
On the Advantages of Task Motion Multigraphs
for Efficient Mobile Manipulation

Ioan A. Şucan, Lydia E. Kavraki

Abstract— This paper addresses the problem of computing
the sequence of motion plans necessary for a mobile ma-
nipulator to execute a given task. In our previous work,
we have demonstrated that computational advantages can be
obtained when solving this problem by using the notion of
a task motion multigraph (TMM). TMMs represent the state
spaces that correspond to various hardware components of
the robot, and they convey this information to the motion
planning level. In this paper, we present and evaluate an
algorithm that further exploits TMMs and explores multiple
state spaces simultaneously. Since tasks to be performed by
mobile manipulators often allow solutions that use only a subset
of the robot’s hardware components, motion plans can be found
in lower dimensional state spaces. The resulting solutions tend
to be shorter, more natural and faster to compute. We show that
when planning under geometric constraints only, information
gained while exploring lower dimensional spaces can be reused
to obtain solutions in higher dimensional spaces, if necessary.
The reuse of information implicitly provides the ability to
compute decoupled motion plans. If solutions are not found
while planning in a decoupled fashion, the algorithm resorts
to planning in the robot’s full state space. Our experiments
indicate speedups of 200% and solutions up to four times
shorter when compared to an analogous approach that does
not employ TMMs.

I. INTRODUCTION

In this paper, we focus our attention on robots capable of
manipulating objects in human environments – robots that
include at least one arm and a means of locomotion (e.g.,
tracks, wheels, legs). Robots such as these, typically referred
to as mobile manipulators, are often complex, with many
degrees of freedom (e.g., Honda Asimo, Willow Garage
PR2). The complexity of mobile manipulators makes them
versatile, capable of solving a variety of tasks. In fact, given
a specific task, it is possible that a mobile manipulator
can perform the task in a multitude of ways, depending on
its choice of hardware components. For example, a mobile
manipulator can open a door by simply extending its arm and
pressing the door’s handle. At the same time, it is possible
for the robot to get closer to the door by moving its base
and then pressing the handle with its arm. Furthermore, it is
possible for the robot to use its arm and base simultaneously.

The development of a mobile manipulator poses many
research problems. This paper discusses aspects related to
planning the sequence of motions that a robot needs to
perform in order to achieve its goal. We use the notion of
a task motion multigraph (TMM), which we introduced in
our previous work [1]. The key advantage that TMMs offer
is that they represent both potential sequences of motion
plans and the set of state spaces that could possibly be used
for planning. The selection of the state space to plan in,

which corresponds to the choice of hardware components
to use, plays an important role in the computational effort
of the motion planner: lower dimensional state spaces often
lead to reduced computation times and more natural looking
solutions. Previous work typically considered the full state
space of the robot as the space to be searched for plans.
TMMs make it possible to reason about the state spaces to
possibly plan in. We previously showed a simple algorithm
that achieved a speedup in the range of 20% by explicitly
considering the planning options specified by the TMM [1].

In this paper, we present a new algorithm that relies
on TMMs, but allows for significantly higher computa-
tional gains when planning under geometric constraints only.
Speedup in the range of 200% and solutions that are on aver-
age four times shorter are observed. Intuitively, when motion
planning is performed in the state space corresponding to
some set of hardware components, we save computation
time by reusing the information previously gained from the
exploration of state spaces corresponding to subsets of the
same hardware components.

