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Abstract

Nonlinear dimensionality reduction methods often rely on
the nearest-neighbors graph to extract low-dimensional em-
beddings that reliably capture the underlying structure
of high-dimensional data. Research however has shown
that computing nearest neighbors of a point from a high-
dimensional data set generally requires time proportional to
the size of the data set itself, rendering the computation of
the nearest-neighbors graph prohibitively expensive.

This work significantly reduces the major computa-

tional bottleneck of many nonlinear dimensionality reduc-

tion methods by efficiently and accurately approximating

the nearest-neighbors graph. The approximation relies on

a distance-based projection of high-dimensional data onto

low-dimensional Euclidean spaces. As indicated by experi-

mental results, the advantage of the proposed approximation

is that while it reliably maintains the accuracy of nonlinear

dimensionality reduction methods, it significantly reduces

the computational time.

1 Introduction

Dimensionality reduction methods [6, 12, 15, 17, 18, 21,
24, 27, 39, 41, 42, 44, 46, 48] are widely used in many
scientific applications. Dimensionality reduction facil-
itates the analysis of large amounts of high-dimensional
data by extracting low-dimensional embeddings that ef-
fectively characterize the input data. It is often the
case that data generated by scientific applications ex-
hibit highly nonlinear features which can only be cap-
tured by nonlinear dimensionality reduction methods
[15,17,18,21,39,41,42,44,46,48].

Progress in scientific applications requires the effi-
cient analysis of increasingly complex, large, and high-
dimensional data. The extraction of low-dimensional
embeddings that effectively characterize such data be-
comes progressively challenging.

Motivated by the success of Isomap [42], many non-
linear dimensionality reduction methods developed in
recent years rely on the nearest-neighbors graph to cap-
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ture the connectivity of the input data [15, 17, 18, 21,
39, 41, 44, 48]. The nearest-neighbors graph is typically
computed by connecting each data point to its k near-
est neighbors as determined by a distance metric. The
nearest-neighbors graph enables dimensionality reduc-
tion methods to effectively characterize even global and
nonlinear features present in a data set which cannot be
adequately captured by linear dimensionality reduction
methods [12,24,27]. Nonlinear dimensionality reduction
methods that rely on the nearest-neighbors graph typi-
cally follow a common framework as summarized below.

1. Compute the nearest-neighbors graph of the input
data by connecting each data point to its k nearest
neighbors as defined by a distance metric. The
weight of an edge in the graph is equal to the
distance between its two endpoints.

2. Use the nearest-neighbors graph to construct a
distance matrix M . A low-dimensional embedding
is obtained by normalizing M and using MDS
(multidimensional scaling) [12] to extract the top
eigenvectors from M to form the basis of the
embedding.

The nearest-neighbors graph which is used to ef-
fectively capture the data connectivity constitutes how-
ever the major computational bottleneck of nonlinear
dimensionality reduction methods [5, 11, 15, 17, 18, 21,
39, 41, 42, 44, 48]. Although researchers have developed
many nearest-neighbors algorithms [3, 8, 10, 13, 16, 19,
20, 25, 26, 33, 37, 47], theoretical and quantitative anal-
ysis has shown that computing nearest neighbors of a
point from a high-dimensional data set requires in gen-
eral time proportional to the size of the data set itself
[4, 7, 23, 25, 29, 38, 43]. Consequently, nonlinear dimen-
sionality reduction methods that rely on the nearest-
neighbors graph are rendered computationally ineffi-
cient for the characterization of considerably large and
high-dimensional data sets.

In this work we address the major computa-
tional bottleneck of nonlinear dimensionality reduc-
tion methods that rely on the nearest-neighbors graph.
The proposed method, termed hcDPES (Hill-Climbing
Distance-based Projection onto Euclidean Space), sig-
nificantly reduces this bottleneck by efficiently and accu-
rately approximating the nearest-neighbors graph. Mo-
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tivated by the work in [38], hcDPES projects a given
high-dimensional data set onto a low-dimensional Eu-
clidean space and computes neighbors in the projected
space. The projection is based on a careful selection of
pivots utilizing a hill-climbing approach that attempts
to maximize the correlation of distances between data
points and the corresponding projections.

We validate the accuracy and demonstrate the effi-
ciency of hcDPES using high-dimensional data derived
from different applications, such as image processing
and robot motion planning. Image processing provides
classical examples to test the reliability of hcDPES. The
robot motion planning data provides challenging exam-
ples for nonlinear dimensionality reduction, since the
data is highly nonlinear and distances between points
are defined by complex and computationally expensive
metrics [9]. Although the experiments in this paper
use Isomap [17, 42], the approximate nearest-neighbors
graph computed by hcDPES could be used with other
nonlinear dimensionality reduction methods that rely on
the nearest-neighbors graph. We chose Isomap [17, 42]
as a test case due to recent work [15], which effectively
characterizes high-dimensional scientific data with sim-
ilar characteristics to the robot motion planning data.

