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INTRODUCTION

Biological processes at the molecular level usually involve motion

and structural changes in biomolecules, such as proteins and peptides.

Most in silico studies start by gathering large sets of conformational

data through some form of simulation, for example molecular dynam-

ics (MD).1–3 When provided with a physical model of the mole-

cule(s) to simulate, these techniques produce as output abundant con-

formational samples in the form of Cartesian (x,y,z) coordinates for

each of the molecule’s atoms. As the computational cost of MD simu-

lations increases rapidly with atom count, significant research effort

has been devoted to improve the time scales sampled for large molec-

ular systems while retaining the most interesting simulation details, at

the expense of some accuracy in the modeling. Toward this goal, sev-

eral coarse-grained or multiresolution molecular models have been

proposed (e.g., Refs. 4–29) that approximate the dynamics of a system

by considering a reduced set of effective degrees of freedom, at least

in part of the system, or part of the simulation time. Other methods

to speed up simulations include taking adaptive and/or larger simula-

tion steps,30–32 using different forms of ‘‘accelerated’’ molecular

dynamics,33–36 replica exchange/parallel tempering,37–40 implicit

solvent models,41 and large-scale distributed computing.42

Once abundant molecular samples of the studied process have been

gathered through simulations, the data are subjected to analysis. Input

data given as Cartesian coordinates is always high-dimensional, since

there are three coordinates (or parameters) per atom. A central ques-

tion is whether the configurational space spanned in the simulation

can be described by using a few essential degrees of freedom repro-

ducing the collective motion of the system. To address this question,
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ABSTRACT

The automatic classification of the wealth of

molecular configurations gathered in simula-

tion in the form of a few coordinates that help

to explain the main states and transitions of

the system is a recurring problem in computa-

tional molecular biophysics. We use the

recently proposed ScIMAP algorithm to auto-

matically extract motion parameters from sim-

ulation data. The procedure uses only molecu-

lar shape similarity and topology information

inferred directly from the simulated conforma-

tions, and is not biased by a priori known in-

formation. The automatically recovered coordi-

nates prove as excellent reaction coordinates

for the molecules studied and can be used to

identify stable states and transitions, and as a

basis to build free-energy surfaces. The coordi-

nates provide a better description of the free

energy landscape when compared with coordi-

nates computed using principal components

analysis, the most popular linear dimensional-

ity reduction technique. The method is first

validated on the analysis of the dynamics of an

all-atom model of alanine dipeptide, where it

successfully recover all previously known meta-

stable states. When applied to characterize the

simulated folding of a coarse-grained model of

b-hairpin, in addition to the folded and

unfolded states, two symmetric misfolding

crossings of the hairpin strands are observed,

together with the most likely transitions from

one to the other.
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it is crucial to find ways to reduce the dimensionality of

the simulated conformations to render the process

understandable, without the need to visualize molecular

trajectories directly.

For these purposes, so-called reaction coordinates have
been devised over the years to succinctly describe molecu-
lar conformations, so they can be classified along a few,
meaningful axes. Such coordinates are oftentimes used to
construct free-energy landscapes and quantify the thermo-
dynamics of the molecular process under consideration.
Usually, reaction coordinates are either chosen from a pool
of previously proposed ones, or empirically designed to
suit a particular molecular system (e.g., Refs. 43, 44).
Recently, methods have been proposed to automate the
selection of reaction coordinates for a molecular process.
In the last few years several groups have worked on the
definition of the theoretical framework and computational
approaches to extract a minimal number of reaction coor-
dinates in high-dimensional systems.45 Although it does
not provide a complete view of all the relevant contribu-
tions emerging in this very active field, it is worth men-
tioning as significant examples the Transition Path
Theory46,47 and Transition Path Sampling,48–51 the
Markovian State Model,52–54 Milestoning,55–57 the
Nudged Elastic Band Method,58,59 and the String
Method.60–62 Other recent, relevant examples include an
automated method proposed63 for identifying an
‘‘optimal’’ set of reaction coordinates by using genetic neu-
ral networks to mine a database of known reaction coordi-
nates and physical variables, and a combinatorial pattern
discovery approach64 that first turns each simulated con-
formation into a seven-dimensional vector of known reac-
tion coordinates, then applies clustering to these vectors.

