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ABSTRACT The analysis of molecular motion
starting from extensive sampling of molecular con-
figurations remains an important and challenging
task in computational biology. Existing methods
require a significant amount of time to extract the
most relevant motion information from such data
sets. In this work, we provide a practical tool for
molecular motion analysis. The proposed method
builds upon the recent ScIMAP (Scalable Isomap)
method, which, by using proximity relations and
dimensionality reduction, has been shown to reli-
ably extract from simulation data a few parameters
that capture the main, linear and/or nonlinear,
modes of motion of a molecular system. The results
we present in the context of protein folding reveal
that the proposed method characterizes the folding
process essentially as well as ScIMAP. At the same
time, by projecting the simulation data and comput-
ing proximity relations in a low-dimensional Eu-
clidean space, it renders such analysis computa-
tionally practical. In many instances, the proposed
method reduces the computational cost from sev-
eral CPU months to just a few CPU hours, making it
possible to analyze extensive simulation data in a
matter of a few hours using only a single processor.
These results establish the proposed method as a
reliable and practical tool for analyzing motions
of considerably large molecular systems and pro-
teins with complex folding mechanisms. Proteins
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INTRODUCTION

Molecular motion plays an important role in our under-
standing of biological processes at the molecular level. The
computational study of molecular motion is typically per-
formed by running simulations of molecular models on a
computer system. The data sets of molecular configura-
tions produced by computer simulations need to be ana-
lyzed and interpreted in order to extract the important
features of the motion of the system under consideration.
Different simulation techniques1–9 and molecular mod-

els10–22 have been proposed over the years to gather such
data sets.

The extraction of important motion information from
extensive sampling of the relevant configurations populated
under specified conditions remains challenging. Research-
ers have suggested several approaches to address this prob-
lem, including clustering23–29 and dimensionality reduc-
tion.30–44 The recently proposed ScIMAP45 method reliably
extracts from extensive simulation data the main modes of
motion of a molecular system, summarizing the molecular
motion with only a few parameters. The ScIMAP method
arranges the molecular configurations along a set of orthog-
onal axes that best characterize the molecular motion.
Unlike principal components analysis and other linear
dimensionality reduction techniques,46–49 ScIMAP reliably
captures even nonlinear motions.

The ScIMAP coordinates place the simulation configu-
rations as points in a low-dimensional map that describes
the geometric progression of the system as it evolves
through its different states. The work in Das et al.45 uses
the ScIMAP-extracted coordinates as reaction coordinates
to characterize a protein folding reaction, computing a
free energy surface as a function of these coordinates. This
free energy surface has been shown to correctly capture
the main features in the folding landscape of a simulated
protein folding reaction, such as the main folding route
and the transition-state ensemble. The reaction coordi-
nates computed by ScIMAP can be generally applicable to
any molecular system, potentially eliminating the need to
devise system-specific reaction coordinates.45

Despite the computational advantages ScIMAP offers
over existing methods, such as fast local computations of
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coordinates of oversampled regions and incorporation of
parallel and iterative methods to perform efficient top-
eigenvector computations,50,51 its application to analyze
motions of large molecules remains computationally expen-
sive. As summarized in Materials and Methods, ScIMAP
relies on proximity relations and the inherent connectivity
of the input data set to reliably characterize molecular
motion. The computation of proximity relations, which
assigns to each molecular configuration in the data set a list
of nearest neighbors as determined by some distance mea-
sure, e.g., lRMSD52,53 (least root-mean-squared-deviation),
constitutes the major bottleneck of ScIMAP, taking over
95% of the total computational time. The analysis of
motions of large molecules requires the computation of
nearest neighbors for millions of molecular configurations.
Even the most efficient algorithms require time propor-

tional to the size of the data set in order to compute the
nearest neighbors of a molecular configuration.54–59 The
quadratic computational cost associated with computing
the nearest neighbors for millions of molecular configura-
tions renders the application of ScIMAP to analyze
motions of large molecules computationally challenging.
The main contribution of this work is to provide a practi-

cal tool for molecular motion analysis. The proposed DPES-
ScIMAP (Distance-based Projection onto Euclidean Space
ScIMAP) method, motivated by DPES,60 is based on the
idea of projecting the molecular configurations onto a low-
dimensional Euclidean space61 and computing proximity
relations in the Euclidean space. The projection renders
DPES-ScIMAP computationally practical, since generally
fewer distance evaluations are required to compute proxim-
ity relations in a low-dimensional Euclidean space. Further-
more, proximity relations in the Euclidean space are based
on the Euclidean distance, which can be evaluated at a frac-
tion of the time required to evaluate distance measures for
molecular configurations, such as lRMSD. As a result,
DPES-ScIMAP computes proximity relations significantly
faster than ScIMAP and thus effectively reduces the major
computational bottleneck of ScIMAP.
The results presented in this work on the characteriza-

