
Falsification of LTL Safety Properties in Hybrid Systems

Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi
Dept. of Computer Science, Rice University, Houston TX 77005

{plakue, kavraki, vardi}@cs.rice.edu

Abstract. This paper develops a novel computational method for the
falsification of safety properties specified by syntactically safe linear tem-
poral logic (LTL) formulas φ for hybrid systems with general nonlinear
dynamics and input controls. The method is based on an effective combi-
nation of robot motion planning and model checking. Experiments on a
hybrid robotic system benchmark with nonlinear dynamics show signifi-
cant speedup over related work. The experiments also indicate significant
speedup when using minimized DFA instead of non-minimized NFA, as
obtained by standard tools, for representing the violating prefixes of φ.

1 Introduction

Hybrid systems, which combine discrete and continuous dynamics, provide so-
phisticated mathematical models being used in robotics, automated highway sys-
tems, air-traffic management, computational biology, and other areas [1, 2]. An
important problem in hybrid systems is the verification of safety properties [1,3],
which assert that nothing “bad” happens, e.g., “the car avoids obstacles.” A
hybrid system is safe if there are no witness trajectories indicating a safety vi-
olation. Safety properties have traditionally been specified in terms of a set of
unsafe states and verification has been formulated as reachability analysis [1–8].
Reachability analysis in hybrid systems is in general undecidable [3,4]. Moreover,
complete algorithms have an exponential dependency on the dimension of the
state space and are limited in practicality to low-dimensional systems [1,3, 5].

To handle more complex hybrid systems, alternative methods [9–13] have
been proposed that shift from verification to falsification, which is often the focus
of model checking in industrial applications [14]. Even though they are unable to
determine that a system is safe, these methods may compute witness trajectories
when the system is not safe. Witness trajectories, similar to error traces in model
checking [14], indicate modeling flaws, which designers can then correct. The
falsification methods in [9–11] adapt the Rapidly-exploring Random Tree (RRT)
motion planner [15], which was originally developed for reachability analysis
in continuous systems. We recently proposed the Hybrid Discrete Continuous
Exploration (HyDICE) falsification method [12, 13], which also takes advantage
of motion planning, but shows significant speedup over related work [10,11].

As more complex hybrid systems are considered, limiting safety properties
to a set of unsafe states, as in current methods [1–13], considerably restricts the
ability of designers to adequately express the desired safe behavior of the system.
To allow for more sophisticated properties, researchers have advocated the use of
linear temporal logic (LTL), which makes it possible to express safety properties
with respect to time, such as “if the concentration level of gene A reaches x, then
the concentration level of gene B will never reach y.” LTL has been widely used
in model checking of discrete systems in software and hardware [16], and timed

To appear in Proc. of the Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2009)

2

systems [17]. The work in [18] generated trajectories that satisfy LTL constraints
on the sequence of triangles visited by a point robot with Newtonian dynamics
by using a controller that could drive the robot between adjacent triangles. The
work in [19] used LTL to analyze gene networks. The work in [20] developed a
method to verify LTL safety properties for robust discrete-time hybrid systems.

Traditional approaches for verification of an LTL property φ on a hybrid
system H often cast the problem as reachability analysis via model checking.
Abstractions are typically used to obtain a discrete transition model M that
simulates H, so that checking φ on M is sufficient to checking φ on H [6]. More-
over, with an exponential blow-up at most, a nondeterministic finite automaton
(NFA) A can be constructed that describes all prefixes violating φ [21]. This
allows for checking φ on H via model checking on M×A. The challenge lies in
the computation of M, which is limited in practicality to low-dimensional hybrid
systems due to the exponential dependency on the state-space dimension [1,3,5].

Applying alternative approaches [9–13] to falsify LTL safety properties by
reachability analysis is also challenging due to intricacies of motion planning.
During the search, motion planning extends a tree T in the state space of H by
adding valid trajectories as new branches. Consider a vertex v and the trajectory
ζ from the root of T to v. In reachability analysis [9–13], a witness trajectory is
found when the state associated with v is unsafe. When considering LTL, such
criteria is not sufficient, since ζ needs to satisfy ¬φ. It then becomes necessary to
maintain the propositional assignments satisfied by ζ and to effectively extend
T so that more and more of the propositional assignments of ¬φ are satisfied.

To handle LTL, one can consider a näıve extension of the work in [9–13] by
using A as an external monitor to determine when a tree trajectory ζ satisfies
¬φ by keeping track of the automaton states associated with each ζ. As shown
in this work, however, such an approach is computationally very inefficient.

The main contribution of this work is to extend HyDICE [12, 13] in order to
effectively incorporate LTL safety properties into hybrid-system falsification. The
proposed approach, termed TemporalHyDICE, can be used to compute witness
trajectories for the falsification of properties specified by syntactically safe LTL
formulas for hybrid systems with
– external inputs, which could represent controls, uncertainties; and
– general nonlinear dynamics, where Flowq(x, u, t) is treated as a black box

that outputs a state xnew obtained by following the hybrid-system dynamics
when at state (q, x) and applying the input u for t time units.

When differential equations describe the dynamics, closed-form solutions (if
available) or numerical integrations can be used for the black-box simulation.
When differential equations become too cumbersome to describe the dynamics,
other computer programs can be used for the simulation.

In its core, TemporalHyDICE draws from research in traditional and alter-
native approaches in hybrid systems to synergistically combine model checking
and motion planning. This combination presents significant challenges, as it re-
quires dealing with important issues, such as state-space search, memory usage,
scalability, and passing of information between model checking and motion plan-
ning. In TemporalHyDICE, model checking guides motion planning by providing

3

feasible directions along which to extend T . A feasible direction consists of a se-
quence [τi]ni=1 of propositional assignments that violates φ, which is computed by
searching on-the-fly a discrete transition model M of H and the automaton A of
¬φ. By not computing M×A explicitly, TemporalHyDICE considerably reduces
the memory used by model checking. Moreover, unlike traditional approaches,
TemporalHyDICE does not require M to simulate H. In fact, M is based on a
simple partition of the state space of H induced by propositions in φ. Motion
planning extends T along directions [τi]ni=1 provided by model checking so that
more and more of τ1, . . . , τn are satisfied in succession. As motion planning ex-
tends T , it also gathers information to estimate the progress made in the search
for a witness trajectory. This information is fed back to model checking to select
in future iterations increasingly feasible directions for extending T . This interac-
tive combination of model checking and motion planning is a crucial component
that allows TemporalHyDICE to effectively search for a witness trajectory.

