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Abstract. The framework of Partially Observable Markov Decision Pro-
cesses (POMDPs) offers a standard approach to model uncertainty in
many robot tasks. Traditionally, POMDPs are formulated with optimality
objectives. However, for robotic domains that require a correctness guar-
antee of accomplishing tasks, boolean objectives are natural formulations.
We study POMDPs with a common boolean objective: safe-reachability,
which requires that, with a probability above a threshold, the robot
eventually reaches a goal state while keeping the probability of visiting
unsafe states below a different threshold. The solutions to POMDPs are
policies or conditional plans that specify the action to take contingent
on every possible event. A full policy or conditional plan that covers all
possible events is generally expensive to compute. To improve efficiency,
we introduce the notion of partial conditional plans that only cover a
sampled subset of all possible events. Our approach constructs a partial
conditional plan parameterized by a replanning probability. We prove
that the probability of the constructed partial conditional plan failing
is bounded by the replanning probability. Our approach allows users to
specify an appropriate bound on the replanning probability to balance
efficiency and correctness. We validate our approach in several robotic
domains. The results show that our approach outperforms a previous
approach for POMDPs with safe-reachability objectives in these domains.

1 Introduction

Planning robust executions under uncertainty is a fundamental concern in robotics.
POMDPs [29] provide a standard framework for modeling many robot tasks under
uncertainty. The solutions to POMDPs are policies [29] or conditional plans [9]
that specify the actions to take under all possible events during execution.

Traditionally, the goal of solving POMDPs is to find optimal solutions that
maximize (discounted) rewards [1, 3, 9, 12, 16, 17, 23, 24, 30]. While this purely
quantitative formulation is suitable for many applications, some robotic settings
demand synthesis concerning boolean requirements. For example, consider a robot
with imperfect actuation and perception working in an office environment with
uncertain obstacles such as floor signs and furniture (Fig. 1). Due to uncertainty,
the locations of the robot and the obstacles are partially observable, and the
robot’s action effects and observations are both probabilistic. In this probabilistic



2 Yue Wang et al.

Fig. 1: A robot with imperfect actuation
and perception needs to pick up the
blue can on the table, while avoiding
collisions with uncertain obstacles such
as floor signs and file cabinets.
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Fig. 2: A full conditional plan γk con-
tains both solid and dotted branches.
a1, a

0
2, . . . are actions. o1 and o2 are ob-

servations. A partial conditional plan
γpk contains only solid branches.

setting, a reasonable task requirement for the robot is to eventually pick up the
target object with a probability above a threshold while keeping the probability of
collision below a different threshold. This task requirement is naturally formulated
as a boolean objective written in a temporal logic. Moreover, formulating boolean
requirements implicitly as quantitative objectives does not always yield good
solutions for certain domains [32]. Therefore, POMDPs with explicit boolean
objectives are better formulations than quantitative POMDPs in these domains.

Policy synthesis for POMDPs with boolean objectives has been studied in
previous works [4, 5, 31], where the goal is to satisfy a temporal property with
probability 1 (almost-sure satisfaction). A more general policy synthesis for
POMDPs with boolean objectives is to synthesize policies that satisfy a temporal
property with a probability above a threshold. In this work, we study this problem
for the special case of safe-reachability objectives, which require that with a
probability above a threshold, a goal state is eventually reached while keeping
the probability of visiting unsafe states below a different threshold. Many robot
tasks such as the one in Fig. 1 can be formulated as a safe-reachability objective.

Our previous work [33] has presented a method called Bounded Policy Synthe-
sis (BPS) for POMDPs with safe-reachability objectives. BPS computes a valid
policy over the goal-constrained belief space rather than the entire belief space to
improve efficiency. The goal-constrained belief space only contains beliefs visited
by desired executions achieving the safe-reachability objective and is generally
much smaller than the original belief space. BPS is an offline synthesis method
that computes a full policy before execution. Another category of approaches
to planning under uncertainty is online planning that interleaves planning and
execution [3, 8, 13, 14, 17, 28, 30]. Offline synthesis offers a strong correctness
guarantee, but it is difficult to scale. Online planning is much more scalable and
works well when replanning is likely to succeed, but it often fails when replanning
is difficult or infeasible in some states, making it hard to ensure correctness.

In this work, our goal is to scale up our previous BPS method further through
online planning and achieve a good balance between efficiency and correctness.
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Specifically, we present a method called Online Partial Conditional Plan Synthesis
(OPCPS) for POMDPs with safe-reachability objectives, based on the new
notion of partial conditional plans. A partial conditional plan only contains a
sampled subset of all possible events and approximates a full policy. OPCPS
computes a partial conditional plan parameterized by a replanning probability,
i.e., the probability of the robot encountering an event not covered by the partial
conditional plan, thus requiring replanning. We offer a theoretical analysis of this
replanning probability framework, showing that the probability of the constructed
partial conditional plan failing is bounded by the replanning probability. OPCPS
allows users to specify an appropriate bound on the replanning probability to
balance efficiency and correctness: for domains where replanning is likely to
succeed, increasing the bound usually leads to better scalability, and for domains
where replanning is difficult or impossible in some states, users can decrease the
bound and allocate more computation time to achieve a higher success rate.