tion of protein folding reactions reveal that the folding
landscapes emerging from the application of DPES-ScI-
MAP and ScIMAP are practically indistinguishable. The
advantage is that, in many instances, by using DPES-ScI-
MAP instead of ScIMAP, the computational time required
to analyze the simulation data is reduced from several
CPU months to just a few CPU hours. To put these results
in a different perspective, the most relevant motion infor-
mation can now be extracted from considerably large data
sets in a matter of a few hours by running DPES-ScIMAP
on a single processor, as opposed to hundreds of processors
required by ScIMAP. These results establish DPES-ScI-
MAP as a practical tool for analyzing motions of large mo-
lecular systems starting from extensive simulation data.

MATERIALS ANDMETHODS

In this section, we first summarize the main ideas of
ScIMAP.45 We then describe in detail the proposed DPES-

ScIMAP method and present a simple procedure for select-
ing good values for the parameters used by DPES-ScI-
MAP. We conclude the section by describing how the data
sets of molecular configurations used in this work are gen-
erated.

ScIMAP: Scalable IsomapMethod

The ScIMAP45 method processes a given data set of mo-
lecular configurations to extract the most relevant coordi-
nates that effectively characterize the process being stud-
ied (e.g. protein folding). The extracted coordinates consti-
tute the vector basis of a low-dimensional embedding of
the data set. The idea of ScIMAP is to find an embedding
that preserves as much as possible the underlying connec-
tivity of the data set. To this effect, proximity relations are
defined for each configuration. The proximity relations of
a configuration s are defined in ScIMAP as the k closest
configurations according to a distance measure, such as
lRMSD, and are referred to as the k exact nearest neigh-
bors of s. Each configuration s is connected to k of its exact
nearest neighbors and the emerging network or graph
captures the connectivity of the data set, as Figure 1(a–c)
illustrates. Each edge of the graph is associated with the
lRMSD distance between the configurations that it con-
nects. The distance between any pair of configurations s0

and s@ is estimated as the length of the shortest path from
s0 to s@ in the graph, where the path length is obtained by
adding up the lRMSD distances associated with the edges
of the path. The reaction coordinates are then computed
as a function of the distance matrix whose entries repre-
sent shortest-path distances between a significant portion
of the configurations in the data set. A detailed description
of ScIMAP is presented in Das et al.45

DPES-ScIMAP: A Practical Tool for
Molecular Motion Analysis

The application of ScIMAP to analyze motions of large
molecular systems remains computationally expensive
due to the quadratic cost associated with the computation
of proximity relations.54–59 The proposed DPES-ScIMAP
method however renders such analysis computationally
practical by projecting the simulation data and computing
proximity relations in a low-dimensional Euclidean space.
The proximity relations of a configuration s, as computed
by DPES-ScIMAP, are referred to as the k approximate
nearest neighbors of s. Figure 1 provides an illustration.

The projection offers certain advantages. First, the projec-
tion enables DPES-ScIMAP to prune certain computations
and reduce the overall number of distance evaluations
required to determine the proximity relations of all data
points. Second, DPES-ScIMAP gains additional computa-
tional efficiency by using the Euclidean distance to define
proximity relations in the projected space, which can be
evaluated much faster than the lRMSD distance used by
ScIMAP. Although the projection could alter the proximity
relations and thus affect the coordinates that are extracted,
as our results indicate, when extensive simulation data has
been gathered, differences between approximate and exact
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nearest neighbors are negligible. As such, the coordinates
extracted by DPES-ScIMAP and ScIMAP are practically
indistinguishable. The overall effect is that the computation
of proximity relations in the projected Euclidean space ena-
bles DPES-ScIMAP to remove the major computational bot-
tleneck from ScIMAP while maintaining its reliability in
characterizing molecular motions. As our results indicate,
in many instances, DPES-ScIMAP reduces the required
CPU time frommonths to hours.

Projection of the data set of molecular
configurations onto a Euclidean space

The projection computed by DPES-ScIMAP is not a
standard projection, but is instead based on distances
between each molecular configuration in the data set to a
set of carefully selected pivots. The data set S of molecular
configurations is projected onto <m, where m > 0 is the
dimension of the Euclidean space. The projection of S onto
<m is obtained by first selecting a set P ¼ {p1, p2, . . ., pm}
� S of m pivots. Then each s 2 S is projected onto some
v(s)2 Rm by setting the j-th coordinate of v(s) to the

lRMSD distance from s to pj, i.e., v(s)[j] ¼ lRMSD(s, pj), for
j ¼ 1, . . ., m. The collection of all the projected configura-
tions forms the set V(S) ¼ {v(s):s 2 S}.