An initial validation of TemporalHyDICE is provided by falsifying many prop-
erties specified by syntactically safe LTL formulas for a nonlinear hybrid robotic
system. Experiments show significant speedup over related work. This work also
studies the impact of representing ¬φ by DFAs or NFAs, as obtained by stan-
dard tools. The motivation comes from the work in [22], which shows significant
speedup when using DFAs instead of NFAs in model checking. Experiments in
this work in the context of falsification of LTL safety properties in hybrid systems
also indicate significant speedup when using DFAs instead of NFAs.

The rest is as follows. Section 2 contains preliminaries. A straightforward
approach of incorporating LTL into related work [9–13] by using the automaton
A as an external monitor is described in Section 3. As demonstrated by the
experiments, such an approach, however, is computationally very inefficient. The
proposed approach, TemporalHyDICE, which effectively incorporates LTL into
hybrid-system falsification, is described in Section 4. Experiments and results
are described in Section 5. The paper concludes in Section 6 with a discussion.

2 Preliminaries

This section defines hybrid automata, LTL, the automata for the complement of
LTL formulas, and the problem statement. To avoid ambiguities, we often write
A.ai to denote the ai component of a tuple A = (a1, a2, . . . , an).
Hybrid Systems: Hybrid systems are modeled by hybrid automata [3]. A
hybrid automaton is a tuple H = (S, I, Inv, E,Guard, Jump, U,Flow), where
S = Q × X is a product of a discrete and finite set Q and continuous spaces
X = {Xq : q ∈ Q}; I ⊂ S denotes initial states; Inv = {Invq : q ∈ Q},
where Invq : Xq → {⊤,⊥} is the invariant function; E ⊆ Q × Q denotes dis-
crete transitions; Guard = {Guardqi,qj

: (qi, qj) ∈ E} and Jump = {Jumpqi,qj
:

(qi, qj) ∈ E}, where Guardqi,qj
: Xqi

→ {⊤,⊥} and Jumpqi,qj
: Xqi

→ Xqj
de-

note guard and jump functions, respectively; U = {Uq : q ∈ Q}, where an input
in Uq ⊆ Rdim(Uq) can represent controls, nondeterminism, or uncertainties; and
Flow = {Flowq : q ∈ Q}, where Flowq : Xq × Uq × R≥0 → Xq is the flow
function. This work treats the dynamics as a black box, where Flowq(x, u, t)

4

outputs the state obtained by following the dynamics from x when u is ap-
plied for t time units. This allows for general nonlinear dynamics. In fact, the
only requirement is the ability to simulate the dynamics. Invq : Xq → {⊤,⊥},
Guardqi,qj

: Xqi
→ {⊤,⊥}, and Jumpqi,qj

: Xqi
→ Xqj

are also treated as black
boxes to allow general specifications that do not limit designers to a particular
approach, such as polyhedral or ellipsoidal constraints. A hybrid-system trajec-
tory consists of continuous trajectories interleaved with discrete transitions.

Continuous Trajectory: s = (q, x) ∈ S, T ≥ 0, u ∈ Uq define a continuous
trajectory Ψs,u,T : [0, T] → Xq, where Ψs,u,T (t) = Flowq(x, u, t), t ∈ [0, T].

Discrete Transition: For any (q, x) ∈ S, let χ(q, x) = (q′, Jumpq,q′(x)) if
Guardq,q′(x) = ⊤ for some (q, q′) ∈ E. Otherwise, let χ(q, x) = (q, x).

Continuous Trajectory + Discrete Transition: Υs,u,T : [0, T] → S, defined as
Υs,u,T (t) = (q, Ψs,u,T (t)), 0 ≤ t < T and Υs,u,T (T) = χ(q, Ψs,u,T (T)), ensures
that a discrete transition at time T , if it occurs, is followed.

Trajectory Extension: Extending Φ : [0, T] → S by applying u′ ∈ U to Φ(T)
for T ′ ≥ 0 time units, written as Φ ◦ (u′, T ′), is a trajectory Ξ : [0, T + T ′] → S
where Ξ(t) = Φ(t), t ∈ [0, T] and Ξ(t) = ΥΦ(T),u′,T ′(t− T), t ∈ (T, T + T ′].

Hybrid-System Trajectory: A state s ∈ S, a sequence u1, . . . , uk of inputs,
and a sequence T1, . . . , Tk of times define a trajectory ζ : [0, T] → S, where
T = T1 + · · ·+ Tk and ζ = Υs,u1,T1 ◦ (u2, T2) ◦ · · · ◦ (uk, Tk).

In this work, a discrete transition is taken when a guard condition is satis-
fied. There is, however, no inherent limitation in dealing with non-urgent discrete
transitions. In such cases, enabled discrete transitions could be taken nondeter-
ministically or taken only when the invariant is invalid or a combination of both.
Linear Temporal Logic (LTL): Let Π denote a set of propositional variables.

LTL Syntax and Semantics [21]: Every π ∈ Π is a formula. If φ and ψ
are formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ, Xφ (next), φUψ (until), φRψ (release),
Fφ (future), and Gφ (globally) are also formulas. Let σ = τ0, τ1, . . . ∈ 2Π . Let
σi = τi, τi+1, . . . We write σ |= φ to indicate that σ satisfies φ and define it as
σ |= ⊤; σ 6|= ⊥; σ |= π if π ∈ τ0; σ |= φ ∧ ψ if σ |= φ and σ |= ψ;
σ |= Xφ if σ1 |= φ; σ |= φUψ if ∃k ≥ 0 s.t. σk |= ψ and ∀ 0 ≤ i < k : σi |= φ;
φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ); Fφ ≡ ⊤Uφ; Gφ ≡ ¬F¬φ; φRψ ≡ ¬(¬φU¬ψ).

Syntactically Safe LTL [23]: An LTL formula φ that, when written in positive
normal form, uses only the temporals X , R, and G is syntactically safe. Every
syntactically safe formula is a safety formula.

NFA for Syntactically Safe LTL [21]: With an exponential blow-up at most,
an NFA can be constructed that describes all prefixes violating a syntactically
safe LTL formula. The NFA is a tuple A = (Z,Σ, δ, v0,Acc), where Z is a finite
set of states; Σ = 2Π is the input alphabet; δ : Z × Σ → 2Z is the transition
function; z0 ∈ Z is the initial state; and Acc ⊆ Z is the set of accepting states.
The set of states on which [τi]

n
i=1, τi ∈ 2Π , ends up when run on A is defined as

A([τi]
n
i=1)=

{
δ(z0, τ1), n=1⋃

z∈A([τi]
n−1
i=1) δ(z, τn), n>1.