The experimental results indicate that the approx-
imate nearest-neighbors graph computed by hcDPES
is remarkably similar to the exact nearest-neighbors
graph. As a result, the low-dimensional embeddings
extracted by Isomap using the exact nearest-neighbors
graph or using the approximate nearest-neighbors graph
computed by hcDPES are practically indistinguish-
able. Furthermore, hcDPES computes the approximate
nearest-neighbors graph significantly faster than other
approximate nearest-neighbors algorithms that main-
tain the same level of accuracy as hcDPES. Therefore,
the advantage of hcDPES is that while it maintains the
accuracy of nonlinear dimensionality reduction meth-
ods, it significantly reduces the computational time re-
quired to extract low-dimensional embeddings that ef-
fectively characterize high-dimensional data.

The rest of the paper is as follows. In §2, we discuss
related work. In §3, we describe hcDPES and discuss
how to quantitatively measure the accuracy of hcDPES.
In §4 we describe the test cases and present the results
of the experiments. We conclude in §5 with a discussion.

2 Related Work

2.1 Isomap

Let S = {s1, . . . , sn} denote a given data set and
let ρ : S × S → R

≥0 denote a distance metric. In
the case of Isomap [17, 42], the distance matrix M
approximates geodesic distances between points in S.
As recent work [15] has shown, the approximation of

geodesic distances is quite effective for characterizing
nonlinear high-dimensional data derived from scientific
applications. The geodesic distance between two points
si, sj ∈ S is defined as the length of the shortest
path from si to sj when the path is constrained to
lie on the surface of the manifold underlined by S
and ρ. The geodesic distance between si and sj is
approximated as the length of the shortest path in
the nearest-neighbors graph. Isomap selects L points
as landmarks and uses the nearest-neighbors graph to
construct an L×L distance matrix M , where the entries
of M are computed as shortest-path distances between
all landmark pairs. Details can be found in [17,42].

2.2 Approximate Nearest Neighbors

Approximate nearest-neighbors algorithms trade off ac-
curacy for computational efficiency [2,14,31,34] by com-
puting neighbors that are not necessarily the same as
the exact nearest neighbors. In many cases, the k
neighbors of a point s computed by approximate al-
gorithms are within an ε-ball from the exact nearest
neighbors of s. The constant ε ≥ 0 expresses a trade-off
between accuracy and computational efficiency, where
accuracy indicates how close the approximate nearest
neighbors are to the exact nearest neighbors. In the case
of an n-point d-dimensional Euclidean data, approxi-
mate nearest neighbors of a point can be computed in

(d log n/ε)O(1) time and n1/εO(1)

space, as summarized
in [25]. The problem however remains challenging for
general metrics, such as those commonly used in many
scientific applications [1, 9, 15, 22, 30, 35, 36]. The effi-
ciency or accuracy of approximate nearest-neighbors al-
gorithms is typically reduced when general metrics are
used instead of Euclidean distances [25].

A distinctive feature of hcDPES in contrast to ex-
isting work [2, 14, 31, 34] is that hcDPES does not use
ε-balls to express the trade-off between accuracy and
efficiency of computing approximate nearest neighbors.
The challenge with ε-balls is that small values of ε are
needed to compute approximate nearest neighbors that
are close to the exact nearest neighbors. However, when
ε is small computational advantages over exact nearest-
neighbors algorithms are minimal, since a considerable
amount of time is spent guaranteeing that all k approx-
imate nearest neighbors are within an ε-ball from the
exact nearest neighbors. In contrast, hcDPES quickly
computes many approximate nearest neighbors without
ensuring that all of them are within an ε-ball from the
exact nearest neighbors. If a neighbor computed by
hcDPES is far away, the nonlinear dimensionality re-
duction methods can easily reject it without impact-
ing the results, since several neighbors are computed
for each data point. In practice, however, as indicated



by the experimental results, the approximate nearest
neighbors computed by hcDPES are within a small ε-
ball from the exact nearest neighbors. The approxi-
mate nearest-neighbors graph computed by hcDPES is
thus remarkably similar to the exact nearest-neighbors
graph. Furthermore, hcDPES consistently offers signifi-
cant computational speedups over approximate nearest-
neighbors algorithms that maintain the same level of
accuracy as hcDPES.

3 Methods

The approximation of the nearest-neighbors graph is
based on projecting the data set S onto a low-
dimensional Euclidean space according to distances be-
tween points in S and a set of pivots. The idea comes
from our earlier work [38], which quantitatively ana-
lyzed the computational efficiency of proximity algo-
rithms as a function of the data dimensionality in the
context of robot motion planning [9]. The approxi-
mation of the nearest-neighbors graph in [38] is rather
coarse and is limited in practicality to data up to 50–
60 dimensions. As such, it is not suitable for dimen-
sionality reduction since it fails to reliably capture the
connectivity of high-dimensional data. In contrast, as
indicated by the experimental results, the approximate
nearest-neighbors graph computed by hcDPES captures
the connectivity of high-dimensional data practically as
well as the nearest-neighbors graph. This is achieved
by a careful selection of pivots utilizing a hill-climbing
approach that attempts to maximize the correlation of
distances between data points and the corresponding
projections. Furthermore, distances from data points to
pivots are transformed using classical MDS [12] to min-
imize the distortion of distances resulting from the pro-
jection of high-dimensional data onto a low-dimensional
Euclidean space. Consequently, the distance matrix M
constructed in step 2 of §2.1 using the exact nearest-
neighbors graph is remarkably similar to the distance
matrix that is obtained when using the approximate
nearest-neighbors graph computed by hcDPES. Since
the embedding depends only on M , hcDPES can be used
to effectively characterize nonlinear high-dimensional
data.