To further improve performance, OPCPS updates the replanning probability
bound instead of using the same bound during computation. This bound update
enables quicker detection of the current partial conditional plan meeting the bound
and avoids unnecessary computation. For a better safety guarantee, OPCPS checks
whether the successor belief of every uncovered observation of the constructed
partial conditional plan satisfies the safety requirement. Thus OPCPS guarantees
that the robot still satisfies the safety requirement when replanning fails. Section
3.1 has more details on the bound update and the safety guarantee of OPCPS.

We evaluate OPCPS in the kitchen domain presented in [33] and the Tag
domain [23]. We also validate OPCPS on a Fetch robot for the domain shown in
Fig. 1. The results demonstrate that OPCPS scales better than BPS and can
solve problems that are beyond the capabilities of BPS within the time limit.

Related Work The analysis of POMDPs can be divided into three categories.
In the first category, the objective is to find optimal solutions concerning quanti-
tative rewards. Many previous POMDP algorithms [1, 3, 9, 16, 17, 23, 30] focus on
maximizing (discounted) rewards. In the second category, the objective combines
the quantitative rewards of the traditional POMDPs with notions of risk and cost.
Recently, there has been a growing interest in constrained POMDPs [11,15,25,32],
chance-constrained POMDP [27], and risk-sensitive POMDPs [10,19] that handle
cost/risk constraints explicitly. The third category consists of POMDPs with
high-level boolean requirements written in a temporal logic. Recent work [4,5,31]
has investigated the almost-sure satisfaction of POMDPs with temporal proper-
ties, where the goal is to check whether a given temporal property can be satisfied
with probability 1. A more general policy synthesis problem of POMDPs with
safe-reachability objectives has been introduced in our previous work [33]. It
has been shown that for robotic domains that require a correctness guarantee of
accomplishing tasks, POMDPs with safe-reachability provide a better guarantee
of safety and reachability than the quantitative POMDP formulations [33].

In this work, we focus on POMDPs with safe-reachability objectives and
evaluate our previous BPS approach [33]. While BPS synthesizes a full policy
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(conditional plan) offline that covers all possible events, our approach is an
online method that interleaves the computation of a partial conditional plan and
execution. Since a partial conditional plan only contains a sampled subset of all
possible events, our method achieves better scalability than BPS and can solve
problems that are beyond the capabilities of BPS within the time limit.

This idea of partial conditional plans resembles the state-of-the-art online
POMDP algorithm based on Determinized Sparse Partially Observable Tree
(DESPOT) [3, 30]. Both DESPOT and our partial conditional plans contain a
subset of all possible observations to improve efficiency. There are two major differ-
ences between our method and DESPOT: first, DESPOT handles POMDPs with
(discounted) rewards while our approach solves POMDPs with safe-reachability
objectives. Second, DESPOT contains all action branches while our approach
constructs partial conditional plans (Fig. 2) that only contains one action per step,
which is part of the desired execution satisfying the safe-reachability objective.

2 Problem Formulation

We follow the notation in [33] for POMDPs with safe-reachability objectives.

Definition 1 (POMDP). A POMDP is a tuple P = (S,A, T ,O,Z), where S
is a finite set of states, A is a finite set of actions, T is a probabilistic transition
function, O is a finite set of observations, and Z is a probabilistic observation
function. T (s, a, s′) = Pr(s′|s, a) specifies the probability of moving to state s′ ∈ S
after taking action a ∈ A in state s ∈ S. Z(s′, a, o) = Pr(o|s′, a) specifies the
probability of observing o ∈ O after taking action a ∈ A and reaching s′ ∈ S.

Due to uncertainty, states are partially observable and typically we maintain a
probability distribution (belief ) over all states b : S 7→ [0, 1] with

∑
s∈S

b(s) = 1.

The set of all beliefs B = {b : S 7→ [0, 1] |
∑
s∈S

b(s) = 1} is the belief space.

The belief space transition function TB : B×A×O → B is deterministic. boa =
TB(b, a, o) is the successor belief for a belief b ∈ B after taking an action a ∈ A and
receiving an observation o ∈ O, defined according to Bayes rule: ∀ s′ ∈ S, boa(s′) =
Z(s′,a,o)

∑
s∈S
T (s,a,s′)b(s)

Pr(o|b,a) , where Pr(o|b, a) =
∑
s′∈S
Z(s′, a, o)

∑
s∈S
T (s, a, s′)b(s) is the

probability of receiving the observation o after taking the action a in the belief b.

Definition 2 (Plan). A k-step plan is a sequence σ = (b0, a1, o1, . . . , ak, ok, bk)
such that for all i ∈ (0, k], the belief updates satisfy the transition function TB,
i.e., bi = TB(bi−1, ai, oi), where ai ∈ A is an action and oi ∈ O is an observation.