The objective is to select pivots that preserve relative
distances between configurations in S when projected onto
<m, for example, when projections are close according to
the Euclidean distance in <m, then the corresponding con-
figurations in S are close according to the lRMSD dis-
tance. A strategy that works well in practice is to select
pivots that are as far away from each-other as possi-
ble.60,62 The first pivot, p1, is selected uniformly at random
from all the points in S. The second pivot, p2, is selected as
the point in S � {p1} that is the farthest away from p1
according to the lRMSD distance. In general, the j-th
pivot, pj, is selected as the point in S � {p1, . . ., pj � 1} that
is the farthest away from the already selected pivots, i.e.,
pj maximizes mini¼1. . .j�1 lRMSD(pi, pj).

Computation of proximity relations

DPES-ScIMAP computes proximity relations of configu-
rations in S by computing proximity relations of the pro-

Fig. 1. (a-c) Illustration of proximity relations computed by ScIMAP. (a) A data set of points in <2. (b) Proximity relations of a point are defined as its k
nearest neighbors according to a distance measure. Each circle represents a point. Connections are shown from the point indicated by the filled circle to
its k ¼ 5 nearest neighbors. (c) Proximity relations of all the points capture the connectivity of the data set in (a). (d,e) Illustration of proximity relations
computed by DPES-ScIMAP. (d) Proximity relations of a point s are indicated by connections between the filled circle and squares. A comparison with (b)
shows that three out of five neighbors computed by ScIMAP and DPES-ScIMAP are the same. The other two neighbors computed by DPES-ScIMAP are
outside the dashed circle centered at s with radius equal to the distance from s to its k ¼ 5-th nearest neighbor. (e) Proximity relations of all the points in
the data set of (a), as computed by DPES-ScIMAP. A comparison with (c) reveals that DPES-ScIMAP captures the connectivity of the data set in (a)
essentially as well as ScIMAP.
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jections in V(S). In particular, exact nearest neighbors of s
2 S according to the lRMSD distance are approximated by
computing exact nearest neighbors of the corresponding
projection v(s) 2 <m according to the Euclidean distance.
The first step of DPES-ScIMAP uses the projected points
V(S) � <m to select ‘ > k configurations from S that are
close to the exact nearest neighbors of s. For this reason,
these ‘ configurations are selected as those ‘ configura-
tions in S whose projections onto V(S) correspond to the ‘
exact nearest neighbors of v(s) according to the Euclidean
distance. The computation of ‘ > k neighbors in the pro-
jected Euclidean space greatly increases the accuracy of
DPES-ScIMAP, as indicated by the results. The second
step of DPES-ScIMAP uses the lRMSD distance to select
only the k closest out of the ‘ neighbors in the projected
space as the approximate nearest neighbors of s.

Measuring the quality of the proximity relations

In this work, we also present results that indicate how
similar the approximate nearest neighbors computed by
DPES-ScIMAP are to the exact nearest neighbors computed
by ScIMAP. We now discuss how to quantitatively measure
these similarities. A strong indicator of the quality of the
approximation is the ratio of false dismissals, RFDe.

63 The
RFDe error indicates the fraction of the approximate near-
est neighbors of a configuration s that are outside a small
ball centered at s. The radius of the ball is set to (1 þ e)a,
where e � 0 is some small constant and a is the distance
from s to the k-th exact nearest neighbor of s. Small values
of RFDe, for a small value of e, indicate that most of the ap-
proximate nearest neighbors of s are not much farther away
than the exact nearest neighbors of s. Figure 1(d) provides
an illustration. Note, however, that two approximate near-
est neighbors s0 and s@ that are outside the small ball cen-
tered at s contribute the same value to RFDe even when
lRMSD(s, s0) > lRMSD(s, s@). It is thus possible that two dif-
ferent sets of approximate nearest neighbors have the same
RFDe error even when configurations in the first set are far-
ther away from s than configurations in the second set.
Intuitively, the second set provides a better approximation.
This intuition is expressed by the ratio of distance errors,
RDE,63 which is small only when the sum of distances from
s to its approximate nearest neighbors, denoted by b, is close
to the sum of distances from s to its exact nearest neighbors,
denoted by g. The RDE error is then defined as 1 � g/b. The
RFDe and RDE errors range in [0,1] Small values in this
interval indicate that differences between approximate and
exact nearest neighbors are negligible, which is the case for
proximity relations computed by DPES-ScIMAP and ScI-
MAP, as indicated in Results and Discussion.