In this context, we have recently proposed the ScIMAP
method65 to automatically extract the essential parame-
ters spanning the configurational landscape associated
with a molecular motion, by using only the simulated
conformations, without any bias by a priori information.
We call such parameters structural reaction coordinates
hereafter. The idea is to use dimensionality reduction
methods66,67 to describe the motion landscape with few,
but meaningful, automatically recovered structural reac-
tion coordinates. The purpose of dimensionality reduc-
tion is to extract the main features from a set of points,
which are initially represented by a large set of redundant
parameters. Most dimensionality reduction techniques
produce as a result a lower-dimensional representation for
each point that summarizes the variability of the (high-
dimensional) original representation of the points. Ideally,
one would like a low-dimensional Euclidean representa-
tion of the points that would serve as a ‘‘projection’’ or
‘‘map’’ of the input data. Such a low-dimensional map is
easy to visualize and the process of interest can then be
succinctly described by looking at this projection.

Dimensionality reduction is used in a plethora of

fields, including classification problems, data mining,

image analysis and recognition,68–72 structural and com-

putational biology,73–75 economics, and language inter-

pretation and analysis.76 Molecular simulation data

presents interesting challenges for dimensionality reduc-

tion. First of all, these data are highly nonlinear in

nature. Also, data from molecular simulations tend to

cluster around energy minima, producing uneven sam-

pling that varies greatly in density throughout the input

space.

Several mathematical tools are available to perform

dimensionality reduction automatically, and the output

of these tools can be interpreted in the particular applica-

tion domain. Linear methods, such as principal compo-

nents analysis (PCA),77 find a projection of the input

data into the hyperplane best preserving the data vari-

ability. PCA has been largely used on molecular data, for

example to analyze protein flexibility around equilib-

rium74,78 and to capture essential dynamics.75 However,

linear methods such as PCA fail when the data distribu-

tion is highly nonlinear (as it is usually the case in large

scale molecular motions). Nonlinear methods aim to

recover an intrinsic parameterization for a data set that

lies on a nonlinear (yet low-dimensional) surface, which

is the case for most interesting molecular processes. Sev-

eral nonlinear dimensionality reduction methods exist.

Parametric methods augment linear methods with the

notion of a kernel function and force the data to lie on

this surface, for example as in kernel PCA.79 Nonpara-

metric methods, on the contrary, try to infer the nonli-

nearity of the data from the data itself. The most popular

methods include Isomap80 and locally linear embedding

(LLE).81 Here, we use the recently introduced ScIMAP

method,65 based on the Isomap algorithm. This proce-

dure relies on the input data itself to infer its inherent

topology using only a notion of similarity between the

input points. Details are given in the next section.

In this work, we apply the ScIMAP method to com-

pute structural reaction coordinates for two systems

where a direct relationship between the computed

parameters and structural properties of the molecules is

easy to find. The results demonstrate the capabilities of

the method and its value as a versatile and general analy-

sis tool. The first system considered, an all-atom model

of alanine dipeptide, has been studied thoroughly by sim-

ulation82–84; it is well known that with the force field

used here (Amber99 with implicit water) only two

parameters (namely, the dihedral angles /, and w) are

sufficient to accurately span the configurational space of

the molecule at standard conditions. The application of

ScIMAP correctly recovers these coordinates and identi-

fies all the known states of the molecule. The second sys-

tem studied, a coarse-grained b-hairpin, is used to show

how the topological approach in the ScIMAP method

identifies shapes and transitions that are not easy to dis-

tinguish with traditional reaction coordinates. For both

cases, the automatically recovered parameters are

computed using the same, unaltered ScIMAP method
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and molecular shape similarity as a basic operation, and

serve as excellent structural reaction coordinates to char-

acterize the molecular process.