Definition 3 (Safe-Reachability Objective). A safe-reachability objective
is a tuple G = (Dest,Safe), where Safe = {b ∈ B |

∑
s violates safety

b(s) < δ2} is a

set of safe beliefs and Dest = {b ∈ Safe |
∑

s is a goal state

b(s) > 1− δ1} ⊆ Safe is

a set of goal beliefs. δ1 and δ2 are small values that represent tolerance.



Online Partial Conditional Plan Synthesis 5

G compactly represents the set ΩG of valid plans:

Definition 4 (Valid Plan). A k-step plan σ = (b0, a1, o1, . . . , ak, ok, bk) is valid
w.r.t. a safe-reachability objective G = (Dest,Safe) if bk is a goal belief (bk ∈ Dest)
and all beliefs visited before step k are safe beliefs (∀ i ∈ [0, k), bi ∈ Safe).

Partial Conditional Plan Computing an exact policy over the entire belief
space B is intractable, due to the curse of dimensionality [21]: B is a high-
dimensional space with an infinite number of beliefs. To make the problem
tractable, we can exploit the reachable belief space Bb0 [16, 23]. Bb0 only contains
beliefs reachable from the initial belief b0 and is generally much smaller than B.

Our previous BPS work [33] has shown that the performance of policy synthesis
for POMDPs with safe-reachability objectives can be further improved based on
the notion of a goal-constrained belief space BG . BG combines the reachable belief
space Bb0 and the set ΩG of valid plans defined by the safe-reachability objective
G. BG only contains beliefs reachable from the initial belief b0 under a valid plan
σ ∈ ΩG and is generally much smaller than the reachable belief space Bb0 .

Previous results [6,18,22] have shown that the problem of policy synthesis for
POMDPs is generally undecidable. However, when restricted to a bounded horizon,
this problem becomes PSPACE-complete [20, 21]. Therefore, BPS computes a
bounded policy π over the goal-constrained belief space BG within a bounded
horizon h. This bounded policy π is essentially a set of conditional plans [9]:

Definition 5 (Conditional Plan). A k-step conditional plan γk ∈ Γk is a tuple
γk = (b, a, νk), where b ∈ B is a belief, a ∈ A is an action and νk : O 7→ Γk−1 is an
observation strategy that maps an observation o ∈ O to a (k−1)-step conditional
plan γk−1 = (b′, a′, νk−1) ∈ Γk−1, where b′ = TB(b, a, o) is the successor belief.

Fig. 2 shows an example k-step conditional plan γk = (b0, a1, νk). γk defines a
set Ωγk of k-step plans σk = (b0, a1, o1, . . . , ak, ok, bk). For each plan σk ∈ Ωγk ,
the action a1 at step 1 is chosen by the k-step conditional plan γk, the action a2
at step 2 is chosen by the (k − 1)-step conditional plan γk−1 = νk(o1), ..., and
the action ak at step k is chosen by the one-step conditional plan γ1 = ν2(ok−1).

Definition 6 (Valid Conditional Plan). A k-step conditional plan γk is valid
w.r.t. a safe-reachability objective G if every plan in Ωγk is valid (Ωγk ⊆ ΩG).

It is clear that the number of valid plans in a valid k-step conditional plan γk
grows exponentially as the horizon k increases. To address this challenge, our
method computes partial conditional plans to approximate full conditional plans:

Definition 7 (Partial Conditional Plan). A k-step partial conditional plan
is a tuple γpk = (b, a,Opk, ν

p
k), where b ∈ B is a belief, a ∈ A is an action, Opk ⊆ O

is a subset of the observation set O, and νpk : Opk 7→ Γ pk−1 is a partial observation
strategy that maps an observation o ∈ Opk to a (k − 1)-step partial conditional
plan γpk−1 = (b′, a′,Opk−1, ν

p
k−1), where b′ = TB(b, a, o) is the successor belief.

Similarly, γpk defines a set Ωγp
k

of k-step plans σk in belief space.

Definition 8 (Valid Partial Conditional Plan). A k-step partial conditional
plan γpk is valid w.r.t. a safe-reachability objective G if every plan in Ωγp

k
is valid.
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Replanning Probability Since a partial conditional plan γpk = (b, a,Opk, ν
p
k)

only contains a subset of all observation branches at each step (see Fig. 2), during
online execution, it is possible that an observation branch o ∈ O−Opk that is not
part of the partial conditional plan is visited. In this case, we need to recursively
compute a new partial conditional plan for this new branch o. However, since γpk
does not consider all possible observation branches, it is possible that the action
chosen by γpk is invalid for the new observation branch o. As a result, there are
no partial conditional plans for the new observation branch o and execution fails.

