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Abstract: This paper presents a kinodynamic motion planner, Kinodynamic Mo-
tion Planning by Interior-Exterior Cell Exploration (KPIECE), specifically designed
for systems with complex dynamics, where physics-based simulation is necessary. A
multiple-level grid-based discretization is used to estimate the coverage of the state
space. The coverage estimates help the planner detect the less explored areas of the
state space. The planner also keeps track of the boundary of the explored region of
the state space and focuses exploration on the less covered parts of this boundary.
Extensive experiments show KPIECE provides computational gain over state-of-the-
art methods and allows solving some harder, previously unsolvable problems. A
shared memory parallel implementation is presented as well. This implementation
provides better speedup than an embarrassingly parallel implementation by taking
advantage of the evolving multi-core technology.

1 Introduction

Over the last two decades, motion planning [4, 15, 17] has grown from a field
that considered basic geometric problems to a field that addresses planning for
complex robots with kinematic and dynamic constraints [5, 25]. Applications
of motion planning have also expanded to other fields such as graphics and
computational biology [16].

Much of the recent progress in motion planning is attributed to the devel-
opment of sampling-based algorithms [4, 17]. A sampling-based motion plan-
ning algorithm can only be probabilistically complete [9, 12], which means if a
solution exists, it will be eventually found. One of the first successful sampling-
based motion planners was the Probabilistic Roadmap Method (PRM) [10].
This method provided a coherent framework for many earlier works that used
sampling and opened new directions for research [2]. In the case of realistic
robots, taking dynamic constraints into account (kinodynamic motion plan-
ning) is a necessity. Sampling-based tree planners such as Rapidly-exploring
Random Trees (RRT) [11, 19], Expansive Space Trees (EST) [6, 7] have been
successfully used to solve such problems. These planners build a tree of mo-
tions in the state space of the robot and attempt to reach the goal state. Many
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variations of these planners exist as well (e.g., [8, 18, 22]). More recent planners
have been designed specifically for planning with complex dynamic constraints
[14, 21]. The Path-Directed Subdivision Tree (PDST) planner [13, 14] has been
used in the context of physics-based simulation as well.

This work presents a new motion planner designed specifically for handling
systems with complex dynamics. This planning algorithm will be referred to as
Kinodynamic Planning by Interior-Exterior Cell Exploration (KPIECE). While
there are other planners for systems with complex dynamics, KPIECE was de-
signed with additional goals in mind. One such design goal is the ease of use
for systems where only a forward propagation routine is available (that is,
the simulation of the system can be done forward in time). Another goal is
that no state sampling and no distance metric are required. These limita-
tions make KPIECE particularly well suited for complex systems described by
physical models instead of equations of motion, since in such cases only for-
ward propagation is available and sampling of states is in general expensive.
Since KPIECE does not need to evaluate distance between states, it is also well
suited for systems where a distance metric is hard to define or when the goal
is not known until it is actually reached. It is typical for sampling-based tree
planners to spend more than 90% of their computation extending the trees
they build using forward propagation. Since physics simulation is consider-
ably more expensive than integration of motion models, it is essential to use
as few propagation steps as possible. This was a major motivation behind
this work and as will be shown later, KPIECE provides significant computa-
tional improvements over previous methods (up to two orders of magnitude),
which allows tackling more complex problems that could not be previously
addressed. Since motion planning is usually a subproblem of a more complex
task, it is generally desirable to have fast methods for the computation of
motion plans. To this end, KPIECE was also designed with shared memory
parallelism in mind and the developed implementation can take advantage
of the emerging multi-core technology. The implementation can use a vari-
able number of processors and shows super-linear speedup in some cases. The
combination of obtained speedup and physics-based simulation, could make
KPIECE fast and accurate enough to be applicable in real-time motion planning
for complex reactive robotic systems.

The rest of the paper is organized as follows: Section 2 presents the mo-
tion planning problem in more detail, Section 3 contains a description of the
proposed algorithm, and Section 4 presents experiments using KPIECE. The
parallel implementation is discussed in Section 5. Conclusions and future work
are in Section 6.