MATERIALS AND METHODS

In this section, we describe the nonlinear dimensional-

ity reduction technique we use to analyze MD trajecto-

ries. It is first presented in its pure mathematical form,

and then adapted to work with molecular conformations.

We also introduce the two molecular models and data

sets to which we apply the method to automatically

extract structural reaction coordinates.

The Isomap algorithm

The Isomap algorithm80 is a nonparametric, nonlin-

ear dimensionality reduction technique. It takes as input

a set S of abstract ‘‘points,’’ which are assumed to

lie on a low-dimensional, nonlinear surface (or mani-

fold), and a similarity measure between them,

d : S3 S ! R, so that d(xi, xj) is the distance between

points xi and xj. The Isomap algorithm requires as

input the number of reduced dimensions to be consid-

ered and returns in output the error expected when the

requested reduced dimensionality is used instead of the

whole space. An ‘‘optimal’’ effective dimensionality for a

given data set can therefore be estimated by considering

the minimum number of dimensions providing a satis-

factorily small error (see Refs. 65,80 for details).

Using the provided similarity measure, Isomap infers

the inherent topology (or connectivity) of the manifold

where the points reside to lie by connecting each point

to its nearest neighbors according to the distance d(xi,

xj). For each input point, it then computes only a few

coordinates such that the Euclidean distance between the

points’ low-dimensional coordinates best preserve the ge-

odesic distance between all pairs of points. The geodesic

distance between a pair of points is defined as the length

of the shortest path between the points, when the path is

confined to the surface where the points lie. By preserv-

ing all geodesic distances (rather than direct distances)

Isomap ‘‘unrolls’’ the low-dimensional manifold into its

intrinsic parameterization, as shown in Figure 1. A

detailed implementation of the Isomap algorithm is pro-

vided in the original article.80 The key point of the algo-

rithm is the approximation of the geodesic distance as

the shortest path on the nearest neighbors network on

the data points. In practice, this is achieved through the

following three steps:

1. Build a neighborhood graph, G: For each point, find

the set of points that are nearest neighbors on the

manifold using the distance measure d(xi, xj). The

typical approach is to select the k nearest neighbors to

every point. Alternatively, a distance cutoff, e, can be

introduced, and all pairs of points closer than e are

considered nearest neighbors.

2. Compute the geodesics: The geodesics are approxi-

mated as the shortest paths on G for all pairs of

points. Construct a matrix D where Dij is the shortest

path between xi and xj.

3. Compute the low-dimensional embedding: Use multi-

dimensional scaling (MDS)85 on the matrix D of esti-

mated geodesic distances computed in step (2). This

produces coordinates for each point that best preserve

the geodesic distances. These coordinates, when plot-

ted as Euclidean coordinates, have the effect of

‘‘unrolling’’ the nonlinear surface (see Fig. 1).

The advantages of the Isomap method over linear

dimensionality reduction techniques stem from the fact

that it deduces the topology of the input data by con-

necting nearby points, thus it ‘‘follows’’ the nonlinear

process by computing coordinates that preserve global

information based on the local similarity measure. The

main disadvantage of Isomap is the computational cost

of computing the neighborhood graph G, which is in

general O(n2), and dependent on the cost of the distance

measure d(xi, xj). To alleviate the computational cost and

memory requirements of steps (2) and (3) mentioned

earlier, another version of Isomap, called Landmark Iso-

map,86 was devised. It relies on the fact that if the data

is truly low-dimensional, then it should suffice to pre-

serve only a subset of the geodesic distances. In other

words, instead of preserving all possible pairs of geodesic

distances, it preserves only the geodesic distance from

each point to a subset of landmark points, chosen among

the original data set. Generally, as many landmark points

as allowed by the computer system’s memory are used to

avoid the risk of underestimating the number needed. To

adapt Isomap to work with molecular trajectories, an

appropriate distance measure d(xi, xj) is needed, when xi
and xj are molecular conformations given as the Carte-

sian coordinates of the constituent atoms. A natural mea-

sure of similarity for different conformations of the same

molecule is least-root-mean-squared-deviation (lRMSD).