In the rest of this section, we describe how the
projection of S onto a low-dimensional Euclidean space
is obtained and then describe how the projection is used
to compute the approximate nearest-neighbors graph.

3.1 Projection of High-Dimensional Data

Let E(S) = {e(s1), . . . , e(sn)} denote the projection of
S onto R

m for some fixed m > 0, where e(s) ∈ E(S)
denotes the projection of s ∈ S onto R

m. The objective
is to find a projection E(S) that can be efficiently com-

puted while preserving the relative distances between
points in S, i.e., the projections of points in S that are
close according to ρ should be close according to the
Euclidean distance in R

m. Pseudocode is provided in
Algorithm 3.1.

Algorithm 3.1. Distance-based projection of high-
dimensional data onto a Euclidean space.

Input:

S = {s1, . . . , sn}, a set of data points
ρ : S × S → R

≥0, distance metric
m, dimension of Euclidean space
h, number of pivots

Output:

E(S) = {e(s1), . . . , e(sn)} ⊂ Rm, projection of S

1: P ⊂ S ← select h pivots (Algorithm 3.2)
2: D(S, P, ρ)← a n× h matrix
3: for each si ∈ S do

4: for each pj ∈ P do

5: v(si)[j]← ρ(si, pj)
6: end for

7: D(S, P, ρ)[i]← set i-th row to v(si)
8: end for

9: E(S)← perform landmark MDS [17] to D(S, P, ρ)
10: return E(S)

The projection illustrated in Algorithm 3.1 is based
on distances according to ρ between points in S and
a set of h > m pivots P = {p1, . . . , ph} ⊂ S (line 1).
The pivot selection method is described in §3.2. For
each s ∈ S, let v(s) denote the vector of distances from
s to each pivot, i.e., the j-th entry of v(s) is equal
to ρ(s, pj) (lines 4–6). Let D(S, P, ρ) be the n × h
distance matrix where the i-th row is equal to v(si) (line
7). The projection E(S) is then efficiently obtained by
performing landmark MDS [17] on D(S, P, ρ) (line 9).

3.2 Selection of Pivots

The selection of pivots greatly affects how well E(S)
preserves the relative distances of points in S. The
selection scheme developed in this work attempts to
maximize the correlation between distances according to
ρ for any two points s′, s′′ ∈ S and distances according
to the Euclidean metric in Rh for v(s′) and v(s′′). If such
distances correlate well, then the distortion resulting
from the projection of S onto E(S) is small. Pseudocode
is given in Algorithm 3.2

The selection of pivots P is based on a hill-climbing
algorithm. Let C ⊂ S denote a set of candidate pivots
selected from S (line 1). Initially each pivot in P is
selected uniformly at random from the set C (line 2).
At the beginning of each iteration, an index i is selected



uniformly at random from {1, . . . , h} (line 7). The i-
th pivot of P is replaced by the point c ∈ C that
maximizes the correlation between distances according
to ρ of points s′, s′′ ∈ S and Euclidean distances
between the corresponding v(s′), v(s′′) vectors (lines
8–18). More precisely, let T ⊂ S × S consist of pairs
of points selected from S (line 3). Let D(T, ρ) =
{ρ(s′, s′′) : (s′, s′′) ∈ T} denote the distances according
to ρ of each pair (s′, s′′) ∈ T (line 4). Similarly, let
D(T, || · ||) = {||v(s′), v(s′′)|| : (s′, s′′) ∈ T} denote
the distances according to the Euclidean metric in R

h

between the corresponding v(s′), v(s′′) vectors (line 5).
The i-th pivot is selected as the point c ∈ C that
maximizes the Pearson correlation between D(T, ρ) and
D(T, || · ||). This process is repeated until no significant
improvement in the correlation between D(T, ρ) and
D(T, || · ||) occurs or when a maximum number of
iterations is exceeded.

Algorithm 3.2. Pivot selection for projecting high-
dimensional data onto a Euclidean space.

Input:

S = {s1, . . . , sn}, a set of data points
ρ : S × S → R

≥0, distance metric
h, number of pivots

Output:

P = {p1, . . . , ph} ⊂ S, a set of pivots

1: C ⊂ S ← select candidate pivots at random
2: P ⊂ C ← select h initial pivots from C
3: T ⊂ S × S ← select pairs of points at random
4: D(T, ρ)← {ρ(s′, s′′) : (s′, s′′) ∈ T}
5: D(T, || · ||)← {||v(s′), v(s′′)|| : (s′, s′′) ∈ T}
6: repeat

7: i← at random from {1, . . . , h}
8: p← NIL; max corr← 0.0
9: for each c ∈ C do

10: temporarily set the i-th pivot of P to c
11: update D(T, || · ||)
12: corr← correlation(D(T, || · ||), D(T, ρ))
13: if corr > max corr then