To preserve correctness, we would like to bound the failure probability
pfail(γ

p
k) = Pr(failure|γpk) measured under a valid partial conditional γpk =

(b, a,Opk, ν
p
k). However, computing pfail is costly because it requires checking

whether the action a chosen by γpk is valid for every uncovered observation branch
o ∈ O−Opk, which essentially computes a full conditional plan. Alternatively, we
can easily compute the replanning probability preplan(γpk) = Pr(replanning|γpk) of
reaching an uncovered observation branch o ∈ O −Opk and requiring replanning :

preplan(γpk) =
∑
o∈Op

k

Pr(o|b, a)preplan(νpk(o)) +
∑

o∈O−Op
k

Pr(o|b, a) (1)

For the base case k = 1, preplan(γp1 ) =
∑

o∈O−Op
1

Pr(o|b, a).

The following theorem states that for a valid partial conditional plan γpk , the
failure probability pfail(γ

p
k) is bounded by the replanning probability preplan(γpk):

Theorem 1. For any valid partial conditional plan γpk , pfail(γ
p
k) ≤ preplan(γpk).

Theorem 1 can be proved by induction (see Appendix A).

Problem Statement Given a POMDP P , an initial belief b0, a replanning
probability bound δpreplan

, a safe-reachability objective G and a horizon bound
h, our goal is to synthesize a valid k-step (k ≤ h) partial conditional plan
γpk = (b0, a,Opk, ν

p
k) with a replanning probability preplan(γpk) ≤ δpreplan .

Since the replanning probability preplan(γpk) is bounded by δpreplan , by Theorem
1, γpk guarantees achieving the given safe-reachability objective with a probability
at least 1− δpreplan

. Note that when preplan(γpk) = 0, γpk is a full conditional plan.

3 Online Partial Conditional Plan Synthesis

Fig. 3 shows the overall structure of OPCPS. OPCPS follows the typical online
planning paradigm [26] that interleaves synthesis of valid partial conditional
plans and execution. If there are no valid partial conditional plans within the
horizon bound, execution fails. Otherwise, OPCPS follows the generated partial
conditional plan until a goal belief is reached or a new observation o ∈ O−Opk is
received. In the latter case, OPCPS recursively replans for the observation o.

In partial conditional plan synthesis (Fig. 4), we replace the policy generation
component in BPS [33] with a new partial conditional plan generation (the green
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dashed component). For completeness, we offer a brief summary of the constraint
generation and plan generation components in BPS. See [33] for more details.

In constraint generation (Fig. 4), given a POMDP P , an initial belief b0 and a
safe-reachability objective G = (Dest,Safe), we first construct a constraint Φk to
symbolically encode the goal-constrained belief space over a bounded horizon k
based on the encoding from Bounded Model Checking [2]. Φk compactly represents
the requirement of reaching a goal belief b ∈ Dest safely in k steps.

Then in plan generation (Fig. 4), we compute a valid plan σk by checking the
satisfiability of Φk through an SMT solver [7]. If Φk is satisfiable, the SMT solver
returns a valid plan σk = (bσk

0 , aσk
1 , oσk

1 , . . . , bσk

k ). This valid plan σk only covers
a particular observation oσk

i at step i. In partial conditional plan generation (Fig.
4), we generate a valid partial conditional plan γpk with a replanning probability
preplan(γpk) ≤ δpreplan

from this valid plan σk by sampling a subset Opk ⊆ O
of observations at each step, where δpreplan is the given replanning probability
bound. If this partial conditional plan generation fails, we construct an additional
constraint φ to block invalid plans and force the SMT solver to generate another
better plan. If Φk is unsatisfiable, we increase the horizon and repeat the above
steps until a valid partial conditional plan is found or a given horizon bound is
reached. Next we describe the new partial conditional plan generation component.

3.1 Partial Conditional Plan Generation

In partial conditional plan generation (Algorithm 1), we construct a valid partial
conditional plan γpk that satisfies the given bound δpreplan from a valid plan σk.
For each step i, we first recursively construct a next-step conditional plan γpnext
for oσk

i (line 5). If the replanning probability preplan(γpk) is greater than the bound
δpreplan

(line 9), we add more observation branches to γpk by sampling a new
observation o′ according to the probability of occurrence (line 11) and recursively
constructing a next-step partial conditional plan γpnext for o′ (line 13). This is
another partial conditional plan synthesis problem with a new initial belief b′

(line 12), and can be solved recursively using the algorithm shown in Fig. 4.
If we successfully construct a valid γpnext for o′, we add o′ to γpk (line 8 or 16).