ScIMAP: scalable isomap method

The ScIMAP method65 includes some improvements

over Isomap, such as an efficient parallelization of all

three steps discussed earlier, and a method to map

redundant points into the recovered coordinate space

that is much less resource-demanding than including all

the data points in the analysis. These improvements are

crucial when working with big data sets of molecular

conformations and allow the application of nonlinear

dimensionality reduction to extract effective global coor-

dinates from extensive configurational sampling. A

detailed implementation of the algorithm and its testing

Nonlinear Dimensionality Reduction for Peptides
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has been described in Ref. 65, where ScIMAP has been

used to characterize the folding process of a coarse-

grained model of protein SH3, and ScIMAP coordinates

have been shown to correctly locate the transition-state

ensemble on the resulting free energy landscape.

However, the first applications of ScIMAP have not

focused on the meaning of the coordinates or the effect

of different molecular models on the results, which are

the goals of the present article.

The computational complexity of the ScIMAP algo-

rithm is dominated by the cost of computing the near-

est-neighbors graph for the input data set. The efficient

computation of nearest-neighbors remains an active

research area; it has been shown that in high-dimensional

spaces the scaling of the nearest-neighbors graph calcula-

tions is bounded by d 3 N2,87 where N is the number

of conformations in the data set and d is the dimension-

ality of the system. The ScIMAP implementation used

for this work was based on the open-source package

OOPSMP88 to compute the nearest-neighbors graph.

OOPSMP, which was originally developed for motion

planning, contains robust and efficient implementations

of nearest-neighbors algorithms, and it scales quadrati-

cally with N and linearly with d (as expected).

It is worth mentioning the recently proposed applica-

tion of the distance projection onto Euclidean spaces

(DPES) approximation to ScIMAP,89 which significantly

speeds up the neighborhood graph computation at the

expense of a small approximation in the identification of

neighboring points, as shown by the application of the

DPES method originally applied in the robotic motion

planning domain.90 As a result, the overall method is

general and efficient for large-scale data analysis. As the

focus of this work is mainly on the interpretation of the

recovered coordinates, the DPES approximation will not

be used.

Alanine dipeptide model

We first present the application of ScIMAP to a small

biomolecule that has been studied thoroughly in

the past, the alanine dipeptide. We used an all-atom

model consisting of 22 atoms, namely CH3��CONH��
CHCH3��CONH��CH3. This peptide is composed by a

very short piece of backbone and one alanine side chain

attached to it. Because the two peptide bonds present in

the peptide are quite rigid, the configurational space of

the molecule can be well approximated by using only the

two torsions around the Ca atom, named / and w, as
shown in Figure 2.

A long MD simulation was performed using the Sander

module of the AMBER 9.0 package91 using an implicit

water model to simulate the molecule in solution. The sys-

tem was first randomized at 400 K, then equilibrated at

Figure 2
Alanine dipeptide most populated configurations: (a) Right-turn and

(b) extended. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 1
The Isomap algorithm. Top: An intrinsically nonlinear 2D data set,

given as 3D data. The neighborhood graph is overlaid for illustration.

Bottom: The resulting two-dimensional embedding coordinates for each

point, as resulting from the application of the Isomap algorithm. The

neighborhood graph is overlaid for comparison. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.
com.]
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room temperature (300 K). A sampling of 500,000 confor-

mations was gathered from a molecular dynamics trajec-

tory corresponding to 100 ns of simulated time, at 300 K.

Several computational studies82–84,92,93 have used

the backbone (/, w) angles to explore the molecule’s

conformational landscape, both in vacuum and in solu-

tion. These two angles determine the overall shape of the

peptide, and are sufficient to characterize its configura-

tional landscape. It is worth mentioning that results

obtained with different force fields and parameterization

of the alanine dipeptide system have been reported in the

literature; while simulations with different choice sug-

gested that other degrees of freedom (besides the / and

w dihedral angles) participate to the dynamics,y in the

solvated model used here as well as in explicit water sim-

ulation there was no significant motion of this angle

other than a vibration around equilibrium.