II. BACKGROUND AND RELATED WORK

A. Task and Motion Planning
It is typical for tasks to be represented as graphs, an

example of which is shown in Figure 1-Left. This example
encodes the task of transferring either a pen or a pencil to a
specified destination. Even though this task is very simple,
the robot must reason about the sequence of operations it
needs to perform: reaching for either the pen or the pencil,
closing the gripper, taking the object to its destination and
then releasing it. Reasoning about the sequence of actions
to be taken in order to achieve a goal is referred to as
task planning. A task planner is an algorithm that generates
directed acyclic graphs such as the one shown in Figure 1-
Left, based on more concise representations of tasks (e.g.,
LTL [2], STRIPS-like [3]), and searches such graphs for
solutions (task plans). The nodes in the task graph are
associated with a set of robot states and the edges in the
task graph correspond to primitive actions the robot can
execute. Any leaf in the task graph is a goal for the robot.
For simplicity, we assume that the only actions the robot can
perform are grip (close gripper), release (open gripper)
and move to (plan a motion). This assumption is typical,
as even with such a limited set of actions, it is possible to
perform pick and place operations.

The grip and release actions are simple ones and
do not include the computation of grasp poses. When grasp
poses are necessary, we assume they are included in the

Published in the IEEE/RSJ International Conference on Intelligent Robots and Systems. :4621-4626 (2011)

task graph’s nodes. The computation of such grasp poses
is possible using grasp reasoning systems (e.g., [4]).

The move to actions are referred to as motion plan-
ning actions because they require motion planning – the
computation of a motion plan that connects two given
robot states. In this work however, we are planning under
geometric constraints only, and we assume that motion plans
are represented as sequences of motion segments, and that
each motion segment can be represented as a pair of robot
states. It is a well known fact that when a sequence of motion
plans needs to be computed as part of a solution to a task, it
is possible that the way certain motion plans are computed
influences the feasibility of subsequent motion plans. For this
reason, a significant amount of work has been done towards
the development of algorithms that compute task and motion
plans simultaneously (e.g., [5]–[10]).

B. Previous Work
A generic description of a large body of previous work

is that a task graph is automatically constructed based on
some specification (e.g., LTL, STRIPS-like), and motion
plans are computed with a sampling-based motion planner
[11], [12]. Sampling-based motion planners are typically
preferred due to their ability to quickly compute motion plans
in high-dimensional spaces. In some of the previous work,
the focus is on quickly computing task plans. For example,
a hierarchical representation of tasks can be used to reduce
the time taken to generate task graphs [9], or the robot can
quickly commit to actions before having a complete plan
[10]. In those works, a motion planner is used to implement
primitive actions akin to our definition of move to. In
other works [7], [8], roadmaps [13] are used for motion
planning, and task and motion planning are interleaved. The
information gained from the exploration of the roadmaps
is used at the task planning level to determine potentially
feasible sequences of actions. Ideas related to interleaving
motion planning with the computation of discrete plans have
also been explored (e.g., [14]).

One idea related specifically to the improvement discussed
in this paper is that of constructing a “relative roadmap”
[8]. In that work, similar motion planning queries are solved
by reusing exploration information at different locations in
the environment and applying geometric transformations. A
relative roadmap is constructed in a virtual environment that
includes only an object to grasp. Multiple plans that achieve
the grasp are computed and stored. When the particular
object needs to be grasped, the previously computed plans
are transformed to match the location of the object in the
real environment and are then used to bootstrap the search
for valid grasping plans. This is different from our work
because we reuse information across spaces of different di-
mensionalities and we do not use geometric transformations.

C. Task Motion Multigraphs
In recent work [1] we introduced the concept of a task

motion multigraph (TMM). This is a data structure that
represents the possible sequences of motion planning actions
(move to, for the purpose of this paper), in a multigraph.

In addition to the information in a task graph, a TMM also
represents the set of possible state spaces in which motion
plans could be computed. The set of available planning
spaces corresponds to the possible combinations of hardware
components, and hence, degrees of freedom (DOF), that the
robot may use to perform its task.

Example: Figure 1-Right shows a TMM corresponding to
the task graph in Figure 1-Left. Graph edges that correspond
to grip and release actions are contracted and each
graph edge that corresponds to a move to action is replaced
by a multiset of TMM edges, each TMM edge being labeled
with the set of joints to be actuated along that edge. The
removal of grip and release actions does not mean these
actions are not to be performed, but only that they are ignored
for the purpose of motion planning.