A accepts [τi]
n
i=1 iff A([τi]

n
i=1)∩Acc 6= ∅.

LTL over Hybrid-System Trajectories: Let Π = {πq,i : q ∈ H.Q ∧ 1 ≤
i ≤ nq}, where nq is the number of propositional variables associated with q.

5

The truth-value of each πq,i is determined by a black-box function Propq,i :
H.Xq → {⊤,⊥}. The map τ : H.S → 2Π maps (q, x) ∈ H.S to truth proposi-
tions: τ((q, x)) = {πq,i : πq,i ∈ Π and Propq,i(x) = ⊤}. When interpreted over
a hybrid-system trajectory ζ, the notation τ(ζ) denotes the sequence of propo-
sitional assignments [τi]

n
i=1 (τi ∈ 2Π , τi 6= τi+1) in the order satisfied by ζ, i.e.,

τi = τ(ζ(Ti)) where 0 ≤ T1 < · · · < Tn ≤ |ζ| such that n is as large as possible
and τi 6= τi+1, 1 ≤ i < n. Then, ζ satisfies φ, written ζ |= φ, iff τ(ζ) |= φ.

Problem Statement: Let P = (H,A, τ), where H is a hybrid automaton; A
is an automaton for the complement of a syntactically safe LTL formula φ over
propositionsΠ; and τ is a propositional map interpreted both over hybrid-system
states and trajectories. Given P, compute a valid trajectory ζ : [0, T]→H.S that
satisfies ¬φ, i.e., (∀t∈ [0, T] : Invqt

(xt)=⊤, where (qt, xt)=ζ(t)) and ζ |= ¬φ.

3 Incorporating LTL into Motion-Planning Approaches

Motion planning has been widely used in reachability analysis for continuous
robotic systems with dynamics [24,25]. These methods rely on a common frame-
work that iteratively extends a tree in the state space of the system by adding
valid trajectories as branches. Recently, the work in [9–11] adapted the tree-
search framework for reachability analysis in hybrid systems.

There have been no discussions in the literature on how to augment the
tree-search framework with LTL trajectory properties, cf. [9–11]. This section
describes a minimal extension of the tree-search framework to handle LTL. The
idea is to use A (DFA or NFA) to keep track of the automaton states associated
with each tree trajectory and to determine when a tree trajectory is a witness. In
this way, similar to model checking, the tree-search framework searches on-the-
fly H and A. With these modifications, the tree-search framework can be used
to falsify LTL safety properties in hybrid systems, and, thus, provide a basis
for the experimental comparisons. As demonstrated by the experiments, such an
approach, however, is computationally very inefficient. Section 4, which describes
TemporalHyDICE, then shows how to effectively combine the LTL tree-search
framework with model checking on M and A, where M is a discrete transition
model of H, in order to significantly increase its computational efficiency.
Incorporating LTL into the Tree-Search Framework: The tree is main-
tained as a graph T = (V,E). Each vertex v ∈ T .V is associated with a state
s ∈ H.S, written as v.s. An edge (v′, v′′) ∈ T .E indicates that a valid trajec-
tory connects v′.s to v′′.s. As the search proceeds iteratively, T is extended by
adding new vertices and edges. Consider the trajectory Traj(T , v) from the root
of T to v ∈ T .V . If Traj(T , v) |= ¬φ, then Traj(T , v) is a witness. To deter-
mine Traj(T , v) |= ¬φ, v is associated with the automaton states corresponding
to Traj(T , v), written as v.α and defined as v.α = A(τ(Traj(T , v))). Then,
Traj(T , v) |= ¬φ iff A(v.α) ∩ A.Acc 6= ∅. Pseudocode is given in Algo. 3.1.

(a) InitializeTree(P) associates the root vertex vinit with the initial hybrid-
system state and adds vinit to T , i.e., vinit.s = H.sinit, T .V = {vinit}, and
T .E = ∅. The automaton states are computed by running A on the propositional
assignment satisfied by vinit.s, i.e., vinit.α = A.δ(A.zinit, τ(vinit.s)).

6

(b) SelectVertexFromTree(P, T) selects a vertex v ∈ T .V from which to
extend T . Over the years, numerous strategies have been proposed that rely on
distances, nearest neighbors, probability distributions, and much more [24,25].

Algorithm 3.1 LTL-TSF: Incorporating LTL into the Tree-Search Framework
Input: P: problem specification; tmax ∈ R>0: upper bound on computation time
Output: A solution trajectory if one is found or ⊥ otherwise

(a) T ← InitalizeTree(P)
while ElapsedTime < tmax do

(b) v ← SelectVertexFromTree(P, T) ♦ varies from method to method
(c) [u, T, snew, αnew]← ExtendTree(P, T , v)
(d) if T > 0∧ |αnew| > 0 then vnew ← AddBranchToTree(T , v, [u, T, snew, αnew])
(e) if P.A.Acc ∩ αnew 6= ∅ then return Traj(T , vnew)

return ⊥
(a) InitializeTree(P) :=
1: vinit ← new vertex; vinit.s← P.H.sinit; vinit.α← P.A.δ(P.A.zinit, τ(sinit))
2: VT ← {vinit}; ET ← ∅; return T = (VT , ET)

(c) ExtendTree(P, T , v) :=
1: ǫ ∈ R>0 ← time step; nsteps ∈ N← number of steps
2: s = (q, x)← v.s; α← v.α; x0 ← x; α0 ← α; τ0 ← P.τ(s)
3: u← sample control from P.H.Uq

4: for i = 1, 2, . . . , nsteps do ♦simulate the continuous and discrete dynamics of P.H
5: xi ← P.H.Flowq(xi−1, u, ǫ); τi ← P.τ((q, xi))
6: if τi−1 = τi then αi ← αi−1 else αi ← ∪z∈αi−1P.A.δ(z, τi)
7: if P.H.Invq(xi) = ⊥ then return [u, (i− 1) ∗ ǫ, (q, xi−1), αi−1]
8: if P.H.Guardq,qnew (xi) = ⊤, (q, qnew) ∈ P.H.E then
9: (xloc, T)← localize discrete event in ((i− 1) ∗ ǫ, i ∗ ǫ]; τloc ← P.τ((q, xloc))

