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Abstract—It is well-known that inhibitors of protein kinases
bind with very different selectivity profiles. This is also the
case for inhibitors of many other protein families. A better
understanding of binding selectivity would enhance the design of
drugs that target only a subfamily, thereby minimizing possible
side-effects. The increased availability of protein 3D structures
has made it possible to study the structural variation within
a given protein family. However, not every structural variation
is related to binding specificity. We propose a greedy algorithm
that computes a subset of residue positions in a multiple sequence
alignment such that structural and chemical variation in those
positions helps explain known binding affinities. By providing
this information, the main purpose of the algorithm is to provide
experimentalists with possible insights into how the selectivity
profile of certain inhibitors is achieved, which is useful for
lead optimization. In addition, the algorithm can also be used
to predict binding affinities for structures whose affinity for
a given inhibitor is unknown. The algorithm’s performance is
demonstrated using an extensive dataset for the human kinome,
which includes a large and important set of drug targets. We
show that the binding affinity of 38 different kinase inhibitors
can be explained with consistently high precision and accuracy
using the variation of at most six residue positions in the kinome
binding site.

I. INTRODUCTION

Predicting affinity profiles remains a challenging task for
computational and medicinal chemists. This is particularly true
of the kinase family of enzymes because of their large number
and structural similarity. Despite their structural similarity,
the kinases exhibit large phylogenetic diversity. As a result,
binding site sequence dissimilarity alone cannot explain the
differences in binding affinity [1]. Selectivity patterns obtained
by experimental screening in enzyme assays are often difficult
to rationalize in structural terms. Additional tools are needed
to improve our capabilities to design inhibitors that selectively
bind to only a small subset of the kinases. The rapidly increas-
ing number of kinase structures has made it possible to study
how structural differences affect binding affinity. For instance,
different inhibitors have been designed to target the inactive,
DFG-out conformation and active, DFG-in conformation [2–5].
In general, determining exactly how functional changes relate
to structural ones remains an important open challenge [6, 7].
This is caused in part by the fact that not all structural changes

Work on this paper by Mark Moll and Lydia E. Kavraki has been supported
in part by NSF ABI 0960612, NSF CCF 1423304, and Rice University Funds.

cause a functional change. Additionally, the available structures
are non-uniformly distributed over the known kinase sequences:
for many kinases there is no structural information, while other
kinases are overrepresented, which can lead to overfitting.

In previous work [1], we introduced the Combinatorial
Clustering Of Residue Position Subsets (CCORPS) method and
demonstrated that it could be used to predict binding affinity
of kinases. CCORPS considers structural and chemical variation
among all triplets of binding site residues and identifies patterns
that are predictive for some externally provided labeling. The
labeling can correspond to, e.g., binding affinity, Enzyme
Commission classification, or Gene Ontology terms, and only
needs to be defined for some of the structures. CCORPS corrects
for the non-uniform distribution of structures. From the patterns
CCORPS identifies, multiple predictions are combined into
a single consensus prediction by training a Support Vector
Machine. A limitation of this work is that it is difficult to
identify the most important Specificity Determining Positions
(SDPs). In this paper, we are not trying to construct a better
predictor, but, rather, a better explanation for some labeling.
The explanation is better in the sense that it provides a simple
explanation of a labeling in terms of the dominant SDPs. Rather
than using all patterns discovered by CCORPS, it uses a small
number of patterns that involve only a small number of residues
yet is able to accurately recover binding affinity.

The main contribution of this paper is an algorithm that
computes the Specificity Determining Positions that best
explain binding affinity in terms of structural and chemical
variation. More generally, the algorithm can identify a sparse
pattern of structural and chemical variation that corresponds to
an externally provided labeling of structures. This work extends
our prior work on CCORPS, but shifts the focus from optimal
predictions to concise, biologically meaningful, explanations
of functional variation.