14: max corr← corr

15: p← c
16: end if

17: end for

18: set the i-th pivot of P to p
19: until termination criteria
20: return P

The replacement of the i-th pivot of P (line 10)
changes D(T, || · ||). However, it is not necessary to
recompute D(T, ||·||) at each iteration from scratch (line
11). In fact the replacement of pivot pi by p causes only

the i-th entry of vector v(s) for each unique element s
among the pairs in T to be changed to ρ(p, s). Hence,
for each (s′, s′′) ∈ T , ||v(s′), v(s′′)||2 can be updated by
subtracting (ρ(pi, s

′) − ρ(pi, s
′′))2 from it and adding

(ρ(p, s′)− ρ(p, s′′))2 to it. Therefore, D(T, || · ||) can be
easily updated by precomputing distances according to
ρ between each c ∈ C and each unique element among
the pairs in T and then using a table lookup to update
||v(s′), v(s′′)|| for each s′, s′′ ∈ T .

The selection of pivots requires the evaluation of ρ
for each (s′, s′′) ∈ T . It also requires the evaluation
of ρ between each unique point in T and points in C.
Therefore, the total number of evaluations of ρ is at
most |T |+ 2|T ||C|. Since Algorithm 3.2 is essentially a
greedy approach, random restarts and other techniques
can be used to reduce the likelihood of getting stuck in
local minima [40]. The experimental results presented
in §4 indicate that projection of high-dimensional metric
data using the pivot selection scheme described in
this section can be used to efficiently and accurately
approximate the nearest-neighbors graph.

3.3 Approximation of Nearest Neighbors

Initially, the projection E(S) of S onto Rm is computed
as described in §3.1. Then, k approximate nearest
neighbors of each point s ∈ S according to the distance
metric ρ are computed in two steps:

1. compute K > k candidate neighbors as the K exact
nearest neighbors of e(s) from E(S) according to
the Euclidean distance metric in R

m; and

2. select the k closest points to s according to ρ from
the K candidate neighbors.

When the projection E(S) preserves the relative dis-
tances of points in S, it also preserves the relative or-
dering of points in S. Consequently, if a point s′ is
one of the k nearest neighbors of a query point s, then
most likely e(s′) is also one of the k nearest neighbors
of e(s). The computation of K > k candidate neighbors
further improves the accuracy of hcDPES, since the like-
lihood that e(s′) is not one of the K nearest neighbors of
e(s) is even smaller. We remark that any exact nearest-
neighbors algorithm can be used to compute the can-
didate neighbors in step 1. In our implementation, we
used GNAT [8] and CoverTree [5], since these methods
have been shown to perform well in practice.

The approximation of nearest-neighbors graph com-
puted by hcDPES has certain computational advan-
tages. The projection of S onto a low-dimensional
Euclidean space R

m significantly reduces the number
of distance evaluations required to resolve proximity
queries. Additional computational gain results from
the evaluation of the Euclidean distance in R

m which



can be typically computed more efficiently than com-
plex distance metrics often used in scientific applica-
tions [8, 15,28,45].

3.4 Measuring the Approximation Accuracy

Let E be the embedding obtained from the application
of a nonlinear dimensionality reduction method using
the nearest-neighbors graph. Let D(E) denote the
vector of distances of all the pairs in E × E. Similarly,
let EhcDPES and D(EhcDPES) be the embedding and the
vector of distances resulting when the nearest-neighbors
graph is replaced by the approximate nearest-neighbors
graph computed by hcDPES. The similarity between
E and EhcDPES is given by the Pearson correlation
between D(E) and D(EhcDPES). A high correlation
indicates that EhcDPES preserves well distances between
points in E and thus is similar to E.

The quality of approximate nearest neighbors de-
pends on distances between approximate and exact
nearest neighbors for each query point. One such com-
mon measure is the ratio of false dismissals (RFD) er-
ror [14], defined as follows:

RFDε =
1

k

∑

s∈ANNS(si,k)

{

1, ρ(s, si) > (1 + ε)dk,

0, otherwise,

where dk = maxs′∈NNS(si,k) ρ(si, s
′), NNS(si, k) denotes

the k exact nearest neighbors of si, and ANNS(si, k)
denotes the k approximate nearest neighbors of si

computed by hcDPES. The RFDε error, ε ≥ 0, indicates
the fraction of points in ANNS(si, k) that are (1 + ε)-
times farther away from the k-th nearest neighbor of
si. Since the RFD error does not measure how far each
neighbor is from s, we also use the ratio of distance error
(RDE) [14]. The RDE error is 1 − α/β, where α and
β are the sum of distances from s to each exact and
approximate nearest neighbor, respectively, i.e.,

RDE = 1−

∑

s∈NNS(si,k)ρ(s, si)
∑

s∈ANNS(si,k)ρ(s, si)
.

The RDE error indicates how close approximate nearest
neighbors are to the exact nearest neighbors.

4 Experiments and Results

The experiments in this paper provide quantitative ev-
idence that (i) low-dimensional embeddings extracted
from high-dimensional data by nonlinear dimensional-
ity reduction methods, i.e., Isomap [17, 42], using the
exact nearest-neighbors graph or using the approximate
nearest-neighbors graph computed by hcDPES are re-
markably similar, and (ii) hcDPES significantly reduces
the computational time. We use several test cases se-

lected from different application areas, such as image
processing and robot motion planning.

