that the number of
false positives is many times larger than the num-
ber of true positives. For example, for the 8tln motif
the false positive rate went from 9.1% with MASH
to 0.08% with LabelHash. In absolute terms, the
number of false positive matches went from 168 with
MASH to 14 with LabelHash. In almost all cases the
number of false positives is now less than the number
of true positive matches.

The p-values of matches are computed using a
so-called point-weight correction22, 21. This is a sta-
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Fig. 2. Clustering of matches in EC classes for three motifs. Matches in bold italics are likely to be missed because they are in
a cluster that is very different from the cluster that contains the motif (shown in bold).

tistical correction for the bias introduced by only
considering matches in a small neighborhood of mo-
tif points. While using the neighborhood heuris-
tic typically preserves biologically relevant matches,
eliminating biologically irrelevant matches can affect
the accuracy of thresholds provided by the statistical
models of sub-structural similarity. Statistical mod-
els depend on an unbiased representation of matches
to yield the most accurate thresholds. During the
match augmentation phase of the algorithm we only
considered matching points in targets that were up
to ε = 7Å away, but other matching points may ex-
ist. These other matches tend to be in right-hand
side of the RMSD distribution of matches. The ex-
istence of these matches can be determined by sim-
ply looking at residue frequencies for each target.
The point-weight represents these matches in the p-
value determination. This can significantly improve
the accuracy, especially for small ε. For a relatively
large value of ε = 7Å, the effect is relatively small:
with the point-weight the average sensitivity for the
motifs in table 2 is 86.0%, but without the point-
weight this drops to 82.7%. The specificity is rel-
atively unaffected: it changes from 99.94% (with
point-weight) to 99.96% (without). However, if a

small ε = 3Å threshold is used, the sensitivity with
point-weight is 85.7%, and without point-weight it
is 32.9%. Again, specificity is relatively unaffected:
99.94% with point-weight and 99.996% without. The
reason one may want to use a small value for ε is that
it significantly reduces the runtime. The total time
for matching all of the motifs in table 2 can be re-
duced by almost 60% by changing ε from 7Å to 3Å.
The accuracy improvements over MASH observed at
ε = 7Å are also observed at smaller ε levels.

To better understand what happens when a ho-
molog is classified as false negative, let us now con-
sider the homolog matches for three motifs. Suppose
we take all the homolog matches for a given motif,
compute all pairwise LRMSD distance between the
matches, and cluster the results based on these dis-
tances. We expect that matches that end up in a dif-
ferent cluster than the motif’s cluster, are more likely
to be misclassified. This is indeed what appears to
be the case for our motifs. Figure 2 shows dendro-
grams computed for three motifs. For the 1b7y motif
and corresponding homologs in the EC 6.1.1.20 class
of homologs there are two very distinct large clusters
consisting of the ‘A’ and ‘B’ chains, respectively, and
one small cluster for the outlier protein 2cxi. The ‘B’
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chains of enzymes in EC 6.1.1.20 are very different
from the ‘A’ chains. The assigned function for this
class is really a property of the complex, rather than
a single chain. It is therefore not surprising that the
‘A’ chains do not match the ‘B’ chains very well. For
the 2ahj motif the situation is more complex (see fig-
ure 2(b) ). Again, there are very distinct classes, but
this time it is not obvious why this is the case. The
last example, for 1ady and homologs, shows a den-
drogram for a case where our matching algorithm
found all homologs. Now all homologs are very close
to each other and the clusters are not well-separated.
This suggests that cluster analysis on match results
can provide additional insight into whether matches
are likely to be functionally related to a motif.