2 Problem Definition

An instance of the motion planning problem addressed here can be formally
defined by the tuple S = (Q,U, I, F, f) where Q is the state space, U is the
control space, I ⊂ Q is the set of initial states, and F ⊂ Q is the set of
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final states. The dynamics are described by a forward propagation routine
f : Q × U → TgQ, where TgQ is the tangent space of Q (f does not need
to be explicit). A solution to a motion planning problem instance consists
of a sequence of controls u1, . . . , un ∈ U and times t1, . . . , tn ∈ R≥0 such
that q0 ∈ I, qn ∈ F and qk, k = 1, . . . , n, can be obtained sequentially by
integration of f .

For the purposes of this work, the function f is computed by a physics
simulator. In particular, an open source library called Open Dynamics Engine
(ODE) [24], is used. Instead of equations of motion to be integrated, a model
of a robot and its environment needs to be specified. Although simulation in-
curs more computational costs than simple integration, the benefits outweigh
the costs: increased accuracy is available since physics simulators take into
account more dynamic properties of the robot (such as gravity, friction) and
constructing models of systems is easier and less error prone than deriving
equations of motion. Limited numerical precision will still be a problem re-
gardless of how f is computed. However, as robotic systems become more
complex, physics-based simulation becomes a necessity.

It is sometimes the case that due to the high dimensionality of the state
space Q, a projection space E(Q) is used for various computations the motion
planning algorithm performs (E can be the identity transform). Finding such
a projection E is a research problem in itself. In this work it is assumed that
such a projection E is available, when needed. Section 4.1 presents simple
cases of E used in this paper.

3 Algorithm

A high-level description of the algorithm is provided before the details are
presented. KPIECE iteratively constructs a tree of motions in the state space
of the robot. Each motion µ = (s, u, t) is identified by a state s ∈ Q, a
control u ∈ U and a duration t ∈ R≥0. The control u is applied for duration
t from s to produce a motion. It is possible to split a motion µ = (s, u, t)

into µ1 = (s, u, ta) followed by µ2 = (
∫ t0+ta
t0

f(s(τ), u)dτ, u, tb), where s(τ)
identifies the state at time τ and ta + tb = t. In this exploration process,
it is important to cover as much of the state space as possible, as quickly as
possible. For this to be achieved, estimates of the coverage of Q are needed. To
this end, the discretization described in Section 3.1 is employed. When a less
covered area of the state space is discovered, the tree of motions is extended
in that area. This process is iteratively executed until a stopping condition is
satisfied.

3.1 Discretization

During the course of its run, the motion planner must decide which areas
of the state space merit further exploration. As the size of the tree of mo-
tions increases, making this decision becomes more complex. There are various
strategies to tackle this problem (e.g., [7, 14, 19, 21, 22]). The approach taken
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in this work is to construct a discretization that allows the evaluation of the
coverage of the state space. This discretization consists of k levels L1, ...,Lk,
as shown in Fig. 1. Each of these levels is a grid where cells are polytopes of
fixed size. The number of levels and cell sizes are predefined, however, cells
are instantiated only when they are needed. The purpose of these grids is to
cover the area of the space that corresponds to the area spanned by the tree
of motions. Each of the levels provides a different resolution for evaluating the
coverage. Coarser resolution (higher levels) can be used initially to find out
roughly which area is less explored. Within this area, finer resolutions (lower
levels) can then be employed to more accurately detect less explored areas.
The following is a formal definition of a k-level discretization:

• for i ∈ {1, ..., k} : Li = {pi|pi is a cell in the grid at level i}
• for i ∈ {2, ..., k} : ∀p ∈ Li,Dp = {q ∈ Li−1|q ⊂ p}, such that