Parameter Selection

The application of DPES-ScIMAP to process a given
data set S requires the selection of parameter values. The
dimension (m) of the projection and the number (‘) of
neighbors in the Euclidean space depend on several fac-

tors, such as the number of dimensions (d) required to rep-
resent each configuration, the number (n) of configura-
tions in S, and the distribution of configurations in S.

Even though the parameters m and ‘ can be varied inde-
pendently by savvy users, a simple way to select parame-
ter values that works well in practice is to restrict the
search of m and ‘ inside some reasonable intervals and
use an error function err(m, ‘), such as RFDe or RDE, to
estimate the impact of the current selection for m and ‘ on
DPES-ScIMAP. We compute err(m, ‘) using only a small
fraction of the points in S, e.g., min{|S|/10, 1000},
selected uniformly at random. Since the dimension of the
projection is more important than the number of neigh-
bors in the projected Euclidean space, we start by setting ‘
¼ 25k and performing a binary search to find a value form
2 [a0, b0] ¼ [1, d]. During the i-th iteration, we search for
values of m 2 [ai, bi]. The value of m during the i-th itera-
tion is denoted by mi and is equal to mi ¼ (ai þ bi)/2. The
search stops during the i-th iteration with m ¼ mi�1 when
err(mi�1, ‘) and err(mi, ‘) are similar. Otherwise, if
err(mi, ‘) is large, we increase the lower bound on m by
setting aiþ1¼ mi, and, if err(mi, ‘) is small, we decrease the
upper bound on m by setting biþ1 ¼ mi. Once we have
selected a value for m, we proceed with a similar binary
search to find a value for ‘ 2 [k, n].

We present results of the DPES-ScIMAP method for dif-
ferent values of a normalized parameter D 2 [0,1], which
is introduced to express to the best of our intuition and ex-
perience the relation between m and ‘ and their depend-
ence on d and n. The purpose of the normalized parameter
D is to be able to give an indication on the accuracy and
computational efficiency when DPES-ScIMAP is used
with different values of m and ‘ to analyze the input data.
More specifically, even though values of m, ‘, d, and n
could change depending on the data set that is being ana-
lyzed, it is desirable that similar values of the parameter
D for different values of m, ‘, d, and n to indicate similar
results obtained by using DPES-ScIMAP to analyze the
input data. For example, the same level of accuracy could
be achieved by DPES-ScIMAP by either doubling the
dimension of the projection (m) or doubling the number of
the candidate neighbors (‘). For this reason, based on
extensive testing, we set D ¼ log2(m)log2(‘)/(log2
(d)log2(n)). The minimum and maximum values of D are
achieved by setting m ¼ 1 and m ¼ d, ‘ ¼ n, respectively.
This definition forD worked well in our experiments, since
D is directly proportional to the logarithmic value of m
and ‘ and indirectly proportional to the logarithmic value
of d and n. The logarithmic function is used as a nonuni-
form scaling factor to smooth the dependence of D on m, ‘,
d, and n. In general, the analysis of large and high-dimen-
sional data sets is challenging, which is reflected by a
decrease in the value of the parameter D when the data
dimension (d) and the number of data points (n) are
increased. The quality of the proximity relations computed
by DPES-ScIMAP can be improved by increasing the
dimension of the projection (m) and/or the number of can-
didate neighbors (‘), which results in larger values of D. It
is important to remember, however, that the parameter
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selection strategy described in this section computes D
based on the values selected for m and ‘. In Results and
Discussion, we present results obtained by DPES-ScIMAP
on different data sets for different values of the parameter
D. In each case, we also indicate the values ofm and ‘ that
were used to obtain the value of D.

Protein Models

The extensive data sets of molecular configurations
used in this work were obtained by molecular dynamics
with coarse-grained models. Two different models were
used to run the folding/unfolding simulations of SH3 (src-
homology 3) and CV-N (cyanovirin-N) proteins.
For SH3, we used the coarse-grained model developed

in Das et al.,10 which was tested on SH3 in that same
work, and was used in Das et al.45 for the first application
of ScIMAP. The model uses sequence information to pro-
duce a ‘‘minimally frustrated’’ folding landscape that
drives the protein into its native state, but considering
nonnative interactions as well.
For CV-N, following the work of Cho et al.,64 we used a

Gō-like model as defined in Clementi et al.20 The Gō-like
model considers native interactions only (with a short-
range repulsion term for nonnative contacts) excluding di-
sulfide bonds, which allows the appearance of an interme-
diate state.64 As stated earlier, this intermediate state
proves useful in testing the power of ScIMAP and DPES-
ScIMAP for capturing nonlinear motions.