10: if τi−1 = τloc then αloc ← αi−1 else αloc ← ∪z∈αi−1P.A.δ(z, τloc)
11: xnew ← P.H.Jumpq,qnew (xloc); τnew ← P.τ((qnew, xnew))
12: if τloc = τnew then αnew ← αloc else αnew ← ∪z∈αlocP.A.δ(z, τnew)
13: return [u, T, (qnew, xnew), αnew]
14: return [u, nsteps ∗ ǫ, (q, xnsteps), αnsteps]

(d) AddBranchToTree(T , v, [u, T, snew, αnew]) :=
1: vnew ← new vertex; vnew.s← snew; vnew.α← αnew; T .V ← T .V ∪ {vnew}
2: (v, vnew)← new edge; (v, vnew).u← u; (v, vnew).T ← T ; T .E ← T .E ∪ {(v, vnew)}
3: return vnew

(e) Traj(T , vnew) := Υ (v0.s, v1.u, v1.T) ◦ v2.u, v2.T) ◦ · · · ◦ (vn.u, vn.T), where
v0 = vinit, vn = vnew, and (vi, vi+1) ∈ ET for i = 0, 1, . . . , n− 1

(c) ExtendTree(P, T , v) extends T from v by computing a trajectory ζ :
R>0 → H.S that starts at v.s and satisfies the invariant. A common strategy is to
apply some input u ∈ H.U to v.s and follow the dynamics ofH until the invariant
is not satisfied or a maximum number of steps is exceeded [9–13,24,25]. The input
u is generally selected pseudo-uniformly at random to allow subsequent calls of
ExtendTree(P, T , v) to extend T along new directions. ExtendTree(P, T , v)
returns a tuple [u, T, snew, αnew], which defines ζ = Υv.s,u,T (Section 2), where
snew = Υv.s,u,T (T) and αnew = A(τ(Traj(T , v) ◦ ζ)). Note that any hybrid-
system simulation method can be plugged in for the computation of ζ = Υv.s,u,T .
For completeness, below we describe a simple iterative procedure. Let nsteps

7

denote the number of steps and let ǫ > 0 denote the step size (Algo. 3.1(c):1).
Initially, x0 = x and α0 = v.α, where v.s = (q, x) (Algo. 3.1(c):2). At the i-th
iteration, xi = H.Flowq(xi−1, u, ǫ) (Algo. 3.1(c):5). The automaton states αi

associated with (q, xi) are updated only if τ((q, xi)) 6= τ((q, xi−1)). The update
is computed by running A on τ((q, xi)) starting from αi−1 (Algo. 3.1(c):6).

If H.Invq(xi) = ⊥, then ExtendTree returns [u, (i − 1) ∗ ǫ, (q, xi−1), αi−1]
(Algo. 3.1(c):7). When H.Invq(xi) = ⊤, ExtendTree checks if a guard condi-
tion is satisfied (Algo. 3.1(c):8), which would indicate a discrete event. Event
detection is followed by event localization, which localizes the earliest time
T ∈ ((i−1)∗ǫ, i∗ǫ] where the guard condition is satisfied (Algo. 3.1(c):9). Bisec-
tion or bracketing algorithms are commonly employed for event localization [26].
Once the event is localized, the discrete transition is triggered to obtain the new
state (Algo. 3.1(c):11). The automaton states are also updated (Algo. 3.1(c):12).
ExtendTree(P, T , v) then returns [u, T, snew, αnew] (Algo. 3.1(c):13).

Numerical errors in dynamics simulation, invariant checking, event detection
and localization could in certain cases cause ExtendTree to miss an invariant
violation, miss a guard, or trigger a different discrete transition. To minimize
such errors, a practical approach is to choose a small ǫ. This approach is the
norm in hybrid-system falsification methods based on motion planning [9–13].
For hybrid systems with linear guards, it is also possible to use more accurate
event detection and localization algorithms, which come asymptotically close to
the guard boundary [26]. In many practical cases, hybrid systems exhibit a degree
of robustness [20, 27] that minimizes the impact of numerical errors, e.g., small
perturbations do not change the mode-switching behavior. As noted, the simple
implementation of ExtendTree, presented in this section for completeness, can
be replaced by more sophisticated hybrid-system simulation methods.

(d) AddBranchToTree(T , v, [u, T, snew, αnew]) adds vnew and (v, vnew) to T .
It also associates snew and αnew with vnew and u and T with (v, vnew).

(e) Traj(T , vnew) computes the trajectory from vinit.s to vnew.s by concate-
nating the trajectories associated with the tree edges connecting vinit to vnew.
Incorporating LTL into RRT: The work in [9–11] relies on RRT [15]. To in-
corporate LTL into RRT, it suffices to use LTL-TSF (Algo. 3.1) and implement
SelectVertexFromTree(P, T) as described in [9–11, 15], e.g., sample s ∈ H.S
pseudo-uniformly at random and select v ∈ T .V whose v.s is the closest to s
according to a distance metric. This is referred to as RRT[LTL-TSF].
Incorporating LTL into HyDICE[NoGuide]: Similarly to RRT, HyDICE [12, 13]
also falls into the broad category of tree-search algorithms. Distinctly from RRT,
HyDICE [12, 13] introduced discrete search over (H.Q,H.E) to guide the tree
search in the context of reachability analysis to a set of unsafe states. At each
iteration, the discrete search computed a sequence of discrete transitions from
an initial to an unsafe mode. The tree-search framework then extended T along
the direction provided by the discrete search. Experiments showed significant
speedup of one to two orders of magnitude over RRT-based falsification [10,11].

Incorporating LTL into HyDICE is more involved than in the case of RRT,
since the discrete search over (H.Q,H.E) does not take LTL into account. When

8

considering LTL, a safety violation is not indicated by an unsafe state, but by
an unsafe trajectory that satisfies ¬φ. Therefore, when considering LTL, unsafe
states and unsafe modes are not defined. This means that the discrete search
over (H.Q,H.E) from an initial to an unsafe mode is also not defined. The next
section shows how to effectively incorporate LTL into HyDICE.

The version of HyDICE [12, 13] that does not use the discrete search is re-
ferred to in [12, 13] as HyDICE[NoGuide]. Experiments in [12, 13] showed that
HyDICE[NoGuide] was significantly slower than HyDICE, but still faster than RRT-
based falsification [10,11]. As described in [12,13], HyDICE[NoGuide] corresponds
to the tree-search framework, where SelectVertexFromTree(P, T) is imple-
mented by selecting v ∈ T .V according to a probability distribution over T .V .
This makes it possible to incorporate LTL into HyDICE[NoGuide], referred to as
HyDICE[NoGuide, LTL-TSF], by using LTL-TSF (Algo 3.1).