The rest of the paper is organized as follows. In the next
section we discuss related work. In section III we briefly
summarize the CCORPS framework, which forms the basis for
our work. Our algorithm for computing SDPs is presented in
section IV. The algorithm is evaluated on an extensive kinase
dataset in section V. Finally, we end with a brief conclusion
in section VI.
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II. RELATED WORK

There has been much work on the identification and
characterization of functional sites. Most of the techniques are
broadly applicable to many protein families, but we will focus
in particular on their application to kinases, when possible.

Much of the work on computing SDPs is based on evolu-
tionary conservation in multiple sequence alignments (see, e.g.,
[8–10]). There has also been work on relating mutations to an
externally provided functional classification in a phylogeny-
independent way [11, 12]. This work is similar in spirit to
what CCORPS does, but based on sequence alone.

While sequence alignment techniques can reveal functionally
important residues in kinases [13], structural information can
provide additional insights. This is especially true for large,
phylogenetically diverse families such as the kinases. The
FEATURE framework [14, 15] represents a radically different
way of identifying functional sites. Instead of alignment,
FEATURE builds up a statistical model of the spatial distribution
of physicochemical features around a site.

Another approach to modeling functional sites has been the
comparison of binding site cavities [3, 16]. In [17] a functional
classification of kinase binding sites is proposed based on a
combination of geometric hashing and clustering. This approach
is similar in spirit to our prior work [1], but our work considers
variations in a small sets of binding site residues, which makes
it possible to separate non-functional structural changes from
functional ones.

In [18] many of the ideas above are combined into one
framework. Given sequences from a PFAM alignment [19] and
some reference structures, homology models are constructed
for all sequences. Next, cavities are extracted, aligned, and
clustered. Unlike our work, the approach in [18] is completely
unsupervised and does not aim to provide an explanation for
an externally provided classification.

III. CCORPS OVERVIEW

Our algorithm builds on the existing CCORPS framework [1].
CCORPS is a semi-supervised technique that takes as input a
set of partially labeled structures and produces as output the
predicted labels for the unlabeled structures. Of course, this
is only possible if the labels can be related to variations in
the structures. In previous work [1] we have shown this to be
the case for labelings based on binding affinity and functional
categorization (Enzyme Commission classification).

CCORPS [1] consists of several steps. First, a one-to-one
correspondence needs to be established between relevant
residues (e.g., binding site residues) among all structures. This
correspondence can be computed using a multiple sequence
alignment or using sequence independent methods [20–23].
Second, we consider the structural and physicochemical varia-
tion among all structures and all triplets of residues. The triplets
are not necessarily consecutive in the protein sequence and
can be anywhere in the binding site. Each triplet of residues
constitutes a substructure: a spatial arrangement of residues.
For each triplet, we compute a distance matrix of all pairwise
distances between substructures. The distance measure used is

a combination of structural distance and chemical dissimilarity
introduced in [21]. In particular, the distance between any two
substructures s1 and s2 is defined as:

d(s1,s2) = dside chain centroid(s1,s2)+dsize(s1,s2)

+daliphaticity(s1,s2)+daromaticity(s1,s2)

+dhydrophobicity(s1,s2)+dhbond acceptor(s1,s2)

+dhbond donor(s1,s2).

The dside chain centroid(s1,s2) term is the least root-mean-square
deviation of the pairwise-aligned side chain centroids of the
substructures. The remaining terms account for differences in
the amino acid properties between the substructures s1 and s2
as quantified by the pharmacophore feature dissimilarity matrix
as defined in [21].

Each row in the distance matrix can be thought of as a
“feature vector” that describes how a structure differs from
all others with respect to a particular substructure. The n×n
distance matrix for n structures is highly redundant and we
have shown that the same information can be preserved in a 2-
dimensional embedding computed using Principal Component
Analysis [24]. Each 2D point is then a reduced feature vector.
The set of n 2-dimensional points is clustered using Gaussian
Mixture Models in order to identify patterns of structural
variation. Not all structural variation is relevant; we focus on
patterns of structural variation that align with the classification
provided by the labeling.