Fig. 1. Left: The task graph for retrieving either a pen or a pencil. Right:
The task motion multigraph (TMM) – only actions that require motion
planning are kept. For every action, multiple TMM edges are created, one
for each set of joints potentially used for motion planning. Jb = joints in
base, Ja = joints in arm, Jab = joints in arm and base.

Notation: Let the mobile manipulator consist of a set of
joints J . The full state space of the robot, XJ , is implicitly
defined by J . Let J = {J1, J2, . . . , Jh|Ji ⊆ J, i = 1, . . . , h}
contain the (not necessarily disjoint) user defined sets of
joints that correspond to the hardware components we are
interested in potentially planning motions for. In the general
case, Ji may depend on what controllers are available. For
example, for a mobile manipulator with two arms and an
omni-directional base, the sets of joints Ji, i ∈ {1, 2, 3}
could correspond to the joints in the left arm, the joints in
the right arm and the special SE(2) joint corresponding to
the base, J =

⋃
i Ji.

For convenience, we restate the following definition [1]:
Definition: A task motion multigraph (TMM) is a directed

acyclic multigraph GM = (VM , EM) such that:
• VM = {v|Q(v) ⊂ XJ} is a set of vertices. Every vertex

v is associated with a set of robot states Q(v) ⊆ XJ ; Q(v)
can be explicitly specified as a set of states or implicitly
specified in a manner that allows sampling.

Let A = {a = (vi, vj)|vi 6= vj , vi, vj ∈ VM} be the set of
pairs of nodes between which motion planning actions exist.
Let label(a) = (Act,Enva). For the purposes of this paper,
Act is always move to. At the start of the action, the robot
is at a state x ∈ Q(vi) and at the end of the action, the robot
is at a state x′ ∈ Q(vj). Enva defines the environment in
which motion plans between vi and vj are to be computed.
• EM is a multiset of edges representing all the motion

planning options between pairs of nodes (vi, vj) ∈ A,
EM =

⋃
a∈A EM,a, where EM,a is a multiset. For each

a = (vi, vj) ∈ A and label(a) = (Act,Enva), EM,a =
{ek = (vi, vj) | k ∈ {1, . . . , 2|J| − 1}} and label(ek) =
(Act,Enva, Jek),
Jek =

⋃
j∈b(k) j, b : {1, . . . , 2|J| − 1} → 2J \ { ∅ } is a

bijection, 2J is the power set of J.
Intuitively, for every motion planning action, the TMM

contains an edge for every state space that could possibly
be used to plan for that action. For example, the TMM in
Figure 1-Right conveys that for every action, it could be
possible to plan in the state spaces that correspond to the
base, the arm, or the Cartesian product of the base and the
arm. In the worst case, the TMM will have (2h−1)·k edges,
where k is the number of motion planning edges in the input
task graph and h is the number of hardware components
considered (the cardinality of J). Given a particular robot,
it is usually possible that with domain knowledge, some of
the edges in the TMM can be pruned. For example, it is
unlikely that planning a turn for the robot’s head requires that
the spaces corresponding to the robot’s base or arms need
to be considered individually. For completeness purposes, it
is recommended that the full state space of the robot, XJ ,
always be included as an option. For the remainder of the
paper we will assume a TMM is available as input. For a
discussion on how TMMs can be constructed, please see our
previous work [1].

III. MULTI-SPACE EXPLORATION

In our previous work we showed that given a TMM, even
a simple algorithm can lead to reduced computational effort
when computing the sequence of motion plans necessary for
a robot to perform its task [1]. The reduced computation
came from the preference towards planning in lower dimen-
sional spaces. In this paper, we show how to further leverage
the information contained in the TMM to decrease computa-
tional effort even more. At the same time, we obtain shorter
solutions. When planning in higher dimensional spaces is
required to find solutions, information from the exploration
of lower dimensional spaces is reused. Samples generated
while exploring lower dimensional projections XJ′′ are lifted
to the full state space of the robot and to higher dimensional
projections XJ′ , J ′′ ⊆ J ′. Thus, when reverting to planning
in higher-dimensional spaces, the motion planner does not
start from scratch. An additional feature of our approach is
that it can implicitly perform decoupled planning [12], as
discussed later.
Preliminaries