4 TemporalHyDICE

The computational efficiency of LTL-TSF (Algo. 3.1) depends on the ability of the
approach to quickly extend T along those directions that lead to the computation
of witness trajectories. Motivated by [12, 13], TemporalHyDICE uses a discrete
transition model M of H and effectively combines LTL-TSF with model checking
over M and A to identify and extend T along such useful directions.

Consider a discrete witness [τi]
n
i=1, i.e., a sequence of propositional assign-

ments accepted by A. Let Γ (τi) = {s ∈ H.S : τ(s) = τi}. If T can be extended
so that a trajectory Traj(T , v) starts at Γ (τ1) and enters Γ (τ2), . . . , Γ (τn) in
succession, then Traj(T , v) would be a witness trajectory. In this way, the
discrete witness provides a feasible direction along which motion planning in
TemporalHyDICE can attempt to extend T in the search for a witness trajectory.

Model checking can be effectively employed for the computation of discrete
witnesses. A discrete transition model is constructed as a graph M = (V,E) in
order to capture the partition of H.S induced by τ , where a vertex v(τi) ∈M.V
corresponds to Γ (τi) and an edge (v(τi), v(τj)) ∈M.E indicates that it may be
possible to enter directly from Γ (τi) to Γ (τj). Model checking can then compute
discrete witnesses by simultaneously searching A and M.

An issue that arises is which discrete witnesses motion planning can actu-
ally follow. Since it is not known a priori which discrete witnesses are feasible,
TemporalHyDICE maintains a running weight estimate w([τi]

n
i=1) on the feasibil-

ity of [τi]
n
i=1. A high weight indicates significant progress is made in extending

T toward Γ (τ1), . . . , Γ (τn), while a low weight indicates little or no progress.
The core loop consists of using model checking to select at each iteration a

discrete witness [τi]
n
i=1 based on w([τi]

n
i=1) and then using motion planning to

extend T toward Γ (τ1), . . . , Γ (τn) in succession.
Combining Model Checking and Motion Planning: A crucial property of
TemporalHyDICE, distinctive from earlier work [18], is that model checking and
motion planning work in tandem. Information gathered by motion planning (such
as coverage, Γ (τi)’s that have been reached, and time spent) is used to update
the feasibility estimates w([τi]

n
i=1). As a result, a new discrete witness, associated

9

with a high weight, could be selected in the next iteration by model checking.
In turn, by using highly feasible discrete witnesses [τi]

n
i=1 as guides, motion

planning is able to make progress and extend T toward Γ (τ1), . . . , Γ (τn) until it
successfully computes a witness trajectory. Pseudocode is given in Algo. 4.1.

Algorithm 4.1 TemporalHyDICE

Input: P: problem specification; tmax ∈ R>0: upper bound on computation time
Output: A witness trajectory if one is found or ⊥ otherwise

(a) T ← InitializeTree(P)
(b)M = (V, E)← DiscreteTransitionModel(P)
(c) InitializeFeasibilityEstimate(P,M, w)
while ElapsedTime < tmax do

(d) σ
def
= [(zi, τi)]

n
i=1 ← DiscreteWitness(P,M, w)

(e) ζ ← ExtendTreeAlongDiscreteWitness(P, T ,M, w, σ)
(f) if ζ 6= NIL return ζ

return ⊥
(e) ExtendTreeAlongDiscreteWitness(P, T ,M, w, σ) :=
1: σavail ← {(zi, τi) ∈ σ : (zi, τi).vertices 6= ∅}
2: for several times do
3: (zi, τi)← SelectAvailablePair(w, σavail)
4: v ← SelectVertexFromAvailablePair(w, (zi, τi).vertices)
5: [u, T, snew, αnew]← ExtendTree(P, T , v)
6: if T > 0∧|αnew| > 0 then vnew ← AddBranchToTree(T , v, [u, T, snew, αnew])
7: if P.A.Acc ∩ αnew 6= ∅ then return Traj(T , vnew)
8: UpdateFeasibilityEstimates(P, T ,M, w, (zi, τi))
9: τnew ← P.τ(vnew.s)

10: for znew ∈ αnew do
11: σavail ← {(znew, τnew)} ∪ σavail

12: (znew, τnew).vertices← {vnew} ∪ (znew, τnew).vertices
13: UpdateFeasibilityEstimates(P, T ,M, w, (znew, τnew))
14: return NIL

Algo. 4.1(b) DiscreteTransitionModel(P): As discussed, M captures the
partition of H.S induced by τ and serves to eliminate from consideration certain
infeasible discrete witnesses. Region Γ (τj) is considered unable to directly reach
Γ (τk), written Γ (τj) 6→ Γ (τk), if Γ (τj) and Γ (τk) do not share a boundary and
there is no discrete transition from some s′ ∈ Γ (τj) to some s′′ ∈ Γ (τk). A
discrete witness [τi]

n
i=1 is indeed infeasible if Γ (τk) 6→ Γ (τk+1) for some 1 ≤

k < n, since no trajectory can enter Γ (τ1), . . . , Γ (τn) in succession. To eliminate
such infeasible discrete witnesses from consideration, M is constructed as a
graph M = (V,E). A vertex v(τi) is added to M.V for each Γ (τi). An edge
(v(τi), v(τj)) is added to M.E if it cannot be determined that Γ (τi) 6→ Γ (τj).

Note that the computation of M is problem specific and depends on the
black-box definitions of propositional, guards, and reset functions (see Section 2).
For this reason, DiscreteTransitionModel(P) is an external function supplied
by the user. Since there is no requirement that M should simulate H, it is
generally a straightforward process for the user to obtain M from P. This is the
case for the experiments in this work. Moreover, the definition of M allows for

10

spurious edges, i.e., (v(τj), v(τk)) ∈M.E even when Γ (τj) 6→ Γ (τk). This further
facilitates the computation of M since the user can add spurious edges when it is
computationally difficult to determine that Γ (τj) 6→ Γ (τk). A spurious edge may
cause model checking to compute at some iterations infeasible discrete witnesses,
since it is impossible to enter directly from Γ (τj) to Γ (τk). The interplay between
model checking and motion planning will cause feasibility estimates associated
with spurious edges to decrease rapidly, since motion planning will fail to extend
T from Γ (τj) to Γ (τk). As a result, model checking will reduce the likelihood of
including spurious edges in future computations of discrete witnesses.