4.1 Comparisons and Presentation of Results

To facilitate discussion, we write I-Exact and I-Approx
to denote Isomap using the exact or an approximate
nearest-neighbors graph, respectively. We also write I-
A to specify the particular method A used by Isomap
for the computation of the proximity graph.

Experiments in this paper use GNAT [8] and
CoverTree [5] for comparisons with other exact and ap-
proximate nearest-neighbors algorithms, since GNAT
and CoverTree have been shown to work well in practice.
Both GNAT and CoverTree can be used to compute ap-
proximate nearest neighbors by specifying an ε, i.e., the
approximate nearest neighbors computed by GNATε

and CoverTreeε are guaranteed to have RFDε = 0.0.
When ε = 0.0, GNAT and CoverTree compute exact
nearest neighbors. For each experiment, we report the
following results:

a. Accuracy of extracted embeddings. This is mea-
sured as the Pearson correlation between embed-
dings extracted by the application of I-Exact and
I-hcDPES, as described in §3.4.

b. Accuracy of approximating the nearest-neighbors
graph. This is measured using the RFD and RDE
errors, as described in §3.4.

c. Computational speedup. We report the speedup
obtained by I-hcDPES when compared to Isomap
using other efficient proximity methods: (i) exact:
GNATε=0.0, CoverTreeε=0.0 and (ii) approximate:
GNATε=0.15, CoverTreeε=0.15.

The parameter values used in the experiments of this
work are as follows: number of candidate pivots |C| =
0.1n; |T | = min(5000, n); number of candidate neigh-
bors K = k + 10; number of pivots h = 2m. These
values were determined empirically based on the data
sets used for the experiments. We are in the process of
automating the selection of good parameter values.

4.2 Test Case: A Low-Dimensional Surface in

a High-Dimensional Euclidean Space

The first test case consists of a low-dimensional sur-
face embedded in a high-dimensional Euclidean space.
The objective of the nonlinear dimensionality reduction
method is to accurately extract the low-dimensional sur-
face from the high-dimensional Euclidean space. Fig-
ure 1(a) shows a data set consisting of points sam-
pled uniformly at random from a two-dimensional sur-
face in R

3. When a nonlinear dimensionality reduc-
tion method is applied to such a data set, the result-



(a) A two-dimensional surface in R
3

(b) Extracted surface computed by I-Exact

(c) Extracted surface computed by I-hcDPES

(d) Exact nearest-neighbors graph

(e) Approximate nearest-neighbors graph by hcDPES

Figure 1: The extraction of a two-dimensional sur-
face in R

3 by I-Exact and I-hcDPES shown in (a). A
comparison of (b) and (c) indicates that the embed-
dings computed by I-Exact and I-hcDPES are almost
identical. The reason is that the approximate nearest-
neighbors graph computed by hcDPES (shown in (e)) is
remarkably similar to the exact nearest-neighbors graph
(shown in (d)).

(a) Accuracy of extracted embeddings

dimension (Rd)
error 250 500 1000 1500 2000

RFD0.00 0.056 0.067 0.095 0.055 0.056
RFD0.02 0.015 0.021 0.034 0.016 0.016
RFD0.05 0.003 0.004 0.008 0.003 0.004
RFD0.07 0.001 0.001 0.003 0.001 0.002
RFD0.10 0.000 0.000 0.001 0.000 0.000
RFD0.11 0.000 0.000 0.000 0.000 0.000

RDE 0.002 0.002 0.003 0.002 0.002

(b) Accuracy of approximating the nearest-neighbors graph

(c) Computational efficiency

Figure 2: Accuracy and efficiency of hcDPES
on extracting low-dimensional surfaces from high-
dimensional Euclidean spaces. (a) The high correlation
values indicate that such embeddings are practically the
same. (b) The accuracy of hcDPES is due to the ap-
proximation of the nearest-neighbors graph, which is re-
markably similar to the exact nearest-neighbors graph,
as indicated by the small RFD and RDE errors. (c)
hcDPES offers significant computational speedups over
other methods.



ing embedding in R
2 should resemble a rectangle, since

the underlying structure of the surface is rectangular.
Figure 1(b) indicates that I-Exact accurately extracts
the two-dimensional rectangular surface. Figure 1(c)
shows the embedding in R

2 as computed by I-hcDPES.
A qualitative comparison of Figure 1(b) and (c) re-
veals that the embeddings computed by I-Exact and
I-hcDPES are practically indistinguishable. As it will
be quantified later in the section, the reason for the
accuracy of I-hcDPES is that the approximate nearest-
neighbors graph is almost identical to the exact nearest-
neighbors graph, shown in Figure 1(d) and (e).