RESULTS ANDDISCUSSION

The applications presented in this work show that
DPES-ScIMAP is a reliable and practical tool for molecu-
lar motion analysis. As in Das et al.,45 the focus is on the
definition of reliable reaction coordinates that effectively
characterize protein folding, starting from extensive simu-
lation data. We show that DPES-ScIMAP characterizes
folding practically as reliably as ScIMAP, even though
DPES-ScIMAP alters the proximity relations used in the
definition of the coordinates. The reason is that, for a wide
range of parameter values, differences between proximity
relations computed by DPES-ScIMAP and ScIMAP are
negligible, and thus have minimal impact on the reaction
coordinates that are extracted from simulation data.
We validate the accuracy and demonstrate the efficiency

of the proposed DPES-ScIMAP method by characterizing
the folding free energy landscapes associated with mini-
malist folding models of SH3 and CV-N, as described in
Materials and Methods. The results we obtain reveal that,
for good selection of parameter values, the folding land-

scapes emerging from the application of DPES-ScIMAP
and ScIMAP are practically indistinguishable. The
extracted reaction coordinates identify important features
of the folding landscape including the folded and unfolded
states, transition-state ensemble, and in the case of CV-N,
on-route intermediate ensembles. The main advantage of
DPES-ScIMAP is that while it characterizes the folding
process essentially as well as ScIMAP, it does so at a small
fraction of the computational cost required by ScIMAP. In
many instances, the computational time is reduced from
over two CPU months to less than seven CPU hours. We
first studied the performance of DPES-ScIMAP using
SH3, since it is the model used in Das et al.45 to validate
ScIMAP. We also conducted tests on a larger protein with
a more complex folding mechanism, CV-N. Experimental
data65 and recent computational studies64 have shown
that CV-N has an intermediate state and that its folding
landscape requires more than one reaction coordinate to
be characterized. We present results when DPES-ScIMAP
computes proximity relations by projecting each data set
of protein configurations onto Euclidean spaces of varying
dimensionality.

We present the results as a function of the parameter D,
which, as detailed in Materials and Methods, defines how
DPES-ScIMAP computes proximity relations. Table I con-
tains a summary of the parameter values used in the
experiments in this work. We conclude the section with a
quantitative analysis that focuses on the differences
between proximity relations computed by DPES-ScIMAP
and ScIMAP and indicates that such differences are negli-
gible.

Characterizing the Folding Free Energy
Landscape of SH3

The SH3 data set consists of 473,300 protein configura-
tions obtained by multiple folding/unfolding molecular dy-
namics simulations of a coarse-grained model close to the
folding temperature.10 Each protein configuration is rep-
resented by d ¼ 3 3 57 ¼ 171 dimensions, corresponding
to the (x, y, z) coordinates of the Ca atoms of the 57 resi-
dues of SH3. The SH3 data set is processed both by ScI-
MAP and DPES-ScIMAP to extract coordinates that char-
acterize the folding reaction. Free energy surfaces can be
defined as a function of the extracted reaction coordi-
nates.66–68 Figure 2(a) shows the folding landscape of SH3
at the folding temperature as a function of the first and
second reaction coordinates, as computed in Das et al.45 by
ScIMAP. Figure 2(b–d) shows the folding landscape of
SH3 as computed by DPES-ScIMAP for different values of
the parameter D. Table II(a) indicates that DPES-ScIMAP

TABLE I. Parameter Values Used by DPES-ScIMAP

SH3 D ¼ 0.52,m ¼ 50, ‘ ¼ 8000 D ¼ 0.36,m ¼ 50, ‘ ¼ 500 D ¼ 0.30,m ¼ 15, ‘ ¼ 500
CV-N D ¼ 0.34,m ¼ 50, ‘ ¼ 780 D ¼ 0.28,m ¼ 25, ‘ ¼ 780 D ¼ 0.24,m ¼ 15, ‘ ¼ 780

Parameter values used by DPES-ScIMAP for the analysis of SH-3 and CV-N data sets. The value of the parameter D is com-
puted as a function of the values selected for the dimension of the projection (m) and the number of candidate neighbors (‘)
(see Materials and Methods for more details).
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significantly reduces the computational time required to
effectively characterize the folding process of SH3.
Figure 2(a) indicates that SH3 is basically a two-state

system, with the folded and unfolded states identified by
the free-energy minima on the left and on the right,
respectively. The free energy barrier separating these
states can be identified as the transition-state ensemble
as discussed in Das et al.,45 where a thorough Pfold analy-
sis69 was used to validate the location of the transition
state as computed by ScIMAP.
Figure 2(b) shows the folding landscape of SH3 as com-