Algo. 4.1(d) DiscreteWitness(P,M, w) uses model checking to compute
discrete witnesses by searching on-the-fly A and M. The search produces a
sequence [(zi, τi)]

n
i=1, where (zi, τi) ∈ A.Z × 2Π and zn ∈ A.Acc. A criti-

cal issue is which discrete witness to select from combinatorially many possi-
bilities. To address this issue, TemporalHyDICE associates a running estimate
w(zi, τi) on the feasibility of including (zi, τi) in the current discrete witness.
Let (zi, τi).vertices = {v ∈ T .V : zi ∈ v.α ∧ τi = τ(v.s)}, i.e., v is associated
with (zi, τi) iff v.s satisfies τi and zi is included in the automaton states v.α
obtained by running τ(Traj(T , v)) on A. Then,

w(zi, τi) = cova1(zi, τi) ∗ vola2(Γ (τi))/time(zi, τi), (1)
where cov(zi, τi) estimates the coverage of Γ (τi) by the states associated with
(zi, τi).vertices; vol(Γ (τi)) is the volume of Γ (τi); time(zi, τi) is the time motion
planning has spent extending T from (zi, τi).vertices; and a1, a2 are normaliza-
tion constants. The combination of coverage, volume, and computational time is
motivated by motion planners for continuous and hybrid systems [9–13, 28]. As
in [12,13], cov(zi, τi) is computed by imposing an implicit uniform grid on a low-
dimensional projection of H.S and counting the number of grid cells that have
at least one state from the states associated with (zi, τi).vertices. The volume
vol(Γ (τi)) is a user-supplied value, since it depends on the black-box defini-
tions of the proposition functions Propq,i (Section 2). In the experiments in this
work, Propq,i define polygons and vol(Γ (τi)) is computed as the corresponding
polygonal area. TemporalHyDICE associates a high weight w(zi, τi) with (zi, τi)
if motion planning has extended T toward a region Γ (τi) with a large volume,
and states associated with (zi, τi).vertices quickly cover Γ (τi).

The discrete witness is computed as the shortest path from initial to accepting
states by using Dijkstra’s algorithm, where an edge ((zi, τi), (zj , τj)) is assigned
the weight 1/(w(zi, τi) ∗ w(zj , τj)). This allows to select highly feasible discrete
witnesses. With small probability, the discrete witness is also computed as a
random path using a variation of the depth-first-search, where the frontier nodes
are visited in a random order. This randomness provides a way to correct for
errors inherent with the weight estimates by ensuring that each discrete witness
that is not determined as infeasible is selected with non-zero probability.

TemporalHyDICE does not explicitly construct A × M. During the search
for a discrete witness, the outgoing edges of (zi, τi) are computed implicitly
as Edges(zi, τi) = {(zj , τj) : (v(τi), v(τj)) ∈ M.E ∧ zj ∈ A.δ(zi, τj)}. This al-
lows TemporalHyDICE to considerably reduce the memory requirements of model
checking. Note that the largest memory requirements in A are imposed by A.δ,

11

which can be viewed as a ternary relation, subset of A.Z × Σ × A.Z, where
Σ = 2Π . On the other hand, M can be viewed as a binary relation, subset of
Σ × Σ. Explicitly constructing A ×M would produce a 4-ary relation, subset
of A.Z ×Σ2×A.Z. For this reason, TemporalHyDICE does not compute A×M
explicitly. In addition, the data structure that stores information about a pair
(zi, τi) is created only when a vertex v is added to T .V such that zi ∈ v.α and
τi = τ(v.s). Reducing memory requirements is important for TemporalHyDICE,
since it allows motion planning to extend T by adding more vertices and edges.

Algo. 4.1(e) ExtendTreeAlongDiscreteWitness(P, T ,M, w, σ): Let σ =
[(zi, τi)]

n
i=1 denote the current discrete witness. The objective is to extend T

so that it reaches Γ (τ1), . . . , Γ (τn) in succession. To achieve this objective, the
method proceeds by extending T from vertices associated with pairs (zi, τi).

(Algo. 4.1(e):1) Only pairs (zi, τi) ∈ σ reached by T , i.e., (zi, τi).vertices 6= ∅,
can be considered for selecting a vertex v from which to extend T .

(Algo. 4.1(e):3) SelectAvailablePair(w, σavail) selects a pair (zi, τi) from
σavail with probability w(zi, τi)/

∑
(zj ,τj)∈σavail

w(zj , τj), where w(zi, τi) is defined
in Eqn. 1. This selection, thus, favors highly feasible pairs.

(Algo. 4.1(e):4) SelectVertexFromAvailablePair(w, (zi, τi).vertices) selects
a vertex v from (zi, τi).vertices with probability 1

nsel(v)/
∑

v′∈(zi,τi).vertices
1

nsel(v′) ,
where nsel(v) is one plus the number of times v has been selected in the past from
(zi, τi).vertices. This is based on well-established strategies in motion planning
that favor those vertices selected less frequently in the past [24,25].

(Algo.4.1(e):5–7) As described in Section 3, ExtendTree(P, T , v) and
AddBranchToTree(P, T , v, [u, T, snew, αnew]) extend T from v by computing
and adding to T a valid trajectory that starts at v.s. If any of the automaton
states αnew is an accepting state, then Traj(T , vnew) is a witness trajectory.

(Algo.4.1(e):8–13) The feasibility estimate associated with (zi, τi) is updated
to reflect the extension of T from v. The vertex vnew is associated with each
(znew, τnew), where znew ∈ αnew and τnew = τ(vnew.s). The feasibility estimate
w(znew, τnew) is also updated to reflect the addition of vnew to (znew, τnew).vertices.
Each (znew, τnew) is also added to σavail, so that it becomes available for selection
in the next iteration. The updated weights better estimate the feasibility of each
discrete witness, and thus improve the selection of discrete witnesses for the next
iteration. This in turn allows motion planning to make more progress in extend-
ing T toward Γ (τ1), . . . , Γ (τn) and eventually compute a witness trajectory.

5 Experiments and Results

The experiments provide an initial validation of TemporalHyDICE for the fal-
sification of safety properties expressed by syntactically safe LTL formulas for
hybrid systems with nonlinear dynamics. TemporalHyDICE is shown to be signif-
icantly more efficient than the straightforward extensions of related work [9–13],
which use the automaton A as an external monitor (see Section 3). The ex-
periments also demonstrate the importance of model checking and the discrete
transition model in the computational efficiency of TemporalHyDICE. This paper
also studies the impact of A (NFA or DFA) on the efficiency of TemporalHyDICE.