Otherwise, this input plan σk cannot be an element of a valid partial conditional
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Algorithm 1: PartialConditionalPlanGeneration

Input: POMDP P = (S,A, T ,O,Z), Replanning Probability Bound δpreplan ,
Safe-Reachability Objective G = (Dest,Safe), Valid k-Step Plan
σk = (b

σk
0 , a

σk
1 , o

σk
1 , . . . , b

σk
k ), Step i, Horizon Bound h

Output: Valid partial conditional plan γpk with replanning probability
preplan(γpk) ≤ δpreplan , Constraint φ for blocking invalid plans

1 if i > k then /* Reach end of the plan */

2 γpk ← (b
σk
k , ∅, ∅, ∅) /* Terminal belief: γpk specifies nothing */

3 return γpk , ∅
4 Opk ← ∅, δ

′
preplan

← δpreplan , b← b
σk
i−1, a← a

σk
i , o′ ← o

σk
i /* Initialize */

/* Recursively process next step */

5 γpnext ← PartialConditionalPlanGeneration(P, δ′preplan ,G, σk, i+ 1, h)

6 if γpnext = ∅ then /* Construction failed */

7 Construct φ using Formula 2, return ∅, φ
8 Opk ← O

p
k ∪ {o

′}, νpk(o′)← γpnext, γ
p
k ← (b, a,Opk, ν

p
k) /* Add o′ to γpk */

9 while preplan(γpk) > δpreplan do

10 δ′preplan
← δ′preplan

+
Pr(o′|b,a)(δ′preplan−preplan(ν

p
k
(o′))∑

o∈O−Op
k
−{o′}

Pr(o|b,a) /* Bound update */

11 o′ ← sampled observation in O −Opk based on the probability of occurrence
12 b′ ← TB(b, a, o′) /* Get new initial belief */

/* Recursively construct a next-step partial conditional plan */

13 γpnext ← PartialConditionalPlanSynthesis(P, b′, δ′preplan ,G, i, h)

14 if γpnext = ∅ then /* Construction failed */

15 Construct φ using Formula 2, return ∅, φ
16 Opk ← O

p
k ∪ {o

′}, νpk(o′)← γpnext /* Add o′ to γpk */

17 foreach observation o ∈ O −Opk do /* Final safety check */

18 b′ ← TB(b, a, o) /* Try observation o */

19 if b′ 6∈ Safe then /* Violates safety */

20 Construct φ using Formula 2, return ∅, φ

21 return γpk , ∅

plan γpk (σk 6∈ Ωγp
k
). Therefore, the prefix (bσk

0 , aσk
1 , oσk

1 , . . . , bσk
i−1, a

σk
i ) of the

input plan σk is invalid for the current horizon k and we construct the following
additional constraint φ to block invalid plans:

¬((b0 = bσk
0 ) ∧ (ai = aσk

i ) ∧

(
i−1∧
m=1

(am = aσk
m ) ∧ (om = oσk

m ) ∧ (bm = bσk
m )

)
) (2)

φ blocks the invalid plans that have this prefix and avoids unnecessary checks
of these plans (checking σk has already shown that these plans are invalid).

Updating Replanning Probability Bound As we add more observation
branches to the current partial conditional plan γpk = (b, a,Opk, ν

p
k), we update

the replanning probability bound δ′preplan (line 10) for the remaining uncovered

observation branches O −Opk to avoid unnecessary computation.
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Initially, Opk is empty and δ′preplan is the input bound δpreplan (line 4). δ′preplan
bounds the replanning probability preplan(νpk(o)) of the next-step partial condi-
tional plan νpk(o) for every remaining uncovered observation o ∈ O −Opk. δ′preplan
guarantees that the replanning probability preplan(γpk) satisfies the original bound
δpreplan

, i.e., preplan(γpk) =
∑
o∈O

Pr(o|b, a)preplan(νpk(o)) ≤
∑
o∈O

Pr(o|b, a)δ′preplan ≤

δ′preplan
= δpreplan

since preplan(νpk(o)) ≤ δ′preplan based on the definition of δ′preplan .
During partial conditional plan generation, after adding a new observation

o′ ∈ O−Opk to the partial conditional plan γpk (line 8 or 16), we update δ′preplan to
avoid unnecessary computation. Suppose we construct a new next-step partial con-
ditional plan γpnext with the same replanning probability α for every remaining un-
covered observation o ∈ O−Opk−{o′}. Then the replanning probability of the ob-
servation branchesO−Opk is Pr(o′|b, a)preplan(νpk(o′))+α

∑
o∈O−Op

k−{o′}
Pr(o|b, a) ≤

∑
o∈O−Op

k

Pr(o|b, a)δ′preplan
. Therefore α ≤ δ′preplan +

Pr(o′|b,a)(δ′preplan−preplan(ν
p
k(o
′))∑

o∈O−Op
k
−{o′}

Pr(o|b,a) .

Then the new bound for the remaining uncovered observation o ∈ O −Opk − {o′}

should be δ′preplan
+

Pr(o′|b,a)(δ′preplan−preplan(ν
p
k(o
′))∑

o∈O−Op
k
−{o′}

Pr(o|b,a) and this new bound is at least

δ′preplan
since preplan(νpk(o′)) ≤ δ′preplan according to the definition of δ′preplan . When

the replanning probability bound becomes larger, computing a partial conditional
plan is usually less expensive. Therefore, updating the replanning probability
bound (line 10) usually improves efficiency and still makes the current partial
conditional plan γpk satisfy the original bound δpreplan .