The final stage of CCORPS is the prediction of labels for
the unlabeled structures. Suppose a cluster for one of the
residue triplets contains structures with only one type of label
as well as some unlabeled structures. This would suggest that
the predicted label for the unlabeled structures should be the
same as for the other cluster members. We call such a cluster
a Highly Predictive Cluster (HPC). These HPCs are a critical
component of the algorithm presented in the next section. There
are many clusterings and each clustering can contain several
HPCs (or none at all). For example, in the human kinome the
binding site consists of 27 residues, leading to

(27
3

)
= 2,925

clusterings. Typically, an unlabeled structure belongs to several
HPCs and we thus obtain multiple predictions. These predictions
might not agree with each other. In our prior work we trained a
Support Vector Machine to obtain the best consensus prediction
from the multiple predictions.

IV. STRUCTURE-GUIDED SELECTION OF SPECIFICITY
DETERMINING POSITIONS

While CCORPS has been demonstrated to make accurate
predictions, it has been difficult to interpret the structural basis
for these predictions. This has motivated us to look at alternative
ways to interpret the clusterings produced by CCORPS. Rather
than trying to build a better predictor, we have developed
an algorithm that constructs a concise structural explanation
of a labeling. It determines a set of Specificity Determining
Positions (SDPs). An algorithm that would predict that almost
every residue position is important would not be very helpful.
We therefore wish to enforce a sparsity constraint: for a set



of labeled structures S we want to find the smallest possible
number of HPCs that cover the largest possible subset of S and
involve at most λ residues.

The problem of finding SDPs can be formulated as a variant
of the set cover problem. The set cover problem is defined
as follows: given a set S and subsets Si ⊆ S, i = 1, . . . ,n,
what is the smallest number of subsets such that their union
covers S? This is a well-known NP-Complete problem, but
the greedy algorithm that iteratively selects the subset that
expands coverage the most can efficiently find a solution with
an approximation factor of ln |S|.

As mentioned above, in our case, S is the set of labeled
structures. We keep track of the residues involved in the selected
HPCs and mark them as SDPs. Solving this as a set cover
problem would likely still select most residues. The intuition for
this can be understood as follows. The number of clusterings
each residue is involved in is quadratic in the number of
residues in the alignment. Each of those clusterings could
contain a HPC that covers at least one structure that is not
covered yet by other HPCs. Even in completely random data
some patterns will appear, which could in turn be classified as
HPCs.

We measure sparsity of the cover in terms of the number
of residues and not the number of HPCs, since this facilitates
an easier interpretation of the results shown later on. As noted
before, there can be several HPCs per clustering. This means
that once we have selected an HPC, we might as well include
all other HPCs from that same clustering (we have already
“paid” for using the corresponding residues). As an algorithmic
refinement, we may also wish to limit the degree at which
we are fitting the data to avoid overfitting and get a simpler
description of the most significant residues positions whose
variation can be used to explain the labeling.

The algorithm for computing SDPs is shown in Algorithm 1.
It is similar to the greedy set cover algorithm. The input to
the algorithm consists of a list of labeled structures, a list of
all 3-residue subsets of the binding site, and a list of sets of
structures that belong to HPCs. After initializing the set of
SDPs and the set of selected subset indices in S, the main loop
performs the following steps. First, the indices of all subsets
are computed that will not grow the set of SDPs beyond a size
limit λ (line 5). Second, the subset index is computed that will
increase the cover of the known labels with HPC structures the
most (line 9). Next, the algorithm checks whether the increase
is “large enough,” i.e., greater than or equal to δ (line 11). If
so, the set of SDPs and the sets of not-yet-covered structures
are updated (line 13–14). If not, the algorithm terminates and
returns the set of SDPs.