– ∀p ∈ Li,Dp 6= ∅
–

⋃
p∈Li

Dp = Li−1
– ∀p, q ∈ Li, p 6= q → Dp ∩ Dq = ∅

The tree of motions exists in the state space Q, but since the dimension
of this space may be too large, the discretization is typically imposed on a
projection of the state space, E(Q). The use of such a projection E(Q) was
also discussed in [13, 21]. An important result we show in this paper is that
simple projections work for complex problems. For any motion µ, each level
of discretization contains a cell that µ is part of. A motion µ is considered to
be part of a grid cell p if there exists a state s along µ such that the projection
E(s) is inside the bounding box of cell p. If a motion spans more than one cell
at the same level of discretization, it is split into smaller motions such that no
motions cross cell boundaries. This invariant is maintained to make sure each
motion is accounted for only once. For every motion µ, there will be exactly
one cell at every level of discretization that µ is part of. This set of cells forms
a tuple c = (p1, ..., pk), pi ⊂ pi+1, pi ∈ Li and will be referred to as the “cell
chain” for µ. Since cells in L1 will determine whether a motion is split, we
augment the definition of the discretization:

• ∀p ∈ L1,Mp = {mi|mi is a motion contained in p}

For all p ∈ L1 we say p containsMp and for all p ∈ Li, i > 1 we say p con-
tains Dp. While the discretization spans the potentially very large projection
space E(Q), cells are instantiated only when a motion that is part of them
is found, hence the grids are not fully instantiated. This allows the motion
planner to limit its use of memory to reasonable amounts. The size of the grid
cells is discussed in Section 3.4.

A distinguishing feature of KPIECE is the notion of interior and exterior
cells. A cell is considered exterior if it has less than 2n instantiated neighboring
cells (diagonal neighboring cells are ignored) at the same level of discretiza-
tion, where n is the dimension of E(Q). Cells with 2n neighboring cells are
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Fig. 1. An example discretization with three levels. The line intersecting the three
levels defines a cell chain. Cell sizes at lower levels of discretization are integer
multiples of the cell sizes at the level above.

considered interior (there can be no more than 2n non-diagonal neighboring
cells in an n-dimensional space). As the algorithm progresses and new cells
are created, some exterior cells will become interior. When larger parts of the
state space are explored, most cells will be interior. However, for very high di-
mensional spaces, to avoid having only exterior cells, the definition of interior
cells can be relaxed and cells can be considered interior before all 2n neigh-
boring cells are instantiated. For the purposes of this work, this relaxation
was not necessary.

With these notions in place, a measure of coverage of the state space can
be defined. For a cell p ∈ L1, the coverage is simply the sum of the durations
of the motions in Mp. For higher levels of discretization, the coverage of a
cell p ∈ Li, i > 1 is the number of instantiated cells in Dp.

3.2 Algorithm Execution

A run of the KPIECE algorithm proceeds as described in Algorithm 1. The tree
of motions is initialized to a motion defined by the initial state qstart, a null
control and duration 0 [line 1]. Adding this motion to the discretization will
create exactly one exterior cell for every level of discretization [lines 2,3].

At every iteration, a cell chain c = (p1, ..., pk) is sampled. This means
pi ∈ Li will have to be selected, from pk to p1, as will be shown later. It is
important to note here that “samples” in the case of KPIECE are chains of
cells. This can be regarded as a natural progression (selection of “volumes”)
from the selection of states (“points”) as in the case of RRT and EST, and
selection of motions (“curves”) as in the case of PDST. Our experiments show
that selecting chains of cells benefits from the better estimates of coverage that
can be maintained for cells at each level, as opposed to estimates for single
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motions or states. Sampling a cell chain c = (p1, ..., pk) is a k-step process that
proceeds as follows: the decision to expand from an interior or exterior cell is
made [line 5], with a bias towards exterior cells. An instantiated cell, either
interior or exterior, is then deterministically selected from Lk, according to the
cell importance (higher importance first). The idea of deterministic selection
was inspired by [14], where it has been successfully used. The importance of
a cell p, regardless of the level of discretization it is part of, is computed as:

Importance(p) =
log(I) · score
S · N · C

where I stands for the number of the iteration at which p was created, score
is initialized to 1 but may later be updated to reflect the exploration progress
achieved when expanding from p, S is the number of times p was selected for
expansion (initialized to 1), N is the number of instantiated neighboring cells
at the same level of discretization, and C is a positive measure of coverage for
p, as described at the end of Section 3.1.