Let GM = (VM , EM) be the TMM given as input. For
every edge e = (va, vb) ∈ EM , label(e) = (Act,Env, Je),
we define the following operators:
• M(e) = {(v′a, v′b) ∈ EM |va = v′a, vb = v′b}, the multi-

set of edges that connect the same pair of nodes as e,
• Joints(e) = Je, the set of joints e corresponds to,
• Space(e) = XJe

, the state space Je implicitly defines.
Let XJ be the full state space of the robot. Given x ∈ XJ

and y ∈ XJ′ , J ′ ⊂ J , we define Lift(y, x) ∈ XJ be the state

that has the same values as y for the joints in J ′ and the same
values as x for the joints in J\J ′. The inverse operation of
Lift() is Project(). For x ∈ XJ , Project(x,XJ′) = y ∈
XJ′ , where y has the same values as x for the joints in J ′

(y is an orthogonal projection of x).

A. Generic Planning with TMMs
The overall structure of our method is shown in Algo-

rithm 1. This structure follows our previous work [1], and
we repeat it here for convenience. Algorithm 1 proceeds
iteratively until a solution is found or a maximum allowed
time (MaxT) is exceeded. There are two main steps in
the iteration. The first step [lines 2-4] aims to find motion
plans for TMM edges that are closer to the goal (greedily
selected). If no progress towards the goal is made, the second
step [lines 5-7] is executed. The second step aims to find
motion plans for TMM edges selected stochastically, so that
probabilistic completeness can be achieved.

Algorithm 1 TMM-Computation(GM = (VM , EM))
1: while timeSpent < MaxT do
2: P ← ShortestPath(GM)
3: edge ← SelectEdgeFromPath(P)
4: (edge′, sol) ← TMM-MotionPlan(edge, ∆t)
5: if sol = nil then
6: nextEdge ← SelectEdge(EM\M(edge))
7: (edge′, sol)← TMM-MotionPlan(nextEdge, ∆t)
8: if sol 6= nil then
9: RecordSolution(edge′, sol)
10: if HaveFullDimensionalSolution(GM) then
11: return ExtractSolution(GM)
12: return nil

Algorithm 1 begins with the computation of the shortest
path in the TMM [line 2]. The cost of a TMM edge e,
label(e) = (Act,Enve, Je) is

cost(e) = exp

(
1 +

dim(XJe)

maxJ dim(XJ)

)
· scost(e)

scost(e) =

{
1 if sol
s · (1 + t) ·

(
1 + dL(e)

dR(e)+dL(e)

)
if not sol,

where dim(·) is the dimension of a space, s represents the
number of times e was selected for motion planning (starts
at 1), t is the number of seconds already spent planning
motions along e, dL(e) represents the number of TMM edges
from e to the nearest leaf, dR(e) represents the number of
TMM edges from e to the root, and sol is a flag indicating
whether any motion plans have been found for e [1].

SelectEdgeFromPath() selects the edge that is closest to a
leaf in the TMM and that has no motion plan associated to it
[line 3]. A call to TMM-MotionPlan() [line 4] is then made,
which replaces the direct call to a motion planner we had
in our previous work, with a more complex implementation
described later in Algorithm 2. If no solution is found, TMM-
MotionPlan() is called again on an additional TMM edge
returned by SelectEdge(). When TMM-MotionPlan() finds a
solution, RecordSolution() is called. TMM-MotionPlan() may
choose to switch the TMM edge it is planning for, so it also
returns the edge it computed a solution for, when a solution is

found. For a TMM edge e = (va, vb), RecordSolution() adds
the reached robot state to a set of reached states R(vb) ⊂
Q(vb). Initially R(v) = ∅ for all v ∈ VM except for the
root: R(root) = Q(root). For more details on Algorithm 1,
please see our previous work [1].