puted by DPES-ScIMAP when D ¼ 0.52, which corre-

sponds tom ¼ 50 and ‘ ¼ 8000, as shown in Table I. A com-
parison between Figure 2(a,b) indicates that the folding
landscapes emerging from the application of ScIMAP and
DPES-ScIMAP are almost identical. To quantify the simi-
larities, we compute the correlation between the reaction
coordinates obtained by ScIMAP and DPES-ScIMAP. Fig-
ure 3 plots the correlation error 1 � (R1 þ R2)/2 as a func-
tion of the parameter D, where R1 and R2 indicate the
Pearson correlation coefficient between the first and sec-
ond reaction coordinates, respectively, as extracted by ScI-
MAP and DPES-ScIMAP. As Figure 3 reveals, the correla-
tion error is practically zero for D ¼ 0.52, indicating that

Fig. 2. Comparison of the folding free energy landscapes associated with SH3 as computed by ScIMAP and the proposed DPES-ScIMAP method.
(a) Two-dimensional free energy profile as a function of the first and second reaction coordinates as extracted by ScIMAP. The free energy is shown
color-coded, as indicated by the color bar at the top, with blue being the lowest and red the highest. (b–d) The free energy landscapes emerging from the
application of DPES-ScIMAP for different values of the parameter D (see Materials and Methods for details on D).

902 E. PLAKU ET AL.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot



the folding landscapes computed by ScIMAP and DPES-
ScIMAP are essentially the same. However, DPES-ScI-
MAP speeds up the computation by a factor of eight times,
as Table II(a) shows.
Figure 2(c) shows the results for a smaller value of D,

namely D ¼ 0.36. A comparison of Figure 2(a–c) reveals
that, for this value of D, certain areas of the folding land-
scape appear slightly different. For instance, in the folding
landscape obtained by DPES-ScIMAP, the basin around
the unfolded state is slightly bigger and the folded state is
less concentrated as well. However, the folding landscape
computed by DPES-ScIMAP still remains remarkably
similar to that of Figure 2(a) computed by ScIMAP, as
indicated by the very small correlation error in Figure 3.
Qualitatively, it can be seen that the locations, relative
sizes and free energy values of the main features are still
in good agreement with Figure 2(a). Since the free ener-
gies are well preserved, thermodynamic computations on
this landscape remain reliable. Table II(a) indicates that
DPES-ScIMAP requires less than 2 CPU hours of compu-
tation on a modern single processor machine, a speedup of
more than 200 times with respect to ScIMAP.
Figure 2(d) shows the results when DPES-ScIMAP uses

an even smaller value of the parameter D, namely D ¼
0.30. As expected, the differences in the folding landscape
are more noticeable for such small value of D. The basin
corresponding to the unfolded state occupies a larger por-
tion of the plot, and the folded state region is also becom-
ing larger. However, the relevant features are still clearly
distinguishable, and a landscape computed in this way
still shows the nature of the process as being primarily
two-state, with a main route connecting the folded and
unfolded states. The efficiency of DPES-ScIMAP is even
higher in this case. As indicated in Table II(a), DPES-ScI-
MAP requires only 1.40 CPU hours, a speedup of 266
times over ScIMAP.
Overall, Figure 2 reveals that DPES-ScIMAP provides a

robust and reliable method for analyzing the folding land-

scape of a two-state protein such as SH3. For a wide range
of parameter values, the differences between the folding
landscapes as computed by DPES-ScIMAP and ScIMAP
are negligible. Figure 3 indicates that the correlation error
quickly approaches zero for D >� 0.31. Additionally, impor-
tant landscape features, such as the folded and unfolded
states, main folding route, and transition-state ensemble,
are highly preserved. Furthermore, DPES-ScIMAP
extracts the most relevant reaction coordinates in a mat-
ter of a few CPU hours as opposed to over 15 CPU days
required by ScIMAP.

Characterizing the Folding Landscape of CV-N

The CV-N protein data was gathered by running molec-
ular dynamics simulations using a Gō-like coarse-
grained20 model, also close to the folding temperature.
The CV-N data set consists of 640,000 protein configura-
tions and each protein configuration is represented by d ¼
3 3 101 ¼ 303 dimensions, corresponding to the (x, y, z)
coordinates of the Ca atoms of the 101 residues of CV-N.
Figure 4(a) shows the folding landscape associated with
CV-N, as computed by ScIMAP. Figure 4(b–d) shows the
folding landscape of CV-N, as computed by DPES-ScIMAP
for different values of the parameter D. Table II(b) indi-
cates that the application of DPES-ScIMAP reduces the
required CPU computational time from several months to
just a few hours.