Safety Guarantee After we construct a valid partial conditional plan γpk =
(b, a,Opk, ν

p
k), if the uncovered observation set is not empty (O −Opk 6= ∅), then

the replanning probability preplan(γpk) > 0. Though this replanning probability is
bounded by the given bound δpreplan and by Theorem 1, we know that the execution
failure probability pfail(γ

p
k) is also bounded by δpreplan . However, if preplan(γpk) > 0,

during execution the robot might receive an uncovered observation o ∈ O −Opk
and there are no valid partial conditional plans for this observation o. Then
execution fails due to unsuccessful replanning. In this case, though we cannot
achieve the safe-reachability objective, a guarantee of the robot still satisfying
the safety requirement is preferable to the situation where the robot violates the
safety requirement. Our approach OPCPS can provide this safety guarantee by
checking whether the successor belief of every uncovered observation o ∈ O −Opk
of the constructed partial conditional plan γpk is a safe belief (lines 17-20).

4 Experiments

We test OPCPS on the kitchen domain (horizon bound h = 30) presented in [33]
and the classic Tag domain [23] (h = 100). We also validate OPCPS on a Fetch
robot for the scenario shown in Fig. 1 (h = 20). We use Z3 [7] as our backend
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Fig. 5: Performance results for the kitchen domain as the bound δpreplan increases.
Different plots correspond to tests with different numbers M of obstacles. Missing
data points in a plot indicate time-out. The red dashed line is the plot of
time = 1800 seconds (time-out). The blue dashed line passes through the data
points generated by BPS. All the results are averaged over 50 independent runs.

SMT solver. All experiments were conducted on a 3.0 GHz IntelR© processor with
32 GB of memory. We set the time-out to be 1800 seconds. For all the tests of
the kitchen and Tag domains, the results are averaged over 50 independent runs.

In the kitchen domain [33], a robot needs to eventually pick up a cup from the
storage while avoiding collisions with M uncertain obstacles. This kitchen domain
is an example scenario that requires a correctness guarantee of accomplishing
tasks, and POMDPs with safe-reachability objectives provide a better correctness
guarantee than the quantitative POMDP formulations [33].

The kitchen environment is discretized into N = 36 regions. The actuation
and perception of the robot are imperfect, modeled as ten uncertain robot actions:
move and look in four directions, pick-up using the left or right hand. We assume
that the robot starts at a known initial location. However, due to the robot’s
imperfect perception, the location of the robot and the locations of obstacles are
all partially observable during execution. This kitchen domain has a large state
space |S| = C(N,M) ·N , where C(N,M) is the number of M -combinations from
the set of N regions. In the largest test (M = 7) there are more than 108 states.
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Fig. 6: Success rate as δpreplan
increases. The green dotted line shows the plot of

success rate = 1.0− δpreplan
. The red dashed line is the plot of success rate = 1.0.

The blue dashed line passes through the data points generated by BPS.

Performance We evaluate our previous BPS method [33] and OPCPS (with
the replanning probability bound δpreplan ranging from 0.1 to 0.9) in the kitchen
domain with various numbers of obstacles. BPS computes a full conditional plan
that covers all observation branches and is equivalent to OPCPS with δpreplan = 0.

Fig. 5a, 5b, 5c and 5d show the average computation time of one synthesis call,
the average number of synthesis calls, the average total computation time and the
average computation time per step as the bound δpreplan increases, respectively.
As shown in from Fig. 5a (semi-log scale) and 5b, the computation time of one
synthesis call decreases very quickly while the number of calls to partial conditional
plan synthesis does not increase much as δpreplan increases. Therefore, the total
computation time (Fig. 5c) keeps decreasing as δpreplan increases. Additionally,
as we can see from Fig. 5c (semi-log scale), with a small bound δpreplan = 0.1,
we observe a big performance gain compared to BPS: for the test case with
M = 4 obstacles, the speedup is around 5 times and for the test case with M = 5
obstacles, BPS times out while OPCPS with δpreplan = 0.1 can solve this test in
around 9 minutes. Therefore, OPCPS achieves better performance than BPS in
the tests by computing partial conditional plans to approximate full conditional
plans. The results of the average computation time per step (Fig. 5d) also show
the same trend. These results suggest that for domains where replanning is easy,
increasing the replanning probability bound usually leads to better scalability.