B. Exploring Multiple Spaces Simultaneously
The core of our proposed improvement is in Algorithm 2.

Given a TMM edge edge = (va, vb) and an amount of time
∆t, Algorithm 2 computes a valid motion between va and vb
along a TMM edge in M(edge) within the amount of time
∆t, or terminates with failure. Our approach assumes the
availability of a bi-directional motion planning algorithm.
An instance of such an algorithm (edge.mp) and storage
for its generated exploration information are associated to
every edge in the TMM. Sampling-based planners would
be typically used for edge.mp, but the only needs for an
algorithm to be usable are that it must allow: 1) access to the
valid motion segments it generates in its exploration (read-
NextValidMotionSegment() function used in Algorithm 2),
and 2) a means of incorporating information about new valid
motion segments that are computed externally (addValidMo-
tionSegment() function used in Algorithm 2).

Algorithm 2 manages the exploration information gen-
erated by the motion planning instances associated to the
TMM’s edges. Significant computational gains can be ob-
tained by sharing exploration information between the plan-
ning instances. The overall memory consumption of our
approach is not affected negatively, as we will show later. Our
approach requires essentially no changes to the underlying
motion planner: the sharing of exploration information is
managed completely by Algorithm 2.

Algorithm
The first time TMM-MotionPlan() is called for edge, input

states are added for all edges in M(edge) [lines 1-3 Algo-
rithm 2, Algorithm 3]. ActivatePlanner() starts the motion
planner corresponding to edge, and stops any other running
motion planner instance, if one is active [line 4]. We further
assume the motion planner is automatically deactivated when
TMM-MotionPlan() terminates.

The body of Algorithm 2 is a three part iterative pro-
cess. At every iteration, the readNextValidMotionSegment()
function is called [line 5] to obtain a pair of states (xp,
x) that represent a new valid motion segment discovered
by the motion planner in use. Information gained at each
iteration is propagated to higher dimensional spaces in the
first part of the algorithm. When solutions are found in lower
dimensional spaces, part two decides whether to report a
solution or to switch to planning in different state spaces. Part
three switches to planning in higher dimensional spaces if
slow progress is detected. More details on these parts follow.

1) Part one of Algorithm 2 [lines 7-13] shares information
gained from the exploration of Space(edge) with motion
planners that could potentially be called for other edges in
M(edge). The goal is to reuse information between planning
instances, so that if planning in higher dimensional spaces
is needed, the planner does not start from scratch.

If the motion segment between states xp ∈ Space(edge)
and x ∈ Space(edge) is valid, an equivalent motion segment
from yp ∈ Space(e′) to y ∈ Space(e′) can be constructed
for some edges e′ ∈M(edge). The condition on edges e′ is
that Joints(edge) ⊂ Joints(e′). For example, for the TMM
in Figure 1-Right, exploration in the space XJarm

would
lead to progress in the state space XJarm+base

as well. To
compute the equivalent motion segment, the states xp and x
first need to be lifted to the full state space of the robot, XJ .
This can always be done because a plan from the original
input state to xp and x is known. All joint values are known
for the original input state, so states xp and x can be lifted
to XJ by filling in the missing joint values with the ones
from the input states. The lifted states can then be projected
to Space(e′), yielding a valid motion segment that can be
added to the motion planner instance exploring Space(e′)
[lines 10-13]. In the worst case scenario, there could be
2|J|−1 − 1 sets J ′ such that Joints(edge) ⊂ J ′. While the
number of state spaces to keep track of is exponential, the
validity of a motion (collision checking) is evaluated only
once. Furthermore, when the validity check is performed, all
the robot parts need to be checked for collision, and the full
robot state is actually already constructed. The process of
lifting and projecting that state can be made very efficient.