Figure 4(a) reveals that CV-N folds by going through an
intermediate state when not constrained by disulfide
bonds, in agreement with the results in Cho et al.64

TABLE II. Computational Efficiency of DPES-ScIMAP

Method CPU Time Speedup

(a) SH3
ScIMAP 15.60 days 1.00
DPES-ScIMAP (D ¼ 0.52) 46.42 h 8.07
DPES-ScIMAP (D ¼ 0.36) 1.84 h 203.46
DPES-ScIMAP (D ¼ 0.30) 1.40 h 266.72

(b) CV-N
ScIMAP 82.63 days 1.00
DPES-ScIMAP (D ¼ 0.34) 6.67 h 297.33
DPES-ScIMAP (D ¼ 0.28) 5.00 h 396.64
DPES-ScIMAP (D ¼ 0.24) 4.15 h 477.88

Comparison of the computational efficiency of the proposed DPES-
ScIMAP method over ScIMAP. In the case of DPES-ScIMAP, the value
of the parameter D is indicated inside parentheses. The second col-
umn of each table indicates the CPU time required by ScIMAP and
DPES-ScIMAP. The third column indicates the resulting computa-
tional speedup of DPES-ScIMAP over ScIMAP. The results indicate
that DPES-ScIMAP significantly reduces the computational time––in
many cases, from months to just a few hours.

Fig. 3. Correlation error between the reaction coordinates extracted
by ScIMAP and DPES-ScIMAP to characterize folding as a function of the
parameter D. The error is expressed as 1 � (R1 þ R2)/2, where R1 and R2

denote the Pearson correlation between the first and second reaction
coordinates, respectively.
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The compact folded state, on the right, has the lowest free
energy. A clearly defined route connects it to the interme-
diate state. Being a three-state system, this model of CV-N
presents two transition states, and the Pfold analysis car-
ried out in Cho et al.64 shows that the ensemble of confor-
mations with Pfold ¼ 0.5 corresponds mainly to the inter-
mediate state. Therefore, a Pfold test would not identify a
transition state for this system.
Figure 4(b) shows the folding landscape of CV-N as com-

puted by DPES-ScIMAP whenD¼ 0.34, which corresponds
to m ¼ 50 and ‘ ¼ 780, as shown in Table I. Figure 3 indi-
cates that quantitatively the folding landscapes emerging

from the application of ScIMAP and DPES-ScIMAP are
practically the same. Qualitatively, we observe that all the
features have the same relative placement. The three min-
ima and two main transition states also have almost the
same free energy values. The only differences are the mar-
ginally bigger folded state and a negligible dispersion in
the periphery, as in the case of SH3. The advantage is that
DPES-ScIMAP reduces the CPU computational time from
82 days required by ScIMAP to 6.72 CPU hours, a speedup
of around 300 times, as Table II(b) indicates.

Figure 4(c) shows the results when D ¼ 0.28. Using a
smaller value of the parameter D introduces some changes

Fig. 4. Comparison of the folding free energy landscapes associated with CV-N as computed by ScIMAP and the proposed DPES-ScIMAP method.
(a) Two-dimensional free energy profile as a function of the first and second reaction coordinates as extracted by ScIMAP. The free energy is shown
color-coded, as indicated by the color bar at the top, with blue being the lowest and red the highest. (b–d) The free energy landscapes emerging from the
application of DPES-ScIMAP for different values of the parameter D (see Materials and Methods for details on D).
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in the folding landscape. Namely, the intermediate state is
slowly starting to merge with the unfolded state and the
folded state becomes slightly stretched horizontally. Table
II(b) indicates that DPES-ScIMAP improves the computa-
tional efficiency by around 400 times.
Figure 4(d) shows the results when D ¼ 0.24. This is a

smaller value for the parameter D than in the previous
cases and the resulting differences in the folding land-
scape are more noticeable. The intermediate and unfolded
states have become less distinguishable. Certain features
are however still clearly visible. The folded state, folding
route and transition states remain similar to the original
landscape. The overall shape is still preserved even for
this very small value of D, so a landscape computed in this
way can still prove useful at least for a preliminary analy-
sis. Furthermore, DPES-ScIMAP finishes the computation
in 4.15 CPU hours as opposed to almost three CPUmonths
required by ScIMAP, a speedup of about 480 times.
We note that in the case of CV-N, DPES-ScIMAP main-