Success Rate For all the previous performance tests, the constructed partial
conditional plans by OPCPS with different bounds δpreplan always achieve the
safe-reachability objective (success rate = 100%) because the robot can move in
four directions. When the robot enters a region surrounded by obstacles in three
directions, the robot can always move back to its previous position, which means
replanning is always possible. However, in some domains such as autonomous
driving and robot chefs, when the robot commits to an action and finds something
wrong, it is difficult or impossible to reverse the action effects and replan. To
evaluate how OPCPS performs in these scenarios, we test OPCPS in the kitchen
domain with different numbers M of obstacles (M ≤ 4 since BPS times out for
tests with more than four obstacles), but we disable the robot’s move-north action.
Therefore, when the robot performs move-south and enters a region surrounded
by obstacles in three directions, replanning fails. However, the robot still satisfies
the safety requirement, thanks to the safety guarantee of OPCPS.
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Fig. 7: Replanning probability and total computation time as the bound δpreplan in-
creases (M = 4). The green dotted line shows the plot of replanning probability =
δpreplan

. The blue dashed line passes through the data points generated by BPS.

Fig. 6 shows the success rate as the bound δpreplan increases. For all the tests,
the success rate is always greater than 1.0− δpreplan (all data points are above
the plot of success rate = 1.0 − δpreplan). This matches Theorem 1: the failure
probability of a valid partial conditional plan is bounded by the replanning
probability. Moreover, as the bound δpreplan decreases to 0, OPCPS produces a
valid full conditional plan with 100% success rate. These results suggest that for
some domains where we anticipate that replanning is difficult, users can decrease
the bound δpreplan

and allocate computational resources for a high success rate.
Note that the replanning probability bound is a conservative upper bound

of the failure probability since it pessimistically assumes all the uncovered
observation branches that require replanning will fail, which is a rare case in
practice. As we can see from Fig. 6, even with a high replanning probability
bound δpreplan

= 0.9, the success rate is still at least 70% and the failure rate is
at most 30%, which is much smaller than the given bound δpreplan = 0.9.

Gains from Updating Replanning Probability Bound As we discussed in
Section 3.1, updating the replanning probability bound during partial conditional
plan generation is important for avoiding unnecessary computation and improving
efficiency. To evaluate the gains from this bound update step, we test OPCPS
with and without bound update in the kitchen domain with M = 4 obstacles.

Fig. 7a and 7b (semi-log scale) show the average replanning probability of
the constructed partial conditional plans and the average total computation
time as the bound δpreplan

increases, respectively. As shown in Fig. 7a, with
both settings (with and without bound update) OPCPS constructs a partial
conditional plan with a replanning probability smaller than δpreplan . However,
OPCPS without bound update constructs a partial conditional plan with a lower
replanning probability than that constructed by OPCPS with bound update.
Therefore, OPCPS without bound update performs unnecessary computation and
constructs a partial conditional plan with more branches and thus spends more
time than OPCPS with bound update, as shown in Fig. 7b. For the tests with
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(a) (b) (c) (d) (e)

Fig. 8: Physical validation of OPCPS for the domain shown in Fig. 1.

δpreplan
= 0.1, 0.2, 0.3 that take more time to solve than those with δpreplan > 0.3,

OPCPS with bound update achieves a 2-5 times speedup.

Physical Validation We validate OPCPS on a Fetch robot for the domain
shown in Fig. 1. The setup of this domain is similar to the kitchen domain. The
Fetch needs to pick up a target object (the blue can on the table) while avoiding
collisions with uncertain obstacles such as floor signs and file cabinets, which
can be placed in different locations. The POMDP’s state space consists of robot
locations and object locations. We use a Vicon system to detect object locations,
which is usually accurate but can still produce false negative and false positive
due to occlusion or inappropriate Vicon marker configurations on objects. We
estimate the false negative and false positive probabilities by counting the false
negative and false positive events during 100 Vicon detections. The POMDP’s
probabilistic observation function is defined based on the false negative and
false positive probabilities. To test the effects of different replanning probability
bounds, we only allow the Fetch to move in three directions (west, east and
south), similar to the setup in the previous success rate tests. Sometimes the
Fetch may fail to move its base when given a move action command and stay
in the same place. We estimate the failure probability of these move actions by
counting the failure events during 100 move action executions. The POMDP’s
probabilistic transition function is defined based on this failure probability. Fig.
8a shows the initial state. There are two uncertain obstacles (a wet-floor sign and
a file cabinet). We test OPCPS with two bounds δpreplan = 0.9 and δpreplan = 0.1.

With δpreplan
= 0.9, after observing no obstacle in the south direction, the

Fetch decides to move south (Fig. 8b) because the partial conditional plan
constructed with a high replanning probability bound does not cover the case
where the Fetch is surrounded by obstacles and the wall. Then replanning fails
but the Fetch still satisfies the safety requirement as shown in Fig. 8b, thanks to
the safety guarantee provided by OPCPS.

However, with δpreplan
= 0.1, after observing no obstacles in the south direction,

the Fetch decides to move west (Fig. 8c) because the partial conditional plan
constructed with a low replanning probability bound covers the case where the
robot is surrounded by obstacles. In order to avoid this situation, the Fetch needs
to move west and gather more information. Then the Fetch observes an obstacle
in the south direction and decides to move west again (Fig. 8d). Next, the Fetch
observes no obstacle in the south direction, and now it can move south. Unlike
the case shown in Fig. 8b where the robot is surrounded by two obstacles and
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Fig. 9: Performance results for the Tag domain as the replanning probability
bound δpreplan

increases. All the results are averaged over 50 independent runs.

the wall, in the situation shown in Fig. 8d, if there is another obstacle in the
south direction, the Fetch can still move west since there are only two obstacles.
Finally, the Fetch moves to the table and picks up the target object (Fig. 8e).