Once a cell p is selected, if p /∈ L1, it means that further levels of dis-
cretization can be used to better identify the more important areas within
p. The selection process continues recursively: an instantiated cell from Dp is
subsequently selected using the method described above until the last level of
discretization is reached and the sampling of the cell chain is complete. At the
last level, a motion µ from Mp is picked according to a half-normal distribu-
tion [line 6]. The half-normal distribution is used because order is preserved
when adding motions to a cell and motions added more recently are preferred
for expansion. A state s along µ is then chosen uniformly at random [line 7].
Expanding the tree of motions continues from s [line 9].

The controls applied from s are selected uniformly at random from U
[line 8]. The random selection of controls is what is typically done if other
means of control selection are not available. This choice is not part of the
proposed algorithm, and can be replaced by other methods, if available.

If the tree expansion was successful, the newly obtained motion is added to
the tree of motions and the discretization is updated [lines 11,13]. An estimate
of the achieved progress is then computed. For every level of discretization j,
the coverage of some cells may have increased:

∆Cj = Σp∈Lj
∆p, where ∆p = increase in coverage of p

Pj = α+ β · (ratio of ∆Cj to time spent computing simulations).

Pj is considered the progress at level j [line 16]. The values α and β are
implementation specific and should be chosen such that Pj > 0, and Pj ≥ 1
implies good progress. The offset α needs to be strictly positive since the
increase in coverage can be 0 (e.g., in case of an immediate collision). The
value of Pj is also used as a penalty if not enough progress has been made
(Pj < 1): the cell at level j in the selected cell chain has its score multiplied
by Pj [line 17]. If good progress has been made (Pj ≥ 1), the value of Pj is
ignored, since we do not want to over-commit to specific areas of the space.
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Algorithm 1 KPIECE(qstart, Niterations)

1: Let µ0 be the motion of duration 0 containing solely qstart
2: Create an empty Grid data-structure G
3: G.AddMotion(µ0)
4: for i← 1...Niterations do
5: Select a cell chain c from G, with a bias on exterior cells (70% - 80%)
6: Select µ from c according to a half normal distribution
7: Select s along µ
8: Sample random control u ∈ U and simulation time t ∈ R+

9: Check if any motion (s, u, t◦), t◦ ∈ (0, t] is valid (forward propagation)
10: if a motion is found then
11: Construct the valid motion µ◦ = (s, u, t◦) with t◦ maximal
12: If µ◦ reaches the goal region, return path to µ◦
13: G.AddMotion(µ◦)
14: end if
15: for every level Lj do
16: Pj = α + β · (ratio of increase in coverage of Lj to simulated time)
17: Multiply the score of cell pj in c by Pj if and only if Pj < 1
18: end for
19: end for

Algorithm 2 AddMotion(s, u, t)

20: Split (s, u, t) into motions µ1, ..., µk such that µi, i ∈ {1, ..., k} does not cross
the boundary of any cell at the lowest level of discretization

21: for µ◦ ∈ {µ1, ..., µk} do
22: Find the cell chain corresponding to µ◦
23: Instantiate cells in the chain, if needed
24: Add µ◦ to the cell at the lowest level in the chain
25: Update coverage measures and lists of interior and exterior cells, if needed
26: end for

3.3 Implementation Details

To aid in the implementation of the KPIECE algorithm, an efficient grid
data-structure (Grid) was defined. Grid maintains the list of cells it contains,
grouped into interior and exterior, sorted according to their importance. To
maintain the lists of interior and exterior cells sorted, binary heaps are used.
For every cell p, Grid also maintains some additional data: another Grid

instance (stands for Dp), for all but the lowest level of discretization, and
for the lowest level of discretization, an array of motions (stands for Mp).
Algorithm 2 shows the steps for adding motions to Grid.