Several different (meta)stable states of the peptide as a

function of its (/, w) angles have been characterized in

previous studies. In particular, at standard conditions,

there are two main conformations, clearly distinct from

one other, as shown in Figure 2:

1. Extended: Also called ‘‘C7eq’’, ‘‘C5’’ or ‘‘b-like’’ in the lit-

erature, since it is the more extended shape [Fig. 2(b)].

2. Right-turn: Also called ‘‘aR’’ or ‘‘a-like’’ since it

resembles a tiny piece of a right-handed helix [Fig.

2(a)].

Figure 3 shows the free energy profile associated with

the system, as measured on the sampled data, as a

function of the (/, w) dihedral angles. Free energy

(potential of mean force) was computed using the

WHAM method.94–99 The C5 state corresponds to the

top-left corner of the free energy plot, whereas the aR

state corresponds to the other main minimum, south-

east of the C5 state. Several other less populated states of

alanine dipeptide have been observed and characterized

in the literature. The ones presented here are those corre-

sponding roughly to the center of the local minima on

the free energy plot:

1. Left-turn: Also called ‘‘aL.’’ This corresponds to the

lonely minimum in the middle-right of the plot, and

is extremely unlikely with the given model.

2. aP: This is the minimum west of aR, another helix-

like conformation.

3. PII: Also a less likely minimum. The physical reasons

for this minimum have been studied in the

literature.84

The same conformational sampling used to produce

the free energy plot of Figure 3 is used for the applica-

tion of the the ScIMAP method. The results are pre-

sented in Results and Discussion section.

b-hairpin Model

A b-hairpin system is considered as a second example.

In particular, the Honeycutt–Thirumalai Ca coarse-

grained model.100 This coarse-grained model allows for

a faster sampling of larger scale motions and disregards

individual atomic vibrations that do not contribute to

the overall hairpin shape. The fact that this model has 22

effective ‘‘particles’’ yields the same computational cost as

for the alanine dipeptide model for the basic shape simi-

larity operation in the ScIMAP algorithm, and provides a

good example of how the method can be applied inde-

pendently from the molecular model used. The coarse-

grained model for the hairpin considers three distinct

amino acid types:

� P: Polar or hydrophilic residues.

� H: Hydrophobic residues.

� N: Neutral residues.

The sequence for the hairpin studied is:

PH9ðNPÞ2NHPH3PH

The folded conformation of the b-hairpin is shown in

Figure 4, and consists of two strands, one two residues

Figure 3
Alanine dipeptide free energy as a function of the (/, w) backbone
angles.

yAnother angle was found to have an important span, but only in vacuum.83,84

This angle is defined as the torsion formed by the atoms O��C��N��Ca, before

the / angle.
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longer than the other, connected by a hinge region (the

(NP)2 stretch of the sequence) and packed together. An

exhaustive sampling of the conformational space was

obtained by running Langevin dynamics simulation,

around the folding temperature Tf (Tf 5 0.7 in the sys-

tem natural units).101 The data sampling was obtained

by running eight independent simulations starting from

different random initial conditions. Each of the eight

simulations gathered 45,000 conformations for a total of

360,000 conformations.

The coarse-grained energy function assigns a certain

degree of rigidity to the strands, and more flexibility to the

hinge residues.100 However, the hairpin still exhibits bend-

ing and twisting of the strands. Previous computational

studies100,101 have shown that this hairpin model exhibits

a two-state folding behavior where only a closed (folded)

and an open (unfolded) state are significantly populated.

RESULTS AND DISCUSSION

We present the results obtained from the application

of the ScIMAP algorithm to both data sets. We show that

in both cases the first two coordinates are sufficient to

completely characterize the conformational landscape

spanned by MD.

Alanine dipeptide

The ScIMAP algorithm was applied to the 500,000

simulated conformations using lRMSD as the distance

measure, as explained earlier. To build the neighborhood,

several values of k (namely, 10, 15, 20, and 25) were used

to build a neighborhood graph. There was no significant

difference in the recovered low-dimensional landscape

obtained with different values of k, other than a slight

shift in the placement of the free-energy minima, attest-

ing to the robustness of the method against varying

neighborhood parameters, as previously shown.65 Five

thousand landmarks were chosen randomly from the

trajectory.