We compare the results obtained by I-Exact and I-
hcDPES when applied to data sets consisting of points
sampled uniformly at random from m-dimensional sur-
faces in R

d. We progressively increase the dimension
d and measure the impact on the accuracy and effi-
ciency of I-hcDPES. Each m-dimensional surface in
our test case can be conceptually thought of as an m-
dimensional hypercube bent at several parts, as illus-
trated in Figure 1(a). Each m-dimensional surface con-
sists of ` = 5 parts and is constructed by selecting uni-
formly at random in R

d an origin o and m+` unit vectors
U = {u1, . . . , um+`} such that Ui = {u1, . . . , um−1, ui}
is linearly independent for each m ≤ i ≤ `. The j-th
part of the surface, 1 ≤ j ≤ `, contains all the points in

{o +

j−1
∑

`=0

um+` + αj
mum+j +

m−1
∑

i=1

αj
i ui : 0 ≤ αj

i , α
j
m ≤ 1}.

The corresponding data set consists of 10000 points
obtained by sampling uniformly at random 2000 points
on each part of the surface. The distance between two
data points is defined as the Euclidean distance in R

d.
We performed tests on data sets corresponding to

20-dimensional surfaces in R
250, R

500, R
1000, R

1500, and
R

2000. Figure 2(a) indicates the correlation between
the 20-dimensional embeddings obtained by I-Exact and
I-hcDPES. The high correlation values indicate that
the surfaces extracted by I-Exact and I-hcDPES are
almost identical. The correlation remains above 0.99
not only when d = 250 but even as d is progressively
increased to d = 2000. The accuracy of I-hcDPES is
due to the high-quality approximation of the nearest-
neighbors graph computed by hcDPES. As shown in
Figure 2(b), the RFD and RDE errors are small. In
fact, RFD0.0 is less than 0.1 in all cases. This indicates
that the approximate nearest neighbors include above
90% of the exact nearest neighbors. Furthermore, the
RFDε error quickly drops to zero when slightly larger
values of ε are considered. As shown in Figure 2(b), in
all cases RFDε = 0.0 for ε ≥ 0.11. The small values of
RFD that even those few approximate nearest neighbors
computed by hcDPES that are not the same as the exact

nearest neighbors are in fact close to the exact nearest
neighbors, i.e., within a 0.11-ball. This is also indicated
by the small RFD error, which shows that differences
in distances between approximate and exact nearest
neighbors are negligible. As a result, the proximity
graph computed by hcDPES accurately approximates
the nearest-neighbors graph and thus enables I-hcDPES
to maintain the reliability of I-Exact.

Figure 2(c) indicates the speedup of I-hcDPES
when compared to Isomap using other efficient exact
or approximate nearest-neighbors methods to compute
the proximity graph. As illustrated in Figure 2(b), using
hcDPES to compute the approximate nearest-neighbors
graph makes Isomap considerably more efficient. The
computational speedup obtained by I-hcDPES increases
rapidly as the dimension d increases. We observe
that for d = 2000, I-hcDPES yields computational
speedups of over 75 times when compared to Isomap
using GNAT to compute the exact nearest-neighbors
graph, i.e., I-GNATε=0.0. Even when GNAT is used
to compute an approximate nearest-neighbors graph,
the computational speedup obtained by I-hcDPES is
still above 70 times. A comparison with I-CoverTree,
which generally performed better than I-GNAT, indi-
cates that I-hcDPES still offers significant computa-
tional improvements. The computational speedups ob-
tained by I-hcDPES are above 45 and above 35 times
when CoverTree is used to compute the exact nearest-
neighbors graph or an approximate nearest-neighbors
graph, respectively. We also note that when GNAT
and CoverTree are used to approximate the nearest-
neighbors graph, the value of ε is set to 0.15. Recall
that the approximate nearest neighbors computed by
hcDPES were all within a 0.11-ball from the exact near-
est neighbors. That is, approximate nearest-neighbors
computed by hcDPES are not only of better or compara-
ble quality to approximate nearest-neighbors computed
by methods that rely on specifications of ε-balls, but are
also computed at a fraction of the computational cost.

Figure 2 indicates that by using hcDPES to ap-
proximate the nearest-neighbors graph, Isomap ac-
curately extracts low-dimensional surfaces from high-
dimensional Euclidean spaces at a fraction of the com-
putational cost required if other exact or approximate
methods were used to compute the proximity graph.

4.3 Test Case: Image Processing

We also tested the accuracy and efficiency of hcDPES
on images of handwritten digits. The handwritten digits
exhibit highly nonlinear features making them suitable
for testing nonlinear reduction methods. We use the
MNIST database [32], which consists of approximately
6000 grayscale images for each digit. Each image is



(a) Interpolated images obtained by I-Exact

(b) Interpolated images obtained by I-hcDPES

Figure 3: Nonlinear features captured by I-Exact and I-hcDPES on handwritten images of digits.