3.4 Computing the Discretization

An important issue not discussed so far is the selection of number of levels in
the discretization and the grid cell sizes. This section presents a method to
compute these cell sizes if the discretization is assumed to consist of only L1

(a one-level discretization).
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While KPIECE is running, we can keep track of averages of how many
motions per cell there are, how many parts a motion is split into before it is
added to the discretization, and the ratio of interior to exterior cells. While we
do not know how to compute optimal values for these statistics (if they exist),
there are certain ranges that may work better than others. In particular, the
authors have observed that for good performance the following should hold:

• Less than 10% of the motions cover more than 2 cells in one simulation
time-step. This value should be in general less than 1% as the event occurs
only when the velocity of the robotic system is very high.

• At least 50% of the motions need to be 3 simulation time-steps or longer.
• Average number of parts in which a motion is split should be larger than

1 but not higher than 4.
• As the algorithm progresses, at least some interior cells need to be created.
• The average number of samples per cell should be in the range of tens to

hundreds.

Based on collected statistics and these observations, it can be automat-
ically decided whether the cell sizes used for L1 are good, too large or too
small. This information is reported for each dimension of the space. If the
used cell size is too small or too large in some dimension, the size in that di-
mension is increased or decreased, respectively, by a factor larger than 1 and
the algorithm is restarted. This process usually converges in 2 or 3 iterations.

These statistics do not offer any information about higher levels of dis-
cretization, nor do they provide information about how many levels of dis-
cretization should be used. The presented constants are implementation spe-
cific, but they seem not to vary across the examined robotics systems.

4 Experiments

The presented algorithm was benchmarked against well-known efficient al-
gorithms (RRT, EST, PDST) with three different robotic systems, in different
environments. For modeling the robots, the ODE [24] physics-based simulator
was used. For the implementations of RRT [19] and EST [6], the OOPSMP frame-
work was used [20]. A plugin for linking OOPSMP with the ODE simulator was
developed by the authors. The authors did their best to tune the parameters
of both RRT and EST. For RRT, a number of different metrics were tested for
each robot and experiments are presented with the metric that performed
best. In addition, random controls were selected instead of attempting to find
controls that take the robotic system toward a desired state, as this strategy
seemed to provide better results. For EST, the nodes to expand from were
selected both based on their degree [7] and based on a grid subdivision of
the state space [22]. Experiments are shown for the selection strategy that
performed best. PDST and KPIECE were implemented by the authors. A pro-
jection was defined for each robot and the same projection was used for both
PDST and KPIECE. In addition to the projection, KPIECE needs a discretization
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to be defined for each robot. When comparing with other algorithms, only
discretizations computed as shown in Section 3.4 were used. Separate experi-
ments are shown when using empirically chosen discretizations with multiple
levels. Explanations on how these multiple levels were chosen are given later
in this section. No goal biasing was used for any of the algorithms. However,
separate experiments are shown for RRT with biasing (RRTb). All implementa-
tions are in C++ and were tested on the Rice Cray XD1 Cluster, where each
machine runs at 2.2 Ghz and has 8 GB RAM. For each system and each of
its environments, each algorithm was executed 50 times. The best two and
worse two results in terms of runtime were discarded and the results of the
remaining 46 runs were averaged. The time limit was set to one hour and the
memory limit was set to 2 GB. If an execution exceeded the time or memory
limit, it was considered successful with execution time equal to the time limit.

4.1 Robots

Three different robots were used in benchmarking the planner, to show its
generality: a modular robot, a car, and a blimp. These robots have been chosen
to be different in terms of the difficulties they pose to a motion planner. Details
on what these difficulties are follow in the next paragraphs. ODE version 0.9
was used to model the robots. The used simulation step size was 0.05s.