12

The hybrid system H models an autonomous vehicle driving over different
terrains, similar to the navigation benchmark proposed in [29] and used in [12,
13]. Each terrain corresponds to a mode q ∈ H.Q. The dynamics, velocity, and
acceleration vary from one terrain to another. Second-order dynamics (with 5
dimensions) for modeling cars, differential drives, and unicycles (see [12,24,25] for
model details) are associated with each mode. In each terrain, several polygons
are marked as propositions Propqi,k and guards Guardqi,qj

. A state s = (q, x) ∈
H.S satisfies Propqi,k (resp., Guardqi,qj

) iff q = qi and the position-component
of x is inside Propqi,k (resp., Guardqi,qj

). When Guardqi,qj
is satisfied, a discrete

transition occurs. The mode is then set to qj and velocity is set to zero.
The choice of this specific system is to provide a concrete benchmark that

is easily scalable to test TemporalHyDICE as the complexity of LTL formulas is
increased. For the experiments, 12 safety properties and 100 instances of the
benchmark were created. Syntactically safe LTL formulas were manually de-
signed in order to provide meaningful properties. Benchmark instances were
generated at random in order to test TemporalHyDICE over many problems and
obtain statistically significant results. Experimental data is publicly available.1

Problem Instances: In each problem instance, number of modes is nQ =
10, number of propositions per mode is nP = 15, and number of guards per
mode is nG = 5. A random problem instance is generated as follows. First, the
second-order dynamics associated with each mode is selected pseudo-uniformly
at random from those of a car, unicycle, or differential drive. Second, velocity
is bounded by vmax, where vmax is selected pseudo-uniformly at random from
[3, 6]m/s. Third, for each mode, nP propositions and nG guards are generated
as random polygons. Let π1, . . . , π150 denote the generated propositions.
Syntactically-Safe LTL Formulas: Let β0 = ¬(π1 ∨ · · · ∨ π150).
– sequencing (n = 3, 4, 5, 6): Witness trajectory will reach π1, . . . , πn in order:
φn

1 = ¬ (β0U (π1 ∧ (π1U (π2 ∧ (π2U (. . . πn−1 ∧ (πn−1U (β0Uπn)))))))).
– counting (n = 1, 2, 3, 4): Witness trajectory will reach π2, π3, π4 n-times in

order, and then it will reach π5: φn
2 = ¬(ς1U(π1 ∧Ξ1(Ξ2 · · · (Ξn(ς1Uπ5))))),

Ξj(ψ)
def
= ς1U (π2 ∧ (ς2U (π3 ∧ (ς3U (π4 ∧ (π4U (ς1 ∧ ψ))))))); ςi

def
= β0 ∨ πi.

– coverage (n = 4, 5, 6, 7): Witness trajectory will reach each πi: φn
3 =

∨n
i=1 G(¬πi).

Results: Experiments were run on Rice Cray XD1 ADA and PBC clusters.
Each run uses a single processor (2.2Ghz, 8GB RAM), i.e., no parallelism. The
automata for each ¬φ are computed by standard tools (scheck [30]). In each case,
the average running time in seconds over 100 problem instances is reported.

Comparisons of TemporalHyDICE to RRT[LTL-TSF] in Table 1(a) provide a ba-
sis for the results. While TemporalHyDICE solved all problem instances, RRT[LTL-TSF]
timed out in almost every instance. RRT[LTL-TSF] relies on distance metrics and
nearest neighbors to guide the search. By relying on such limited information,
as shown in [12, 13] in the context of reachability analysis, it quickly becomes
difficult to find feasible directions to extend T , causing a rapid decline in the
growth of T . The results in Table 1(a) confirm this observation also in the case
of applying RRT[LTL-TSF] to falsify LTL safety properties in hybrid systems.
1 http://www.kavrakilab.org/data/TACAS2009/

13

(a) Comparison of different methods.

LTL safety formula φ3
1 φ4

1 φ5
1 φ6

1 φ1
2 φ2

2 φ3
2 φ4

2 φ4
3 φ5

3 φ6
3 φ7

3

nr. states minimized DFA 10 21 46 105 23 76 164 287 16 32 64 128

TemporalHyDICE 18.6 25.5 27.2 40.4 22.2 40.4 63.3 88.3 14.6 40.9 127.9 293.2
RRT[LTL-TSF] 267.2 X X X X X X X X X X X

HyDICE[NoGuide, LTL-TSF] 245.3 X X X X X X X X X X X
TemporalHyDICE[no M] 19.2 55.7 X X 203.8 X X X 76.2 367.5 X X

(b) Comparison of TemporalHyDICE when using a minimal DFA, a minimal NFA
constructed by hand, or an NFA constructed by standard tools for φn

2 , n = 1, 2, 3, 4.

Minimized DFA Minimized NFA Standard NFA
LTL safety formula φ1

2 φ2
2 φ3

2 φ4
2 φ1

2 φ2
2 φ3

2 φ4
2 φ1

2 φ2
2 φ3

2 φ4
2

nr. states in automaton 23 76 164 287 7 11 15 19 27 176 912 4099

TemporalHyDICE 22.2 40.4 63.3 88.3 23.5 37.6 52.5 74.4 86.2 X X X

Table 1. Reported is the average time in seconds to solve 100 problem instances for
each of the LTL formulas. Times for TemporalHyDICE include the construction of M,
which took < 1s. Entries marked with X indicate a timeout (set to 400s).

By combining model checking and motion planning, TemporalHyDICE effectively
guides the tree search. We also observe that the running time of TemporalHyDICE
increases sub-linearly (φn

1 and φn
2) or sub-quadratically (φn

3) with the number of
states in the minimized DFA. These results provide promising initial validation.

Comparisons of TemporalHyDICE to HyDICE[NoGuide, LTL-TSF] in Table 1(a)
demonstrate the importance of combining model checking and motion planning.
Without model checking to guide motion planning, HyDICE[NoGuide, LTL-TSF],
similar to RRT[LTL-TSF], times out in almost all instances. As mentioned earlier,
by effectively combining model checking and motion planning, TemporalHyDICE
efficiently solves all problem instances.

Comparisons of TemporalHyDICE to TemporalHyDICE[no M] in Table 1(a)
indicate the importance of computing discrete witnesses by searching M and A
(as in TemporalHyDICE) and not just A (as in TemporalHyDICE[no M]). When
searching just A, a discrete witness may contain propositional assignments τi
and τi+1 that cannot be satisfied consecutively, i.e., Γ (τi) 6→ Γ (τi+1). As dis-
cussed in Section 4, M serves to eliminate from consideration many of these
infeasible discrete witnesses. This in turn speeds up the search for a witness
trajectory since T is extended far more frequently toward feasible directions. It
is also important to note that, even though the discrete witnesses obtained by
searching just A are not as beneficial as those obtained by searching M and
A, TemporalHyDICE[no M] is still considerably faster than methods that do not
guide the tree search, cf. RRT[LTL-TSF] and HyDICE[NoGuide, LTL-TSF].