Some care needs to be taken in the definition of the

lRMSD metric regarding conformations associated with

the same physical state of this system. In particular, the

hydrogen atoms in the CH3 groups of the alanine dipep-

tide present a C3 symmetry around the C atom. The

lRMSD metric, which considers each atom individually,

will classify all three 1208 rotationally symmetric posi-

tions of the hydrogen atoms as different, when in fact

they should be considered indistinguishable from a

chemical perspective. To circumvent this problem, the

lRMSD distance for this system is defined modulus 1208
rotations of hydrogens around the C atom. This allows

to consider the hydrogen atoms as indistinguishable

while their vibrations are still sampled. The free-energy

landscape as a function of the first few ScIMAP coordi-

nates is shown in Figure 5. All the main states of the

peptide described in Meterials and Methods section are

correctly recovered as free-energy minima. In particular,

the first ScIMAP coordinate clearly distinguishes between

the ‘‘extended’’ and ‘‘helical’’ states; adding the second

ScIMAP coordinate separates the two distinct routes

connecting the minima.

Figure 3 shows that there are two regions where the w
angle makes the transition from the helical to the

extended shapes: around w � 558 (near the top of the

plot) and w � 21008 (wrapping around the vertical axis,

near the bottom of the plot). In the low-dimensional

embedding, the first two coordinates clearly capture the

circular topology of w.
Since / is not sampled in its full 3608, the use of one

extra dimension (the third ScIMAP coordinate) more

clearly separates the two main conformational states. The

less likely aL state is identified as a cluster of its own,

separated from the other states.

The ScIMAP coordinates are ordered by data variance,

so that the first coordinate explains the most data vari-

ability, the second coordinate adds the most variability

after that, and so on. Figure 6 shows that the first two

Figure 4
Model of a 22-residue b-hairpin rendered as a tubular representation,

showing the ‘‘closed’’ (folded) conformation. [Color figure can be viewed

in the online issue, which is available at www.interscience.wiley.com.]
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coordinates provide a good representation of the data, as

the residual variance for coordinates higher than two is

<0.05. Residual variance for each dimension d is com-

puted as 1 2 Rd, where Rd is the squared correlation

coefficient between the original (geodesic) distances and

the corresponding Euclidean distances for the same pair

of conformations, using the first d low-dimensional coor-

dinates. Some features of interest may still be captured in

dimensions higher than the third coordinate, although

they would correspond to more localized events. In par-

ticular, a careful analysis of the fourth, fifth, and sixth

ScIMAP coordinates provides a classification of the dif-

ferent configurations of the capping CH3 dihedral angle

(data not shown).

For comparison, results obtained from the application

of PCA are shown in Figure 6. Note that for this system,

the PCA projection resembles the ScIMAP results, in the

sense that the conformations are projected into a barrel-

like shape. PCA was applied to the coordinates after

re-positioning the hydrogen atoms to take into account

of their indistiguishability, as explained earlier. Because

of the small size of the system and the fact that the

atoms do not move far from their equilibrium positions,

PCA can capture the main motions and the rotation

around the w and / angles. However, the linear projec-

tion done by PCA mixes the cluster boundaries and does

not provide the clean separation (and transitions) of the

conformational states that ScIMAP does. In other words,

even though four main minima are observed (labeled in

Fig. 6), the correspondence with the four main states is

not as clear as with the ScIMAP coordinates. In addition,

the aL state is mixed together with the other two helix-

like states, and cannot be distinguished in Figure 6;

clearly, a PCA projection of coordinates cannot capture

the difference between a right- and a left-turn of the ala-

nine dipeptide; consistently, the residual variance com-

parison reflects the lower accuracy of PCA with respect

to ScIMAP. Residual variance is generally considered the

measure of choice to estimate the error in dimensionality

reduction,80 and it has been previously used to compare

Isomap and PCA coordinates in protein dynamics.65

b-hairpin

The ScIMAP results presented here for the analysis of

the b-hairpin configurational data were obtained using

lRMSD as distance measure and k 5 12 neighbors.