Modular Robot

The model for this robot was implemented in collaboration with Mark
Yim1, and characterizes the CKBot modules [23]. Each CKBot module con-
tains one motor. An ODE model for serially linked CKBot modules has been
created [5]. The task is to compute the controls for lifting the robot from a
vertical down position to a vertical up position for varying number of modules,
as shown in Fig. 2. Each module adds one degree of freedom. The controls
represent torques that are applied by the motors inside the modules. The dif-
ficulty of the problem lies in the high dimensionality of the control and state
spaces as the number of modules increases, and in the fact that at maximum
torque, the motors in the modules are only able to statically lift approximately
5 modules. This is why the planner has to find swinging motions to solve the
problem. The employed projection E was a 3-dimensional one, the first two
dimensions being the (x, z) coordinates of the last module (x, z is the plane
observed in Fig. 2) and the third dimension, the square root of the sum of
squares of the rotational velocities of all the modules. The environments the
system was tested in are shown in Fig. 2.

Car Robot

A model of a car [4] was created as well. The model is fairly simple and
consists of five parts: the car body and four wheels. Since ODE does not allow
for direct control of accelerations, desired velocities are given as controls for

1 Mark Yim is with the Department of Mechanical Engineering and Applied Me-
chanics, University of Pennsylvania yim@grasp.upenn.edu
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Fig. 2. Left: start and goal configurations. Right: environments used for the chain
robot (7 modules). Experiments were conducted for 2 to 10 modules. In the case
without obstacles, the environments are named ch1-x where x stands for the number
of modules used in the chain. In the case with obstacles, the environments are named
ch2-x.

the forward velocity and steering velocity (as recommended by the developers
of the library). These desired velocities go together with a maximum allowed
force. The end result is that the car will not be able to achieve the desired
velocities instantly, due to the limited force. In effect, this makes the system
a second order one. The employed projection E was the (x, y) coordinates of
the center of the car body. The environments the system was tested in are
shown in Fig. 3.

Fig. 3. Environments used for the car robot (cr-1, cr-2, cr-3). Start and goal con-
figurations are marked by “S” and “G”.

Blimp Robot

The third robot that was tested was a blimp robot [14]. The motion in this
case is executed in a 3D environment. This robot is particularly constrained
in its motion: the blimp must always apply a positive force to move forward
(slowing down is caused by friction), it must always apply an upward force
to lift itself vertically (descending is caused by gravity) and it can turn left
or right along the direction of forward motion. Since ODE does not include air
friction, a Stokes model of drag was implemented for the blimp. The employed
projection E was the (x, y, z) coordinates of the center of the blimp. The
environments the system was tested in are shown in Fig. 4.
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Fig. 4. Environments used for the blimp robot (bl-1, bl-2, bl-3). Start configurations
are marked by “S”. The blimp has to pass between the walls and through the hole(s),
respectively.

4.2 Results

Table 1. Speedup achieved by KPIECE over other algorithms for four different prob-
lems. If one of the other algorithms was unable to solve the problem in at least
10% of the cases, “—” is reported. KPIECE was configured with an automatically
computed one-level discretization, as described in Section 3.4.

RRT RRTb EST PDST

ch1-2 1.1 3.5 2.2 2.5
ch1-3 0.8 2.1 1.0 3.6
ch1-4 1.5 3.9 1.8 9.6
ch1-5 4.1 3.7 14.4 15.6
ch1-6 13.4 9.6 946.8 42.5
ch1-7 58.5 196.3 — 238.1
ch1-8 — — — —

RRT RRTb EST PDST

ch2-5 18.3 23.4 — 13.0
ch2-6 35.0 255.7 — 23.0
ch2-7 45.7 124.7 — 81.3
ch2-8 — — — 5.9
ch2-9 — — — —

RRT RRTb EST PDST

cr-1 3.2 3.1 27.7 7.9
cr-2 5.0 3.5 16.1 9.7
cr-3 8.7 14.8 15.5 13.1

bl-1 1.6 2.2 3.1 3.3
bl-2 6.4 7.2 8.7 9.4
bl-3 4.5 7.3 5.7 7.5

In terms of runtime, when compared to other algorithms such as RRT, EST,
and PDST, Table 1 shows significant computational gains for KPIECE. In partic-
ular, as the dimensionality of the problem increases, KPIECE does better. For
simple problems however, other algorithms can be faster (e.g., RRT for ch1-3).
The presented speedup values are consistent with the time spent perform-
ing simulations, which serves to prove that the computational improvements
are obtained by minimizing the usage of the physics-based simulator. Since
physics simulation takes up around 90% of the execution time, computational
gain will be observed in the case of purely geometric planning as well, where
forward integration is replaced by collision detection.