The final output of Algorithm 1 provides a concise expla-
nation of which structural and chemical variations correlate
highly with a given labeling. In the context of the kinases,
it can identify triplets of residues whose combined structural
and chemical variation give rise to patterns that allow one to
separate binding from non-binding kinases. As we will see
in the next section, often only a very small set of residues is
sufficient to obtain HPCs that cover most of the structures with
known binding affinity.

Algorithm 1 Compute Specificity Determining Positions
getSDPs(L,S,H,λ ,δ )
Input: L: set of all labeled structures
Input: S: list of all 3-residue subsets of binding site
Input: H: list of sets of labeled structures s.t. Hi contains the
structures that belong to HPCs in the clustering for subset Si
Input: λ ,δ : parameters that control sparsity and overfitting,
respectively.
Output: P: a set of SDPs that best explains the label-
ing

1: P← /0 // Set of SDPs
2: C← /0 // Set of subset indices in S chosen so far
3: loop
4: // λ controls sparsity of SDPs
5: I←{i | i 6∈C∧|Si∪P| ≤ λ}
6: if I = /0 then
7: break // No more subsets satisfy sparsity constraints
8: // Greedy selection of next subset
9: j← argmaxi∈I |L∩Hi|

10: C←C∪{ j}
11: if |L∩H j|< δ then
12: break // Not enough improvement possible
13: P← P∪S j
14: L← L\H j
15: return P

V. RESULTS FOR THE HUMAN KINOME

In [25] a quantitative analysis is presented of 317 different
kinases and 38 kinase inhibitors. For every combination of a
kinase and an inhibitor, the binding affinity was experimentally
determined. This dataset also formed the basis for the evaluation
of CCORPS [1]. The kinase inhibitors vary widely in their
selectivity. Inhibitors like Staurosporine bind to almost every
kinase, while others like Lapatnib bind to a very specific
subtree in the human kinase dendrogram. The structure dataset
was obtained by selecting all structures from the Pkinase and
Pkinase Tyr PFAM alignments [19]. The binding site, as defined
in [1], consists of 27 residues. After filtering out structures
that had gaps in the binding site alignment, 1,958 structures
remained. The binding affinity values were divided into two
categories (i.e., labels): “binds” and “does not bind.” This
gives rise to two different types of HPCs: clusters predictive
for binding (which we call true-HPCs below) and clusters
predictive for not binding (which we call false-HPCs below).
All other structures corresponding to kinases that were not part
of the Karaman et al. study [25] do not have a label. CCORPS
was run on this dataset, consisting of all 1,958 structures
along with the binding affinity data. This resulted in

(27
3

)
=

2,925 clusterings, one for every triplet of residues. The median
number of true-HPCs per inhibitor was 591, while the median
number of false-HPCs per inhibitor was 13,632.

In the next subsection we look in detail at results of our
algorithm with one parameter setting to get a sense of what
kind of output is produced. In subsection V-B we will then
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Fig. 1: The SDP
profiles computed for
every inhibitor in the
kinome dataset. The
x-axis represents the
residue position in the
27-residue multiple
sequence alignment
of the binding site.
Each row shows the
SDPs for one inhibitor
whose name is shown
on the y-axis. For
each inhibitor, blocks
with the same color
correspond to one of
the 3-residue subsets. If
there are multiple colors
in a given position,
then the same residue
was part of several
selected subsets. This
means that the same
residue in different
structural contexts can
help explain the binding
affinity of different
kinases.



describe different ways to measure coverage of the SDPs as well
as their predictive potential. We then evaluate these measures
on all inhibitors with different parameter settings.