Table 1(b) compares TemporalHyDICE when using NFAs computed by stan-
dard tools (scheck [30]), minimal NFAs constructed by hand, or minimal DFAs
(scheck -d [30]) for each ¬φn

2 . These experiments are motivated by the work
in [22], which shows significant speedup when using DFAs instead of NFAs in
the context of model checking. As shown in Table 1(b), TemporalHyDICE is only
slightly faster when using minimal NFAs instead of minimal DFAs, even though
the minimal NFAs had significantly fewer states. As concluded in [22], DFAs

14

offer computational advantages that can offset the drawbacks of a possibly ex-
ponential increase in size. In particular, a DFA search has a significantly smaller
branching factor, since there is exactly one transition that can be followed. This
observation is also supported by the comparison of minimal DFAs to standard
NFAs, since in such cases there is significant speedup when using minimal DFAs.
Therefore, the non-minimized NFA should also be determinized and minimized.

6 Discussion
This work developed a novel method, TemporalHyDICE, for the falsification of
safety properties specified by syntactically safe LTL formulas for hybrid systems
with general nonlinear dynamics. By effectively combining model checking and
motion planning, when a hybrid system is unsafe, TemporalHyDICE may compute
a witness trajectory that indicates a violation of the safety property. Experiments
show significant speedup over related work. An important issue for future re-
search is the scalability of TemporalHyDICE. As we consider more complex safety
properties and high-dimensional continuous systems, it becomes important to
further improve the synergistic combination of model checking and motion plan-
ning. Another direction is to extend the theory developed in [31], which showed
probabilistic completeness for reachability analysis in a continuous setting for a
motion planner, and show probabilistic completeness for TemporalHyDICE.

Acknowledgment
This work is supported by NSF CNS 0615328 (EP, LK, MV), a Sloan Fellowship
(LK), and NSFCCF0613889(MV). Equipment is supported by NSFCNS0454333
and NSF CNS0421109 in partnership with Rice University, AMD, and Cray.

References
1. Tomlin, C.J., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the

verification and control of hybrid systems. Proc of IEEE 91(7) (2003) 986–1001
2. Alur, R., Belta, C., Ivancic, F.: Hybrid modeling and simulation of biomolecular

networks. In: Hybrid Systems: Computation & Control. LNCS (2001), 2034:19–32
3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,

X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1) (1995) 3–34

4. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: ACM Symp on Theory of Computing. (1995) 373–382

5. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety
analysis. In: Hybrid Systems Computation & Control. LNCS (2007) 4416:428–443

6. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.: Discrete abstractions of
hybrid systems. Proc of IEEE 88(7) (2000) 971–984

7. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,
M.: Abstraction and Counterexample-guided Refinement in Model Checking of
Hybrid Systems. Intl J of Foundations of Computer Science 14(4) (2003) 583–604

8. Giorgetti, N., Pappas, G.J., Bemporad, A.: Bounded model checking for hybrid
dynamical systems. In: Conf on Decision & Control, Seville, Spain (2005) 672–677

9. Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis
of continuous and hybrid systems. In: Hybrid Systems: Computation & Control.
LNCS (2004) 2993:142–156

15

10. Kim, J., Esposito, J.M., Kumar, V.: An RRT-based algorithm for testing and
validating multi-robot controllers. In: Robotics: Science & Systems, Boston, MA
(2005) 249–256

11. Nahhal, T., Dang, T.: Test coverage for continuous and hybrid systems. In: Intl
Conf on Computer Aided Verification. LNCS (2007) 4590:449–462

12. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: From verification to falsifi-
cation. In: Intl Conf on Computer Aided Verification. LNCS (2007) 4590:468–481

13. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: From verification to fal-
sification by combining motion planning and discrete search. Formal Methods in
System Design (2008)

14. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi,
M.: Benefits of bounded model checking at an industrial setting. In: Intl Conf on
Computer Aided Verification. LNCS (2001) 2102:436–453

15. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Intl J of Robotics
Research 20(5) (2001) 378–400

16. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
17. Behrmann, G., David, A., Larsen, K.G., Möller, O., Pettersson, P., Yi, W.: Uppaal

present and future. In: Conf on Decision & Control, Orlando, FL (2001) 2881–2886
18. Fainekos, G.E., Kress-Gazit, H., Pappas, G.: Temporal logic motion planning for

mobile robots. In: IEEE Intl Conf on Robotics & Automation, Barcelona, Spain
(2005) 2020–2025

19. Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under
parameter uncertainty. IEEE Trans of Automatic Control 53 (2008) 215–229

20. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of
LTL properties of non-linear robust discrete time hybrid systems. Intl J of Foun-
dations of Computer Science 18(1) (2007) 63–86

21. Kupferman, O., Vardi, M.: Model checking of safety properties. Formal methods
in System Design 19(3) (2001) 291–314

22. Armoni, R., Egorov, S., Fraer, R., Korchemny, D., Vardi, M.: Efficient LTL com-
pilation for SAT-based model checking. In: Intl Conf on Computer-Aided Design,
San Jose, CA (2005) 877–884

23. Sistla, A.: Safety, liveness and fairness in temporal logic. Formal Aspects of Com-
puting 6 (1994) 495–511

24. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E.,
Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Cambridge, MA (2005)

25. LaValle, S.M.: Planning Algorithms. Cambridge University Press, MA (2006)
26. Esposito, J., Kumar, V., Pappas, G.: Accurate event detection for simulation of

hybrid systems. In: Hybrid Systems: Computation&Control. LNCS (2001) 204–217
27. Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test genera-

tion and coverage for hybrid systems. In: Hybrid Systems: Computation & Control.
LNCS (2007) 4416:329–342

28. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Discrete search leading continuous explo-
ration for kinodynamic motion planning. In: Robotics: Science & Systems, Atlanta,
GA (2007)

29. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Hybrid
Systems: Computation & Control. LNCS (2004) 2993:326–341

30. Latvala, T.: Efficient model checking of safety properties. In: Model Checking Soft-
ware. LNCS (2003) 2648:74–88

31. Ladd, A.M.: Motion Planning for Physical Simulation. PhD thesis, Rice University,
Houston, TX (2006)