Table 2. Speedup achieved by KPIECE when using a two-level discretization relative
to the automatically computed one-level discretization. For ch1-10 and ch2-10, a
solution was found only with the two-level discretization so no speedup is reported.

ch1-2: 0.9 ch1-7: 2.2 ch2-5: 0.9 cr-1: 1.0 bl-1: 1.3
ch1-3: 1.1 ch1-8: 2.0 ch2-6: 1.1 cr-2: 1.0 bl-2: 1.1
ch1-4: 0.9 ch1-9: 1.3 ch2-7: 1.7 cr-3: 0.7 bl-3: 1.8
ch1-5: 0.7 ch2-8: 0.5
ch1-6: 2.5 ch2-9: 1.2

While the results shown in Table 1 are computed with a one-level dis-
cretization, for some problems, better results can be obtained using multiple
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Fig. 5. Logarithmic runtimes with twelve different discretizations for the ch1, ch2,
cr, and bl.

levels of discretization. To show this, for each robot, twelve discretizations are
defined. First, a one-level discretization (consists only of L1) is computed as
discussed in Section 3.4. Two more one-level discretizations with half and dou-
ble the cell volume of the computed discretization’s cells are then constructed
(cell sides shortened and lengthened proportionally, in each dimension). For
each of these three one-level discretizations, three more two-level discretiza-
tions (consist of L1, L2) are defined: ones that have the same L1, but L2

consists of cells with sizes of 10, 15, and 20 times the cell sizes of L1. Table 2
shows the speedup obtained when employing the best of the nine defined
two-level discretizations. As we can see, in most cases there are benefits to
using two discretization levels. Experiments with more than two levels of dis-
cretization were conducted as well, but the performance started to decrease
and the results are not presented here. The defined discretizations can also be
used to evaluate the sensitivity of KPIECE to the defined grid sizes. As shown
in Fig. 5, the runtimes of the algorithm for the different discretizations are
relatively close to one another (within a factor of 2.3). This implies that the
algorithm is not overly sensitive to the defined discretization and thus approx-
imating good cell sizes is sufficient. Nevertheless, finding good discretizations
remains an open problem.

4.3 Discussion of Experimental Results

In the previous section we have shown the computational benefits of using
KPIECE over other algorithms. There are a few key details that make KPIECE

distinct: the sampling of a chain of cells, the grouping of cells into interior and
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exterior, and the progress evaluation, based on increase in coverage. While
the sampling of cell chains is an inherent part of the algorithm, the other two
features can be easily disabled. This allows us to evaluate the contribution of
these components individually.
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Fig. 6. Logarithmic runtime for KPIECE with various components disabled, on 2-
dimensional and 3-dimensional projections (cr and bl) with the automatically com-
puted one-level discretization. A = no components disabled, B = no cell distinction,
C = no progress evaluation, D = no cell distinction and no progress evaluation.

Fig. 6 shows that both progress evaluation and cell distinction contribute
to reducing the runtime of KPIECE. While these components do not seem
to help for easier problems (bl-1), their contribution is important for harder
problems (cr-3, bl-3). In particular, the cell distinction seems to be the more
important component as the problems get harder. This is to be expected, since
the distinction allows the algorithm to focus exploration on the boundary of
the explored space, while ignoring the larger, already explored interior volume.