A. Specificity-Determining Positions

While in our prior work [1] the emphasis was on predicting
the affinity of kinases, here we are focused on creating a concise
explanation of the affinity. Thus, here we are not performing
cross validation experiments. We have run Algorithm 1 on the
kinome dataset with λ = 6 residues and δ = 16 (statistics
for different values of λ and δ are reported in the next
subsection). With λ = 6, the algorithm can select at most
two non-overlapping triplets. We computed the SDPs for all
inhibitors (see Fig. 1). With some additional bookkeeping we
can keep track of which residue was involved in which selected
subsets. The bar chart for each inhibitor can be interpreted as
follows. Along the x-axis is the residue position in the multiple
sequence alignment of the 27 binding site residues. The relative
height of each bar indicates how often a residue position was
part of a selected 3-residue subset. Blocks with the same color
correspond to residues belonging to the same residue subset.
This can provide important contextual information. It shows
not only which residues are important to help explain binding
affinity, but also the context in which its variation should be
seen. It could, e.g., indicate that one residue’s variation relative
to some other residue(s) is important. The contextual residues
themselves may not always vary much and are perhaps not of
as much functional importance in the traditional sense. As λ

is increased, more bars would be added to each profile as long
as they improve coverage by at least δ structures. Similarly,
as δ is decreased, more bars would be added to each profile
as long as no more than λ residues are involved.

Figure 2 shows some examples of the clusterings that have
been selected by Algorithm 1. These clusterings contain a large
number of structures belonging to HPCs. The distance between
points represents how different the corresponding structures
are, structurally and chemically. The examples show that we
can identify very strong spatial cohesion among the structures
that bind when looking at the right residues (i.e., the SDPs).
Not all clusterings selected by Algorithm 1 show such a strong
relationship between structure and function. Especially for
inhibitors that bind more broadly to kinases this relationship
is harder to untangle.

There is significant variation among the SDP profiles. For a
very selective inhibitor like SB-431542 the variation of only
three positions is sufficient to explain the binding affinity
(see also the next subsection), while for ABT-869 many
combinations of 3 residues out of the 6 selected residues seem
to be helpful in explaining the binding affinity.

Fig. 3 shows two different visualizations of the SDPs for the
inhibitor Imatinib. Fig. 3(a) shows the structural variation (or
lack thereof) in the selected residue positions for all structures
that bind Imatinib. Fig. 3(b) shows the sequence logo for those
same residues and structures as created by WebLogo [26]. In
comparison with Fig. 3(c), we see that the SDPs are much
more conserved. Sequence conservation alone is typically not
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(c) SB-431542

Fig. 2: Examples of the kind of clusterings selected by our
algorithm. The axes correspond to the 2D, PCA-reduced
feature vector representation of the pairwise distances between
structures as described in Section III. Each point represents
one structure. Red: known to bind, black: known to not bind,
gray: binding affinity unknown. Discs: structures belonging to
HPCs, circles: all other structures.



(a) P38 (grey ribbon) shown bound to Imatinib (green), PDB ID 3HEC.
Superimposed are the SDPs, as determined by our algorithm, for all structures
known to bind Imatinib, aligned with the corresponding residues of P38.Imatinib---IV 5---IMTE
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(c) Sequence logo for entire binding site using sequences from all
1,958 structures.

Fig. 3: Visual representations of a profile constructed by our
algorithm: (a) the superposition of the selected residues for
the structures that bind to Imatinib and (b) a sequence logo
for those same structures.

sufficient for high selectivity. A high degree of structural
conservation is also necessary, which appears to be the case
here.

At a high level, residue positions that occur frequently in the
profiles are often ones with known roles in inhibitor binding
and selectivity determination. An example is the region which
structural biologists term the “hinge” (position 9 in Fig. 3(c)),
which binds to the adenine ring of the natural ATP substrate and
is also used by the vast majority of kinase inhibitors. Another
key residue frequently highlighted in logos is the “gatekeeper”
residue [27] (position 8 in Fig. 3(c)); the size of this residue
controls access to a secondary binding pocket and is a major
determinant of selectivity. More specifically, the analysis for the
kinase inhibitor Imatinib identifies these residues. In addition,
several other residues in the profile are known to be associated
with mutations that confer resistance to Imatinib.