Tag Domain To further demonstrate the advantage of OPCPS over our previous
BPS method, we evaluate OPCPS on a classic POMDP domain [23]. The task
for the robot is to search for and tag a moving agent in a grid with 29 locations.
The agent follows a fixed strategy that intentionally moves away from the robot.
Both the robot and the agent can move in four directions or stay. The robot’s
location is fully observable while the agent’s location is unobservable unless the
robot and the agent are in the same location.

This Tag domain is challenging for BPS because of a large number of obser-
vations (|O| = 30) and more importantly, a huge planning horizon for computing
a full conditional plan. However, computing a full conditional plan is unneces-
sary since replanning is easy in this domain. Fig. 9a and 9b show the average
total computation time and the average computation time per step for the Tag
domain as the bound δpreplan

increases. These results show a similar trend to the
previous kitchen domain tests: with a small bound δpreplan = 0.1, we observe a
big performance gain compared to BPS. BPS cannot solve this test within the
1800-second time limit while OPCPS with δpreplan = 0.1 can solve this test in
around 40 seconds and the computation time per step is less than 1 second.

5 Discussion

We presented a new approach, called OPCPS, to policy synthesis for POMDPs
with safe-reachability objectives. We introduce the notion of a partial conditional
plan to improve computational efficiency. Rather than explicitly enumerating all
possible observations to construct a full conditional plan, OPCPS samples a subset
of all observations to ensure bounded replanning probability. Our theoretical and
empirical results show that the failure probability of a valid partial conditional
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plan is bounded by the replanning probability. Moreover, OPCPS guarantees that
the robot still satisfies the safety requirement when replanning fails. Compared
to our previous BPS method [33], OPCPS with a proper replanning probability
bound scales better in the tested domains and can solve problems that are
beyond the capabilities of BPS within the time limit. The results also suggest
that for domains where replanning is easy, increasing the replanning probability
bound usually leads to better scalability, and for domains where replanning is
difficult or impossible in some states, we can decrease the replanning probability
bound and allocate more computation time to achieve a higher success rate. Our
results also indicate that by updating the replanning probability bound during
partial conditional plan generation, we can quickly detect if the current partial
conditional plan satisfies the bound and avoid unnecessary computation.

In this work, we focus on discrete POMDPs. While many robot applications
can be modeled using this discrete representation, discretization often suffers
from the curse of dimensionality. Investigating how to deal with continuous
POMDPs [1, 9, 24, 28] directly is a promising future direction. The current
implementation of OPCPS constructs partial conditional plans by sampling
observations according to the probability of occurrence (Algorithm 1, line 11),
which does not consider the importance of observations [17]. How to extend
OPCPS to handle critical observations is another important ongoing question.
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A Proof of Theorem 1

Proof. We prove Theorem 1 by induction. First we define δfail(b) : B 7→ {0, 1} as
an indicator and when δfail(b) = 1, there are no valid partial conditional plans
for belief b and exeution fails.

– Base case (k = 1): Since γp1 = (b, a,Op1 , ∅) is valid, for every covered obser-
vation o ∈ Op1 , b′ = TB(b, a, o) ∈ Dest is the terminal goal belief and thus
δfail(b

′) = 0. Therefore,

pfail(γ
p
1 ) =

∑
o∈O−Op

1

Pr(o|b, a)δfail(b
′)

≤
∑

o∈O−Op
1

Pr(o|b, a) = preplan(γp1 )

since δfail(b
′) ≤ 1 where b′ = TB(b, a, o) is the successor belief for the uncovered

observation o ∈ O −Op1 .
– Inductive case (k > 1): Since γpk = (b, a,Opk, ν

p
k) is valid, for every covered

observation o ∈ Opk, the corresponding (k − 1)-step partial conditional plan
νpk(o) is also valid. Assume pfail(ν

p
k(o)) ≤ preplan(νpk(o)), then

pfail(γ
p
k) =

∑
o∈Op

k

Pr(o|b, a)pfail(ν
p
k(o)) +

∑
o∈O−Op

k

Pr(o|b, a)δfail(b
′)

≤
∑
o∈Op

k

Pr(o|b, a)preplan(νpk(o)) +
∑

o∈O−Op
k

Pr(o|b, a)

= preplan(γpk)

since δfail(b
′) ≤ 1 where b′ = TB(b, a, o) is the successor belief for the uncovered

observation o ∈ O −Opk.

Therefore, For any k-step valid partial conditional plan γpk = (b, a,Opk, ν
p
k),

pfail(γ
p
k) ≤ preplan(γpk).
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