ScIMAP embedding for k 5 15, 10, 5, and 3 were also

performed to check the robustness of the procedure, and

yield almost identical results. It is worth noting that the

application of the ScIMAP method to this system is no

more expensive than for the all-atom alanine dipeptide

model presented earlier: in both cases the data consist of

three-dimensional configurations with 22 ‘‘atoms.’’ Figure

7 shows the free-energy profile for the b-hairpin model,

as a function of the first three ScIMAP coordinates. The

first ScIMAP coordinate clearly distinguishes between the

‘‘closed’’ (free energy minimum on the left side in Fig.

7), and the ‘‘open’’ (free energy minimum on the right

side) hairpin conformations, accounting for the main

direction of the folding reaction. The second ScIMAP

coordinate reveals additional features on the folding pro-

cess; the free energy plot as a function of the first two

ScIMAP coordinates exhibits a symmetry along the sec-

ond coordinate, which can be explained by looking at

representative hairpin shapes placed by ScIMAP in the

two local free-energy minima symmetrically located,

above and below the deeper minimum corresponding to

the closed state, as illustrated in Figure 7. Conformations

labeled as M1 and M2 in Figure 7 (representatives from

the top and bottom minima, respectively) correspond to

two stereo-chemically different partially misfolded twists

of the hairpin. It is worth stressing that the Isomap’s

Figure 5
Free energy versus the first three ScIMAP coordinates for the

indistinguishable hydrogen model of the alanine dipeptide. First to

second coordinates (top), and first to third coordinates (bottom).
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geodesic distance formulation, used in ScIMAP, auto-

matically captures the topological difference between M1

and M2, while the lRMSD distance alone would have

classified both configurational states as very similar. The

transitions between the M, F, and U states clearly show

that the hairpin cannot directly ‘‘jump’’ from an M1 con-

formation to an M2 conformation without separating the

strands first. This can happen in two ways: either the

hairpin folds into the F state, which leaves both strands

in antiparallel position allowing their re-positioning,

or the hairpin unfolds into the U state from which the

re-positioning can also occur. The free-energy surface as

a function of the first two coordinates clearly shows these

possible transitions as saddle points.

In Figure 7, the third ScIMAP coordinate is also

shown to provide a more exhaustive analysis. This

dimension adds to explaining the data variability but

does not introduce new minima or transitions. A free

energy landscape computed as a function of the first

three PCA coordinates is shown in Figure 8 for compari-

son. Since the hairpin’s conformational landscape is rela-

tively simpler than a full-size protein,65 PCA can roughly

separate open and closed states, and has a third mini-

mum to the right, also roughly corresponding to a single

semi-open state. However, the separation is less clear. A

representative ensemble of conformations picked from

the F and M regions includes many misclassified shapes

that fall into both minima. Obviously, the M1 and

M2 states explained earlier, which ScIMAP separates, and

can be accessed through the F or U states, cannot be

clearly distinguished by PCA. The residual variance of

ScIMAP and PCA as a function of the number of dimen-

sions used is also shown. Quantitatively, ScIMAP clearly

classifies the data variance better with just one coordi-

nate. Qualitatively, the nonlinear nature of ScIMAP

captures more interesting features than PCA, beyond the

residual variance comparison. The clear separation of the

two stereo-chemically symmetric states illustrates

Figure 6
Free energy as a function of the first three PCA coordinates for the b-hairpin model (left). Residual variance of PCA compared with ScIMAP

(right).
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ScIMAP’s superior performance in identifying states and

transitions.

Resource utilization

The computation of ScIMAP coordinates is more com-

putationally expensive than traditional structural reaction

coordinates, since global information is being preserved.