(a) Accuracy of extracted embeddings (c) Computational efficiency

(b) Accuracy of approximating the nearest-neighbors graph

digit
error 0 1 2 3 4 5 6 7 8 9

RFD0.00 0.068 0.080 0.094 0.084 0.066 0.079 0.074 0.099 0.088 0.086
RFD0.02 0.017 0.034 0.027 0.018 0.014 0.017 0.021 0.036 0.019 0.027
RFD0.05 0.002 0.009 0.003 0.001 0.001 0.001 0.003 0.008 0.001 0.004
RFD0.07 0.001 0.004 0.001 0.000 0.000 0.000 0.001 0.003 0.000 0.001
RFD0.10 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
RFD0.11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RDE 0.003 0.005 0.003 0.003 0.002 0.003 0.003 0.005 0.003 0.003

Figure 4: Accuracy and efficiency of hcDPES on handwritten images of digits. (a) The high correlation values
indicate that I-hcDPES is practically as accurate as I-Exact. (b) The approximate nearest-neighbors graph
computed by hcDPES is remarkably similar to the exact nearest-neighbors graph, as evidenced by the small
RFD and RDE errors. (c) Comparisons with other exact and approximate methods reveal that I-hcDPES is
significantly more efficient.



28×28 pixels. We rasterize each image and represent it
as a point in R

784. The distance between two images is
then defined as the Euclidean distance in R

784 between
the corresponding points. In each experiment, we obtain
8-dimensional embeddings of the images of each digit.
Figures 3 and 4 contain a summary of the results.

When a dimensionality reduction method accu-
rately captures the nonlinear features, then linearly in-
terpolating between any two embeddings reveals how
the corresponding images transition from one to the
other. Let emb(A) and emb(B) denote the embed-
dings of two images A and B from the data set. An
intermediate image from A to B at time t ∈ [0, 1] is
computed as the image C from the data set whose em-
bedding emb(C), according to the Euclidean distance,
is the closest to t ∗ emb(A) + (1 − t) ∗ emb(B). Fig-
ure 3(a) and (b) illustrate the interpolation results for
several digits as computed by I-Exact and I-hcDPES,
respectively. We observe smooth transitions from one
image to the other. As an illustration, in rows 1-3 of
digit 2, we see how the knot of digit 2 transitions into
a straight segment, a highly nonlinear feature. We also
see how a large image scales into a small image while
also changing the curvature, as in digit 2 row 4, digit 5
rows 3-4. We observe that although there are some dif-
ferences in the interpolated images computed by I-Exact
and I-hcDPES, e.g., digit 2 rows 1,5, digit 3 row 4, digit
5 row 5, digit 6 row 2, the transitions are smooth in both
cases and accurately capture the nonlinear features.

Figure 4 shows results that quantify the qualitative
comparisons of Figure 3. In each case, the correlation
between embeddings obtained by I-Exact and I-hcDPES
is remarkably high, as shown in Figure 4(a). Therefore,
quantitatively differences in the embeddings obtained
by I-Exact and I-hcDPES are negligible. As it was the
case in our first example in §4.2, this is due to the accu-
rate approximation of the nearest-neighbors graph com-
puted by hcDPES, as indicated by the small RFD and
RDE errors in Figure 4(b). In fact, above 90% of the
approximate nearest neighbors computed by hcDPES
are the same as the exact nearest neighbors and all of
the approximate nearest neighbors are within a 0.10-
ball from the exact nearest neighbors. Furthermore, the
RFD error is at most 0.005, further indicating that the
approximate nearest-neighbors computed by hcDPES
are remarkably close to the exact nearest neighbors.
The advantage of hcDPES is that it offers consider-
able speedups over exact nearest-neighbors methods or
approximate nearest-neighbors methods that maintain
the same level of accuracy as hcDPES, as shown in
Figure 4(c). We observe that I-hcDPES is between
35–65 times more efficient than I-GNATε=0.0 and 35–
55 times more efficient than I-CoverTreeε=0.0. Even

Figure 5: Example of a manipulator. The manipulator
consists of many links connected by revolute joints. The
objective of the motion planner is to find a sequence
of motion that would avoid collisions with the obstacle
(gray square) and take the manipulator from its current
coiled configuration to a straight-line configuration.

when I-hcDPES is compared to Isomap using GNAT
and CoverTree with ε = 0.15 for approximate nearest
neighbors, the speedup obtained by I-hcDPES is still
high, 35–65 and 32–50 times, respectively.

Therefore, as in the first case, by accurately approx-
imating the nearest-neighbors graph, hcDPES signifi-
cantly reduces the computational bottleneck imposed
by the nearest-neighbors graph on nonlinear dimension-
ality reduction.

4.4 Test Case: Robot Motion Planning

The purpose of this case is to test the efficiency and
accuracy of hcDPES when distances between points are
non-Euclidean. We select an example from robot mo-
tion planning, since it provides highly nonlinear data.
The aim of motion planning is to enhance the auton-
omy of robots by automatically planning motions that
are necessary for a robot to carry out a specific task.
Motivated by the need for safe urban search and rescu-
ing, recently, considerable attention has been devoted
to the development of algorithms for efficiently planning
motions of highly articulated and modular robots [45].
Planning motions for such complex robots is a highly
nontrivial task due to the large number of joints and
modules. The most successful motion planning methods
rely on an extensive sampling of the configuration space
and the computation of the nearest-neighbors for the
generated samples [9]. The resulting nearest-neighbors
graph captures the connectivity of the configuration
space and is used to plan motions that take the robot
from one configuration to another. To illustrate the
idea, Figure 5(a) shows a serpentine manipulator in a



coiled configuration. The manipulator has several rev-
olute joints. The manipulator assumes different config-
urations depending on the rotations at each joint. The
objective of the motion planner is to find a path from the
coiled configuration that the manipulator is currently
in to a straight-line configuration where the manipula-
tor is completely stretched out. The path should avoid
self-collisions and collisions with the obstacle, which is
represented in Figure 5 by a square.