The runtime of matching each motif against
18,000 targets in the non-redundant PDB is shown
in the last column of table 2. The time is highly
variable: it ranges from a couple of minutes to sev-
eral hours. The variability is due to the size of the
motif, the type of residues, and—most importantly—
the number of alternate labels. For instance, for the
1jg1 motif the number of alternate labelings for the
entire motif is 4×1×3×3×3×3 = 324. Although we
do not match each alternate labeling separately, the
increased branching factor during match augmenta-
tion still exponentially increases the runtime. Com-
pared to MASH, our previous algorithm, the runtime
has increased by a factor 5. This is due mostly be-
cause LabelHash algorithm performs match augmen-
tation on many reference sets (up to 40 per motif in
our experiments), whereas MASH only used one ref-
erence set, because its definition of the reference set
was based on the availability of importance ranks for
the residues. We expect that further parameter opti-
mization and code profiling will allow LabelHash to
run at comparable speed, but with superior accuracy.
Comparison with other approaches was attempted,
but it was impossible to complete due to reasons
given in section 2. In particular, the problems solved
are not always the same, or it is not possible to trans-
late our motifs, or compare performance results. In
an effort to help in solution of this problem in the fu-
ture, a web server that will enable the community to
use our work has been implemented and is accessible
at http://kavrakilab.org/labelhash. More demand-
ing users can also download a command line version

that offers more options. We have also developed a
prototype match visualization plugin for Chimera47.
It superimposes the selected match with the motif
and shows some additional information such as the
corresponding EC and GO terms. On demand, ad-
ditional information from PDBsum48 is displayed.
This will give the user an incredible wealth of in-
formation about a match. The ViewMatch plugin is
also available at the LabelHash web site.

The runtime is measured by running the match-
ing on a single CPU core of a 2.2GHz Dual Core
AMD Opteron processor. Multi-core processors and
distributed computing clusters are increasing com-
monplace, and naturally we would like to take ad-
vantage of that. Both the preprocessing stage and
the matching stage are trivially parallelized, and a
near-linear speed-up with the number of CPU cores
can be expected. In the preprocessing phase we di-
vide the targets into a number of groups and build
a hash map for each. Each core can be responsible
for building a number of hash maps. This requires
no communication. Matching can also easily be par-
allelized. Each core can match a given motif against
a set of targets independently. Once matching is fin-
ished, the match results can be aggregated into one
output file by one of the cores.

5. CONCLUSION AND FUTURE WORK

We have presented LabelHash, a new algorithm for
partial structural alignment. It quickly matches a
motif consisting of residue positions, and possible
residue types to large sets of targets. We have
shown that LabelHash achieves very high sensitiv-
ity and specificity with 20 motifs matched against a
background data set consisting of the non-redundant
PDB filtered at 95% sequence identity. Accuracy
is further improved due to a nonparametric statis-
tical model that corrects for systematic bias in our
algorithm. Typically, the number of false positive
matches is much smaller than the number of true
positive matches, despite the large number of targets
in our background database. This greatly speeds up
the analysis of match results. Our algorithm uses
only a small number of parameters whose meaning
is easy to understand. We have shown that cluster-
ing of matches can provide useful clues about the
functional similarity between a motif and a match.
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Extensibility was an important factor in the de-
sign of the LabelHash implementation. Our pro-
gram is easily extended to incorporate additional
constraints or use even conceptually different types
of motifs. For instance, matching based on physico-
chemical pseudo-centers23, 24 could easily be incor-
porated, and we plan to offer this functionality in
the future. Input and output are all in XML for-
mat, which enables easy integration with other tools
or web services. It is also not hard to imagine La-
belHash as part of a multi-stage matching pipeline.
The matches produced by LabelHash can be given to
the next program, which can apply additional con-
straints to eliminate more false positives. As long as
the set of matches produced by LabelHash include all
functional homologs, this seems to be a viable strat-
egy. Of course, the output of LabelHash can also
easily be passed on to any clustering algorithm (as
was done for figure 2) or a visualization front-end.

As mentioned at the end of section 3, our match-
ing algorithm has the capability to keep partial
matches and multiple matches per target. This
makes the statistical analysis significantly more com-
plicated. Currently, we just disable the p-value com-
putation when either option is selected, but we plan
to investigate the modeling of the statistical distri-
bution of these matches.
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