This is reflected in the topology-preserving mapping,

which is based on the neighborhood around each input

point. The computation of the nearest-neighbors graph

remains the bottleneck of the procedure. For both mod-

els presented here, the ScIMAP calculations were per-

formed on a cluster of 50 processors (AMD Opteron

275, at 2.2 GHz). The running times and memory usage

are summarized in Table 1. Wall time refers to the actual

time elapsed (as opposed to the time spent only on com-

putation-exclusive CPU cycles). Wall time is typically

used to report performance of parallel algorithms since it

includes time spent on communication between process-

ors. Table 1 clearly shows that the neighbor computation

stage takes significantly longer than the other two stages.

However, this is the stage that requires the least amount

of memory. On the other hand, building a matrix of geo-

desic distances of size n 3 nl, where n is the number of

points and nl the number of landmarks, requires almost

all of the memory available to each processor. The

amount of memory used per processor can be reduced

Figure 7
Free energy plots using the first three ScIMAP coordinates. Representative ensemble pictures for the four main minima are shown in the bottom

right panel.
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by using more processors and/or fewer landmarks, but

maximizing the number of landmarks results in higher

quality coordinates for a given number of processors.65

Computing the final coordinates requires the computa-

tion of the top eigenvalues and corresponding eigenvec-

tors of a similarly sized matrix.

CONCLUSION

We have presented the results obtained in the applica-

tion of the ScIMAP algorithm to analyze a large configu-

rational sampling of an all-atom model of alanine

dipeptide, and a coarse-grained b-hairpin model. We

have shown that the low-dimensional representation

Figure 8
Free-energy plots using the first three PCA coordinates. The U, F, and M states only roughly correspond to those in Figure 7. The residual variance

versus number of computed dimensions for both ScIMAP and PCA is shown to the right.

Table I
Resource Utilization of ScIMAP

ScIMAP stage Wall time Memory

(a) Alanine dipeptide (500,000 conformations)
Neighbor finding (k 5 20) 7 h 70 MB
Geodesics (5000 landmarks) 10 min 1800 MB
Embedding coordinates 12 min 2200 MB
(b) b-Hairpin (360,000 conformations)
Neighbor finding (k 5 12) 5 h 50 MB
Geodesics (5000 landmarks) 4 min 1200 MB
Embedding coordinates 3 min 1500 MB

Computational resource utilization of ScIMAP for the systems studied. Wall time

indicates the actual time used by 50 processors in parallel. The memory usage

shown in per-node.
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obtained by ScIMAP, using shape similarity as a basic

operation and no information on the actual degrees of

freedom, successfully classifies the samples along axes

that have a high correspondence with a priori known pa-

rameters. In the case of alanine dipeptide, the / and w
backbone angles are recovered as the most important

coordinates of the system and the first automatically

recovered coordinate differentiates between the two main

shapes of the peptide: extended and helical. In the case

of the coarse-grained model of a b-hairpin the first

ScIMAP coordinate follows the main folding/unfolding

reaction, whereas the second coordinate distinguishes two

stereo-chemically symmetric partially misfolded states.

This example shows the power of the geodesic formula-

tion of ScIMAP, separating geometrically similar states

that cannot be reached directly one from the other, and

the possible routes connecting them.

This work illustrates the robustness of the ScIMAP

method against different models and further validates its

usefulness to automatically extract structural reaction

coordinates from simulation data, in an unbiased way.

Even though computing these coordinates is computa-

tionally more expensive than computing most reaction

coordinates used to date, in many cases it may eliminate

the need of devising custom, empirically designed, reac-

tion coordinates.

An intriguing question that remains to be answered is

whether a physical interpretation can be generally associ-

ated to the reaction coordinates obtained by the ScIMAP

algorithm. At this stage of development, the method does

not provide a straightforward way to interpret the result-

ing coordinates, nor if/what particular features is missed

when a reduced number of variables is used. In the sys-

tems discussed here, we could a posteriori interpret the

extracted coordinates by comparing them with a priori

known physical observables (e.g., specific dihedral angles,

opening of the angle between the hairpin strands); work

toward a more general understanding of the meaning (if

any) of automatically extracted reaction coordinates is

ongoing.
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