We use data sets representing 10000 collision-free
configurations of the manipulator. We obtain different
data sets by increasing the number of joints of the ma-
nipulator and using the motion planner PRM (Proba-
bilistic RoadMap) [28] to generate collision-free config-
urations. Each configuration indicates the rotation at
each joint. Let v(c) = {p1(c), . . . , pd(c)} denote the po-
sition of each of the d joints after each joint is rotated
by the value specified by configuration c. The distance
between two configurations c1 and c2 is defined as the
Euclidean distance between v(c1) and v(c2). Note that
due to the rotations this distance is non-Euclidean. Al-
though the dimensionality of the configuration space of
the manipulator is equal to the number of joints, the
underlying structure of each data set is of much lower
dimensionality. This is due to the fact that the ma-
nipulator is hyper redundant since it is constrained to
operate in a 2-dimensional plane.

Figure 6 contains a summary of the results where
each data set is embedded in R

2. We observe in
Figure 6(a) that the correlation between the embed-
dings obtained by I-Exact and I-hcDPES is consider-
ably high. This indicates that even in the case of non-
Euclidean distance metrics, I-hcDPES is as accurate as
I-Exact. The small RFD and RDE errors, shown in
Figure 6(b), indicate that differences between approxi-
mate nearest neighbors computed by hcDPES and exact
nearest neighbors are negligible. As a result, the em-
beddings emerging from the application of I-hcDPES
and I-Exact are almost identical. Figure 6(c) indicates
the speedup obtained by I-hcDPES. Figure 6(c) reveals
that I-hcDPES is significantly more efficient than when
Isomap uses other methods to compute or approximate
the nearest-neighbors graph. Therefore, even when non-
Euclidean metrics define the distance between any two
points the approximate nearest-neighbors graph com-
puted by hcDPES can be used for nonlinear dimension-
ality reduction without any considerable loss of accu-
racy. Furthermore, the computational time for nonlin-
ear dimensionality reduction is significantly reduced.

5 Discussion

We have developed an efficient approximate nearest-
neighbors method, hcDPES, that can be used to sig-

(a) Accuracy of extracted embeddings

number of joints
error 10 25 50 75 100

RFD0.00 0.075 0.080 0.095 0.098 0.095
RFD0.02 0.038 0.034 0.041 0.040 0.040
RFD0.05 0.013 0.008 0.011 0.010 0.009
RFD0.07 0.006 0.004 0.005 0.003 0.004
RFD0.10 0.001 0.001 0.002 0.001 0.001
RFD0.11 0.000 0.000 0.000 0.000 0.000

RDE 0.006 0.005 0.006 0.006 0.006

(b) Accuracy of the approximate nearest-neighbors graph

(c) Computational efficiency

Figure 6: Accuracy and efficiency of hcDPES on a robot
motion planning test case. The robot motion planning
data is highly nonlinear and distances are defined by
complex non-Euclidean metrics. (a) Embeddings ex-
tracted by I-Exact and I-hcDPES are practically the
same, as evidenced by the high correlation. (b) The
small RFD and RDE errors indicate that hcDPES ac-
curately approximates the nearest-neighbors graph. (c)
hcDPES considerably improves the computational effi-
ciency of nonlinear dimensionality reduction by approx-
imating the nearest-neighbors graph at a fraction of the
computational cost required by other methods.



nificantly reduce the computational bottleneck of non-
linear dimensionality reduction methods that rely on
the nearest-neighbors graph. The approximation of the
nearest-neighbors graph is based on the idea of project-
ing the data set onto a low-dimensional Euclidean space.
The projection uses distances from each point in the
data set to a set of carefully selected pivots. The objec-
tive of the pivot selection strategy is to maximize the
correlation of distances between points in the data set
and their corresponding projections. The overall effect
of the pivot selection strategy and the projection is the
efficient computation of accurate approximate nearest
neighbors, as indicated in §4.

The accuracy and efficiency of hcDPES have been
demonstrated using test cases from different applica-
tion areas. We have also quantitatively analyzed the
performance of hcDPES when non-Euclidean metrics
define distances between points in the data sets. The
results indicate that the embeddings emerging from the
application of nonlinear dimensionality reduction using
the exact nearest-neighbors or the approximate nearest-
neighbors computed by hcDPES are practically indistin-
guishable, as evidenced by the remarkably high corre-
lation values. The advantage of using hcDPES is that
it significantly reduced the computational time required
for nonlinear dimensionality reduction.

By significantly reducing the bottleneck imposed
by the computation of the nearest-neighbors graph,
hcDPES can be used by nonlinear dimensionality reduc-
tion methods to extract low-dimensional embeddings of
considerably large and high-dimensional data sets where
distances between points are defined by complex met-
rics. Potential applications which we are currently ad-
dressing include the analysis of molecular motions of
proteins and the behavior of motion planning algorithms
on high-dimensional problems.
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