2) Part two of Algorithm 2 [lines 14-24] handles the con-
struction of solution plans and the possibility of decoupled
planning. When a solution is found in Space(edge), it is
possible that not all of the joints for the input start and goal
states are matched, since a plan was found only for a subset
of the joints of the robot (e.g., a plan for the base only, will
not ensure that the arm has moved to its correct state). In
that case, planning is subsequently attempted for a subset of
the unmatched set of joints.

The FullDimensionalSolution() routine checks if the ob-
tained solution covers all the dimensions of XJ [line 16]. If
Space(edge) = XJ , FullDimensionalSolution() will return
true. If an incomplete solution is found, more planning
needs to be done, perhaps in a different state space. The
NextPlanningEdge() routine decides which edge to switch to.
A constraint at this point is that no edge is active more than
once (mechanism implemented with the edge.used variable)
to avoid infinite recursion. NextPlanningEdge() identifies
a TMM edge e′ whose corresponding joint values differ
between the start and goal states, such that the dimension of
Space(e′) is minimal. For example, if planning for the base,
left arm and right arm, it may be necessary to switch to the
space corresponding to the left arm after having succeeded at
planning a motion for the base alone. This is because even
though an SE(2) plan for the robot’s base was found, the
arm may not be at the desired state. In order to reuse the
incomplete solution found while planning in Space(edge),
additional input states are added [line 22, 23]. Because the
motion planner we use is bi-directional, a connection state
xc ∈ Space(edge) along the solution exists such that xc is
connected to both a starting state and a goal state. The state
xc can be lifted to XJ in two ways, using either of the input
states it is connected to [lines 20,21]. Although xs

c 6= xg
c ,

they do not differ for the joints in Joints(edge). Subsequent
planning in Space(e′) may quickly lead to a solution. This is
in fact a form of decoupled planning [11], [12]. For example,
a motion for the base could be planned first, and a motion
for the arm could be planned subsequently. This approach
may lead to faster computation of solutions, but it is not a
complete approach.

Algorithm 2 TMM-MotionPlan(edge = (va, vb), ∆t)
1: if not AddedInputStates(edge) then
2: TMM-AddInputStates(edge, R(va), Q(vb))
3: ActivatePlanner(edge.mp)
4: while timeSpent < ∆t do
5: (xp, x) ← edge.mp.readNextValidMotionSegment()
Part 1: // share information between planning spaces

6: if x 6= nil then
7: for e′ ∈M(edge) do
8: if Joints(edge) ⊂ Joints(e′) then
9: spc← Space(e′)
10: yp ← Project(Lift(xp, Root(xp)), spc)
11: y ← Project(Lift(x,Root(x)), spc)
12: e′.mp.addValidMotionSegment(yp, y)
Part 2: // report solution or plan for remaining dimensions

13: if edge.mp.haveSolution() then
14: (sol, xc)← edge.mp.getSolution()
15: if FullDimensionalSolution(sol) then
16: return (edge, sol)
17: edge.used ← True
18: e′ ← NextPlanningEdge(M(edge))
19: xs

c ← Lift(xc, StartRoot(xc))
20: xg

c ← Lift(xc, GoalRoot(xc))
21: TMM-AddInputStates(e′, {xs

c}, {xg
c})

22: return TMM-MotionPlan(e′, ∆t− timeSpent)
Part 3: // if slow progress, switch to higher dimensional spaces

23: if SlowProgress() and Space(edge) 6= XJ then
24: for e′ ∈M(edge) do
25: if Joints(edge) ⊂ Joints(e′) then
26: return TMM-MotionPlan(e′, ∆t−timeSpent)
27: return nil

3) Part three of Algorithm 2 ensures that TMM-
MotionPlan() eventually degrades to simply calling the
motion planner for XJ [lines 25-28]. If slow progress is
detected, a switch is made to a strictly higher dimensional
space that requires planning for a larger set of joints. The
condition we use for detecting slow progress is that the
distance between the set of states connected to starting states
and the set of states connected to goal sates does not decrease
for two thousand iterations. Due to this degradation policy, if
the underlying motion planner is (probabilistically) complete,
the same property is maintained for TMM-MotionPlan().