B. Coverage and Predictive Power of SDPs

Based on the set of SDPs we can (a) try to “recover” the
labels of labeled structures that were not part of the selected

TABLE I: Coverage of labeled structures, number of predicted
affinities for unlabeled structures, as well as sensitivity, speci-
ficity, precision, and accuracy for HPC-based prediction of
binding affinity. Each row summarizes the average over all 38
ligands for the corresponding strategy.

Strategy cov. #pred. sens. spec. prec. acc.

1 83% 215 0.486 1.000 0.921 0.904
2 83% 215 1.000 0.887 0.783 0.929
3 15% 1,084 0.617 1.000 0.921 0.932
4 71% 364 1.000 0.900 0.806 0.937

TABLE II: Coverage of labeled structures, number of predicted
affinities for unlabeled structures, as well as specificity, preci-
sion, and accuracy for HPC-based prediction of binding affinity
as recovered from SDPs computed using our algorithm (with
λ = 6 and δ = 16). Sensitivity is equal to 1 in all cases.

Inhibitor cov. #pred. spec. prec. acc.

ABT-869 86% 557 0.922 0.633 0.931
AMG-706 83% 558 0.928 0.707 0.938
AST-487 65% 426 0.661 0.806 0.859
AZD-1152HQPA 85% 568 0.914 0.668 0.927
BIRB-796 67% 391 0.766 0.653 0.838
BMS-387032/SNS-032 96% 670 0.984 0.959 0.988
CHIR-258/TKI-258 81% 420 0.947 0.861 0.960
CHIR-265/RAF265 87% 473 0.960 0.801 0.966
CI-1033 77% 475 0.882 0.710 0.909
CP-690550 96% 629 0.989 0.736 0.989
CP-724714 99% 684 0.999 0.982 0.999
Dasatinib 83% 500 0.897 0.837 0.933
EKB-569 70% 474 0.876 0.688 0.902
Erlotinib 80% 532 0.902 0.693 0.920
Flavopiridol 80% 515 0.844 0.754 0.895
GW-2580 99% 677 1.000 1.000 1.000
GW-786034 79% 485 0.920 0.737 0.934
Gefitinib 81% 470 0.906 0.561 0.916
Imatinib 86% 587 0.936 0.590 0.941
JNJ-7706621 59% 356 0.580 0.704 0.790
LY-333531 83% 413 0.912 0.652 0.924
Lapatinib 99% 684 0.999 0.982 0.999
MLN-518 94% 659 0.989 0.808 0.989
MLN-8054 87% 493 0.948 0.766 0.956
PI-103 99% 654 0.999 0.988 0.999
PKC-412 54% 217 0.621 0.687 0.793
PTK-787 97% 664 0.999 0.974 0.999
Roscovitine/CYC202 98% 650 1.000 1.000 1.000
SB-202190 84% 500 0.929 0.815 0.946
SB-203580 69% 349 0.792 0.641 0.849
SB-431542 100% 670 1.000 1.000 1.000
SU-14813 71% 343 0.761 0.667 0.838
Sorafenib 70% 509 0.919 0.801 0.939
Staurosporine 91% 646 0.681 0.956 0.959
Sunitinib 61% 343 0.652 0.654 0.790
VX-680/MK-0457 78% 410 0.844 0.767 0.897
VX-745 85% 583 0.912 0.680 0.926
ZD-6474 87% 511 0.939 0.823 0.952

average 83% 520 0.887 0.783 0.929

HPCs and (b) predict labels for the unlabeled structures. There
are at least four simple strategies to do this:

1) We could assume that the union of all true-HPCs
contains all the structures that bind and that all others
do not bind.

2) We could assume that the union of all false-HPCs
contains all the structures that do not bind and all others



do bind.
3) We could omit the false-HPCs altogether from the

input H to Algorithm 1 and select residue subsets based
on large true-HPCs only. The labels are then recovered
as in (1).

4) We could omit the true-HPCs altogether from the input
H to Algorithm 1 and select residue subsets based on
large false-HPCs only. The labels are then recovered
as in (2).