5 Parallel Implementation

The presented algorithm was also implemented in a shared memory parallel
framework. While previous work has shown significant improvements with
embarrassingly parallel setups [1, 3], this work attempts to take the emerging
multi-core technology into account and use it as an advantage. Instead of
running the algorithm multiple times and stopping when one of the active
instances found a solution as in [1, 3], KPIECE uses multiple threads to build the
same tree of motions (threads can continue expanding from cells instantiated
by other threads). Synchronization points are used to ensure correct order
of execution. This execution format will become more important in the next
few years as the number of computing cores and memory bandwidth increase.
Since each computing thread starts from a different random seed, the chances
of all seeds being unfavourable decrease. If a single thread finds a path through
a narrow passage, the rest of the threads will immediately use this information
as well. This setup also reduces the variance in the average runtime of the
algorithm. It is important to note this proposed parallelization scheme can be
applied to other sampling-based algorithms as well.
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All experiments presented in previous sections were conducted when using
the planner in single-threaded mode. Table 3 shows the speedup achieved by
the motion planner when using one to four threads on a four-core machine.
The achieved speedup is super-linear in some cases, a known characteristic of
sampling-based motion planners. When comparing to the speedup obtained
with an embarrassingly parallel setup, shown in Table 4, we notice that better
runtimes are obtained with our suggested setup. In addition, total memory re-
quirements in our suggested setup do not increase significantly as the number
of processors is increased.

Table 3. Speedup achieved by KPIECE with multiple threads for 2-dimensional and
3-dimensional projections (cr and bl). KPIECE was configured with an automatically
computed one-level discretization, as described in Section 3.4.

Threads cr-1 cr-2 cr-3 bl-1 bl-2 bl-3

2 1.7 2.0 2.6 2.3 1.9 1.4
3 2.8 2.7 3.0 2.9 3.0 2.2
4 3.9 3.6 4.4 3.5 3.2 3.1

Table 4. Speedup achieved by KPIECE in embarrassingly parallel mode.

Threads cr-1 cr-2 cr-3 bl-1 bl-2 bl-3

2 1.3 1.5 1.6 1.5 1.6 1.3
3 1.5 1.8 1.8 1.8 1.9 1.4
4 1.7 2.1 2.0 2.2 3.0 1.5

6 Conclusions and Future Work

We have presented KPIECE, a sampling-based motion planning algorithm de-
signed for complex systems where physics-based simulation is needed. This
algorithm does not need a distance metric or a way to sample states. It does
however require a projection of the state space and the specification of a dis-
cretization. At this point we recommend that the projection is defined by the
user. As shown in our experiments, even simple intuitive projections work
for complex problems. The discretization is an additional requirement when
compared to other state-of-the-art algorithms. The algorithm’s performance
is not drastically affected by the discretization and a method to automati-
cally compute one-level discretizations was presented. When using an auto-
matically computed one-level discretization, KPIECE was compared to other
popular algorithms, and shown to provide significant computational speedup.
In addition, the provided shared memory parallel implementation seems to
give better results than the embarrassingly parallel setup.

KPIECE is the result of a combination of ideas. Some of these ideas are
new, some are inspired by previous work. In previous work, we have encoun-
tered state [7, 11] and motion sampling [14]; KPIECE takes this further and
uses cell chain sampling. We have also seen progress evaluation [21], deter-
ministic sample selection [14], use of physics-based simulation [13], and use
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of additional data-structures for estimation of coverage [14, 21, 22]. KPIECE
implements variants of these ideas, combined with new ideas like distinction
between interior and exterior cells, to obtain an algorithm that works well in
a parallel framework. The result is a more accurate and efficient method that
can solve problems previous methods could not.

It is conjectured that KPIECE is probabilistically complete: in a bounded
state space, the number of cells is finite. Since with every selection, the im-
portance of a cell can only decrease, every cell will be selected infinitely many
times during the course of an infinite run. Every motion in a cell has positive
probability of being selected, which makes the number of selections of each
motion in the tree of motions be infinite as well. By the completeness of PDST
[13], KPIECE is likely to be probabilistically complete. A formal proof is left
for future work.

Further work is needed for better automatic computation of the employed
discretization. Automatic computation of the used state space projection
would be beneficial as well, not only for KPIECE, but for other algorithms
that require such a projection. Furthermore, it would be interesting to push
the limits of this method to harder problems.
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