IV. EXPERIMENTS

A. Experimental Setup
To test our proposed approach, we defined an office-like

environment, show in Figure 2-Left. The task plan to be

executed is shown as a task graph in Figure 2-Right. The
robot we used for our simulations is the PR2 from Willow
Garage. The robot components we defined were the left arm
(7 DOF), the right arm (7 DOF) and the base (3 DOF). Thus,
for every edge in the task graph, seven (23−1) corresponding
edges were constructed in the TMM. This represents the
worst case scenario, as not all edges would be necessary in
practical applications. For example, the edge corresponding
to the left and right arms is usually unnecessary. Furthermore,
the regions marked in Figure 2-Left always differ in all
the robot’s components, so planning for all 17 joints is
always necessary. This is an artificial example that makes
the original version of our algorithm [1] always fail when
attempting to find solutions in lower dimensional spaces. As
a result, simply planning in the full 17 DOF state space is
faster. We used RRT-Connect [15] as the underlying planner
in Algorithm 2 because it is a simple and well established
algorithm. However, other algorithms could be used as well.
Planning is done under geometric constraints only and the
implementation used is from OMPL [16].

Algorithm 3 TMM-AddInputStates(edge, s, g)
1: for e′ ∈M(edge) do
2: e′.mp.addInputStates(Project(s, Space(e′)),

Project(g, Space(e′)))

Fig. 2. Left: The environment in which the PR2 is operating. The robot is
represented in the bottom right corner of the environment, for an impression
of scale. The regions (rx) to be visited are marked by arrows indicating the
robot’s pose. Multiple poses per region are possible. Right: The sequence
of motion plans to be computed (ROOT is start, r8 is the goal).

We compare our work to the approach that uses only a
graph. We use Algorithm 1, but give it as input a graph in
which edges correspond to the full state space of the robot.
Furthermore, instead of of calling TMM-MotionPlan(), we
call RRT-Connect directly. Although the implementation of
our TMM-based approach is easily parallelizable, we use a
single threaded implementation in our experiments.

B. Experimental Results
Figure 3 shows the results of computing a solution for the

task described in Figure 2 using both our TMM approach
with Algorithm 2 and the graph approach. The results are
averaged over 30 runs. The success rate is 100% for both

approaches. The only parameter we varied was ∆t, the
amount of time spent within a call to a TMM-MotionPlan(),
and RRT-Connect, respectively.

As we can see, speedup of approximately 200% is consis-
tently obtained (irrespective of ∆t), as well as solutions that
are four times shorter. The length of a solution is the sum
of the lengths of its segments, and the length of a motion
segment is the distance between its endpoints:

d(x, x′) = d2(P (x, Jbase), P (x′, Jbase)) · 0.01 +

d2(P (x, Jleft), P (x′, Jleft)) + d2(P (x, Jright), P (x′, Jright)),

where P (x, Jc) stands for Project(x,XJc) and d2 stands
for the L2 norm. The factor 0.01 was used for the base to
compensate for the size of the environment: 20m by 20m.
The angles of the joints in the arms were measured in radians.

Fig. 3. Left: Runtime of our approach when using TMMs with Algorithm 2
(blue) versus the graph approach (red). Right: Length of solutions when
using TMMs with Algorithm 2 (blue) versus the graph approach (red).

From a storage point of view, our approach is characterized
by the memory needed for the stored robot states and the
number of edges stored in the RRT-Connect exploration
data structures. With respect to the approach that uses RRT-
Connect directly, our approach requires only 78% of the
memory for robot states and 120% of the number of edges
in the exploration data structures (averaged over 10 runs).
The reduced memory for the storage of states is a result
of the reduced runtime of our approach. The total storage
necessary for edges is significantly smaller than that for
states, so the overall memory consumption of our approach
is in fact reduced.