Note that the SDPs computed with Algorithm 1 are the same
in the first two strategies, but will generally look different
when using strategies 3 and 4. We have evaluated each of
these strategies on all 38 ligands. For each we can evaluate
the coverage: the percent of known labels that are included
in the HPCs. We can also count the number of unlabeled
structures included in HPCs, which can be interpreted as the
number of new binding affinities we can predict. For the first
two strategies we get predictions for both binding and not-
binding, while for the latter two we only get predictions for one
type of affinity. Finally, we can calculate the usual statistical
performance measures (sensitivity, specificity, precision, and
accuracy) to measure how well the selected HPCs can predict
binding affinity for all labeled structures. The results were
computed with λ = 6 and δ = 16 and are summarized in
Table I. Note that that specificity is equal to 1 in strategies
1 and 3 by construction. Similarly, sensitivity is equal to 1
in strategies 2 and 4 by construction. In general, assuming
that the union of all true-HPCs contains all the structures
that bind (as is done in strategies 1 and 3) results in poor
sensitivity. Strategy 2 seems to strike a good balance between
sensitivity and specificity as well as between precision and
accuracy. Strategy 4 performs even better than strategy 2, but
provides poorer coverage.

The results in Table II show more detailed results for each
ligand with strategy 2. While there is some variation among the
inhibitors, the coverage is almost always very high. In cases
where it is not, such as AST-487, JNJ-7706621 and Sunitinib,
it is usually a inhibitor that binds to many different parts of the
kinome tree (see kinome interaction maps in [25]). Finally, we
analyzed the sensitivity to the parameter δ and λ . As is shown
in Tables III and IV, performance varies significantly with both
λ and δ (as is expected). However, even with very large values
of δ , the algorithm is still able to cover the vast majority of
known binding affinities. Even more surprisingly, even when
restricting SDPs to only λ = 3 residues (corresponding to a
single HPC), over 60% of the structures with known binding
affinity are covered.

VI. CONCLUSION

We have described a general method for identifying Speci-
ficity Determining Positions in families of related proteins. The
method was shown to be very effective in identifying SDPs
within the human kinome that help explain the binding affinity
of 38 different inhibitors.

In ongoing work we are exploring the potential role of other
residues identified by the structure-guided selection. Some

TABLE III: Sensitivity to the value of λ with δ = 16. Each
row represents an average over all 38 inhibitors.

λ cov. #pred. spec. prec. acc.

3 62% 312 0.669 0.493 0.778
4 73% 419 0.781 0.661 0.864
5 79% 482 0.844 0.729 0.907
6 83% 520 0.887 0.783 0.929
7 86% 537 0.909 0.810 0.943
8 88% 554 0.921 0.838 0.951
9 89% 565 0.930 0.858 0.958

TABLE IV: Sensitivity to the value of δ with λ = 6. Each row
represents an average over all 38 inhibitors.

δ cov. #pred. spec. prec. acc.

1 85% 587 0.904 0.820 0.941
2 85% 580 0.903 0.817 0.940
4 85% 565 0.900 0.812 0.938
8 84% 547 0.895 0.800 0.935

16 83% 520 0.887 0.783 0.929
32 81% 490 0.871 0.723 0.916
64 78% 456 0.848 0.658 0.898
128 74% 413 0.817 0.612 0.876

of these are not in direct contact with the inhibitor but may
be involved indirectly through, for example, influencing the
conformation or flexibility of the protein. This would be a
significant benefit, as such residues are difficult to identify
by other means. Not only could this potentially provide a
new insight into the structural biology of kinases, but such
knowledge may be helpful in the design of inhibitors with
novel, or improved, selectivity profiles.

In prior work [28] we have demonstrated that the addition of
homology models leads to an improvement in the prediction of
binding affinity. Homology models can fill in gaps in structural
coverage, thereby potentially eliminating “accidental” HPCs
and create new ones. In future work we plan to investigate
whether homology models can provide similar benefits in the
identifications of SDPs.
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