tains the accuracy of ScIMAP remarkably well even for
smaller values of the parameter D than in the case of SH3.
We believe the reason is that the Gō-like model used in the
molecular dynamics simulations of CV-N to generate the
input data set is simpler than the coarse-grained model
used in the case of SH3. As summarized in the description
of these protein models in Materials and Methods, the
Gō-like model only considers interactions between native
contacts. Consequently, the underlying connectivity of the
resulting data set is smoother when a Gō-like model is
used instead of the coarse-grained model defined by Das
et al.,10 where nonnative interactions are also present. We
speculate that DPES-ScIMAP is able to capture the con-
nectivity of the data set for smaller values of D in the case
of CV-N, since the projection of a smoother data set of pro-
tein configurations onto a Euclidean space better pre-
serves the proximity relations.
Overall, Figure 4 indicates that DPES-ScIMAP effec-

tively characterizes the folding landscape of even large

proteins with a complex folding mechanism, such as CV-
N. The extracted reaction coordinates clearly identify im-
portant features of the folding landscape including the
folded and unfolded states, the transition-state ensemble,
and the on-route intermediate ensemble. Such results are
obtained at a fraction of the computational cost required
by ScIMAP. By reducing the CPU computational time
from months to 4–7 hours, DPES-ScIMAP provides a reli-
able and practical tool for analyzing folding landscapes
associated with large proteins.

A Closer Look at the Accuracy of DPES-ScIMAP

The results obtained in the case of SH3 and CV-N reveal
that DPES-ScIMAP is a fast method and practically as
reliable as ScIMAP. As detailed in Materials and Methods,
DPES-ScIMAP computes proximity relations by projecting
the data set of protein configurations onto a Euclidean
space. Changes in the proximity relations due to the pro-
jection could impact the underlying connectivity of the
data set and consequently alter the reaction coordinates
that are extracted.

The claim is that DPES-ScIMAP preserves well the pro-
tein folding landscape since for a wide range of projec-
tions, differences in the proximity relations as computed
by ScIMAP and DPES-ScIMAP are negligible. The analy-
sis presented in this section provides quantitative evi-
dence that confirms the above claim by examining differ-
ences in distances between exact and approximate nearest
neighbors. The accuracy is high when such differences are
negligible.

Figure 5 shows the results on the quality of approximate
nearest neighbors computed by DPES-ScIMAP for the
SH3 and CV-N data sets. We plot the RFD0.1 and RDE
errors as functions of the parameter D in Figure 5(a,b),
respectively. We observe in Figure 5(a) that for very small
values of D, the RFD0.1 error is high. This indicates that
most of the approximate nearest neighbors of a point s are

Fig. 5. A closer look at the accuracy of DPES-ScIMAP. Error measurements of the proximity relations as
computed by ScIMAP and DPES-ScIMAP as a function of the parameter D.
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more than 1.1 times farther away from the k-th exact
nearest neighbor of s. Consequently, the projection when
D is very small alters the proximity relations. However,
Figure 5(b) indicates that the RDE error is reasonably
small. This implies that although the proximity relations
are modified, the approximate nearest neighbors are not
very far from the exact nearest neighbors. As a result, the
proximity relations after the projection capture the con-
nectivity of the data set, although not perfectly, and thus
the folding landscapes emerging from the application of
DPES-ScIMAP still preserve many of the important fea-
tures, as the analysis of SH3 and CV-N revealed. More
importantly, Figure 5(a,b) shows that even a small
increase in the value of D causes the RFD0.1 and RDE
errors to drop significantly. We observe that when D >
0.30, the RFD0.1 and RDE errors are close to zero. This
indicates that differences between approximate and exact
nearest neighbors are negligible. Therefore, the projection
preserves remarkably well the proximity relations of each
point and consequently the connectivity of the data set. As
a result, the folding landscapes computed by ScIMAP and
DPES-ScIMAP are practically indistinguishable.

CONCLUSIONS

We have presented a practical tool for reliably analyzing
molecular motion and extracting reaction coordinates
from simulation data. The application of the proposed
DPES-ScIMAP method to the folding of a coarse-grained
protein model of SH3 and a Gō-like model of CV-N reveals
remarkably good agreement with the results obtained by
using the recently proposed ScIMAP45 method. The main
advantage of DPES-ScIMAP is that while it is practically
as reliable and robust as ScIMAP, it significantly reduces
the computational cost. In many instances, the computa-
tional benefits of DPES-ScIMAP were dramatic. While
ScIMAP requires months of CPU computation time,
DPES-ScIMAP requires only a few CPU hours, making it
possible to analyze molecular motions using only a single
processor instead of hundreds of processors. The results
presented in this work establish DPES-ScIMAP as a prac-
tical tool for conducting computational folding studies and
analyzing motions of considerably large proteins and other
biomolecular systems. Potential directions for future work
include the analysis of much larger biomolecular systems
and the development of a mathematical framework to bet-
ter analyze the accuracy and computational efficiency of
DPES-ScIMAP.
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