We also measured the amount of time spent collision
checking, averaged over 10 runs. The computation of a task
plan using the TMM approach with Algorithm 2 spends on
average 89% of the time evaluating collisions, which shows
that the overhead of managing the multi-space exploration
is small (within the remaining 11%). The approach that
uses RRT-Connect directly spends on average 79% of the
time evaluating collisions. This percentage is smaller because
planning in the full state space of the robot takes more
time, more samples are generated by RRT-Connect, slowing
down the nearest-neighbor computations. Furthermore, as
more time is spent in the computation of a task plan, more
shortest path computations need to be performed, as such
computations occur every ∆t seconds.

V. CONCLUSIONS AND FUTURE WORK

We present an algorithm that uses task motion multigraphs
(TMMs) to compute the sequence of motion plans necessary

for a mobile manipulator to execute a given task. Our
approach manages the exploration of multiple state spaces
simultaneously by reusing information between edges in
the TMM. When planning under geometric constraints only,
experimental results indicate that our approach leads to a
computational speedup of 200% and solutions that are four
times shorter than those produced by an analogous approach
that does not employ TMMs.

Although this version of the algorithm is a improvement
over our previous work, further enhancements are possible.
For example, the sharing of information between state spaces
when considering more than just geometric constraints would
require more sophisticated mechanisms, and in some cases
it could be done in a lazy fashion, i.e., lift valid motions to
higher dimensional spaces only when actually planning in
those spaces.

ACKNOWLEDGEMENTS

Work on this paper by Ioan Şucan and Lydia Kavraki was
supported in part by NSF IIS 0713623, NSF DUE 0920721, NSF
CCF 1018798, a Sloan Fellowship to LK and Rice University
funds. The experimental part of this work was supported in part
by the Shared University Grid at Rice funded by NSF under
Grant EIA-0216467, and a partnership between Rice University,
Sun Microsystems, and Sigma Solutions, Inc.

REFERENCES

[1] I. A. Şucan and L. E. Kavraki, “Mobile manipulation: Encoding
motion planning options using task motion multigraphs,” in Intl. Conf.
on Robotics and Automation, Shanghai, 2011, pp. 5492–5498.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, 2000.
[3] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 2003.
[4] A. Miller and P. K. Allen, “GraspIt!: A versatile simulator for robotic

grasping,” IEEE Robotics and Automation Mag., vol. 11, no. 4, 2004.
[5] C. L. Nielsen and L. E. Kavraki, “A two level Fuzzy PRM for

manipulation planning,” in Intl. Conf. on Intelligent Robots and
Systems, Takamatsu, Japan, 2000, pp. 1716–1722.

[6] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” Intl. Journal of Robotics Re-
search, vol. 23, pp. 729–746, 2004.

[7] K. Hauser and J.-C. Latombe, “Integrating task and PRM motion
plannning,” in Intl. Conf. on Automated Planning and Scheduling,
2009, Bridging the Gap between Task and Motion Planning Workshop.

[8] S. Cambon, R. Alami, and F. Gavrot, “A hybrid approach to intricate
motion, manipulation and task planning,” Intl. Journal of Robotics
Research, vol. 28, pp. 104–126, 2009.

[9] J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation,” in Intl. Conf. on Automated Plan-
ning and Scheduling, 2010, pp. 254–258.

[10] L. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Intl. Conf. on Robotics and Automation.
Anchorage: Workshop on Mobile Manipulation, 2010.

[11] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, June 2005.

[12] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[13] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, August 1996.

[14] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic
action planning with geometric and differential constraints,” in Intl.
Conf. on Robotics and Automation, Anchorage, 2010, pp. 5002–5008.

[15] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Intl. Conf. on Robotics and Automa-
tion, San Francisco, California, April 2000, pp. 995–1001.

[16] “The Open Motion Planning Library,” http://ompl.kavrakilab.org.

